
REVIEWS

In the last decade of the nineteenth century, Santiago
Ramón y Cajal introduced a theory of memory storage
in which information is stored in the brain by anatomi-
cal changes in the connections between neurons1. This
insight proved not only prescient but also premature.
Over the next sixty years, few experiments were directed
toward testing this idea. Indeed, during much of this
period, Ramón y Cajal’s suggestion was not even taken
seriously by many scientists working on the brain
because of opposition to the idea that the nervous sys-
tem could be studied effectively at the level of individual
cells and their connections2–5.

This situation began to change in the late 1940s and
early 1950s. Intracellular microelectrode recording
methods were introduced for studying the synaptic
actions of individual neurons and electron microscopy
was applied to visualize the fine structure of synapses.
These methodological advances allowed central synaps-
es to be studied directly and led to a revival of interest in
Ramón y Cajal’s ideas. In addition, the ideas were refor-

mulated in functional terms that made them more suit-
able to physiological and anatomical testing. These for-
mulations defined two broad categories of SYNAPTIC

PLASTICITY, generally referred to as homosynaptic and
heterosynaptic plasticity. In this review we will focus on
an extensively studied example of each type of synaptic
plasticity: Hebbian homosynaptic potentiation in the
hippocampus and heterosynaptic facilitation in Aplysia.

Homosynaptic and heterosynaptic rules 
In 1949, Donald Hebb proposed a homosynaptic rule
for long-term memory on the basis of the strengthen-
ing of synaptic connections: the events responsible for
triggering synaptic strengthening occur at the same
synapse as is being strengthened (FIG. 1a)3. Specifically,
Hebb proposed that the strength of the connection
between the two neurons is increased for a long period
of time when the firing of the presynaptic and post-
synaptic neuron are closely correlated in time.
Subsequently, this synaptic strengthening has been
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could have one of two forms: non-associative or associa-
tive. The non-associative form is purely heterosynaptic,
whereas associative, activity-dependent heterosynaptic
modulation combines features of homosynaptic and
heterosynaptic mechanisms. Here, the strengthening
effect of the mod ulatory neuron is further enhanced if
the firing of the modulatory input is associated in time
with the firing of the presynaptic cell.

Studies in the mid 1960s and early 1970s exploring
the long-term plastic capabilities of chemical synapses in
the marine mollusc Aplysia, crayfish and other inverte-
brates, as well as in the spinal cord and the hippocampus
of mammals, provided the initial evidence to support
these two synaptic rules4. These studies also raised two
questions to which experimental attention next turned:
are such plastic changes actually induced by learning in
a behavioural context? If so, is their time course ade-
quate to subserve aspects of memory storage?

Synaptic plasticity and non-associative learning
In the first systematic attempt to address the two ques-
tions above, Kupfermann, Pinsker and their colleagues
identified a circuit between specific nerve cells for the
siphon and gill-withdrawal reflex in Aplysia that could be
modified by two simple non-associative forms of learn-
ing: HABITUATION and sensitization11,12. This neural circuit
consists of sensory neurons that innervate the siphon
(later shown to be glutamate-mediated), stabilizing
direct connections to motor cells and indirect connec-
tions through several groups of excitatory and inhibitory
neurons11,13–16. In habituation, the repeated presentation
of a novel stimulus leads to a gradual decrease in the
response to the stimulus as the animal learns that the
stimulus is innocuous. This decrease in behavioural
response can be largely accounted for by the accompany-
ing decrease in the strength of the glutamate-mediated
synaptic connections between the sensory and motor
neurons17,18. Moreover, repeated stimulation of even a
single sensory neuron in the circuit produces a homosy-
naptic decrease in strength of the synaptic connection to
the corresponding motor neurons13. This decrease in
synaptic strength results from a decrease in transmitter
release from the presynaptic sensory neuron19. In con-
trast, sensitization, a form of learned fear, consists of a
generalized increase in response to neutral stimuli after
presentation of a noxious stimulus to the head or
tail12,20,21. This form of learning was found to be due, in
part, to a heterosynaptic increase in synaptic strength at
the same sets of connections between the sensory and
motor neurons that were modified in the opposite direc-
tion by habituation18,22.

During sensitization, the application of a noxious
stimulus to the head or tail excites several classes of
modulatory interneurons, the most important of which
use serotonin (5-HT) as their transmitter23. The 5-HT
released by these neurons activates G-protein-coupled
receptors on the sensory neurons, including receptors
on their presynaptic terminals. These receptors are of
two types. One is positively coupled to adenylyl cyclase,
leading to the activation of the cyclic AMP-dependent
protein kinase (PKA). The second leads to the activation

termed associative, because it associates the firing of a
postsynaptic neuron with that of a presynaptic neuron.
After such an event, when the first of the two neurons is
activated, the chance of the postsynaptic neuron firing
is increased. In addition to its being homosynaptic and
associative, Hebb implied that the synaptic strengthen-
ing is input-specific: when two neurons fire coinciden-
tally the synapse between them is strengthened, but
other synapses on either neuron remain unchanged.
These three characteristics (homosynaptic plasticity,
associativity and input specificity) form the modern
definition of the Hebbian synapse6,7.

Because behavioural learning processes such as 
CLASSICAL CONDITIONING and SENSITIZATION result from the
consequences of one stimulus input on another, Kandel
and Tauc proposed a second, heterosynaptic rule for
strengthening synaptic connections8,9. Influenced by
Dudel and Kuffler’s finding of a transient form of presy-
naptic inhibition10, and by their own finding of a more
enduring presynaptic facilitation, Kandel and Tauc
pointed out that a synapse could be strengthened or
weakened without a requirement for activity of either
the pre- or the postsynaptic neurons as a result of the
firing of a third, modulatory interneuron (FIG. 1b). They
further suggested that this heterosynaptic modulation

Facilitation

Pre Post

Pre Post

Pre Post

Pre Post

Depression

Facilitation

Inhibition

Homosynaptic (activity-dependent) 
plastic change

a

b Heterosynaptic (modulatory input-dependent) 
plastic change

Figure 1 | Homosynaptic and heterosynaptic mechanisms
for long-term plasticity. a | The plastic changes that underlie
long-term memory follow a homosynaptic rule, that is, the
events responsible for triggering synaptic strengthening occur
at the same synapse as is being strengthened. These changes
can result in an increase in synaptic strength (for example,
homosynaptic facilitation), or a decrease in synaptic strength
(for example, homosynaptic depression). b | Synaptic
strengthening between a presynaptic and a postsynaptic cell
can occur as a result of the firing of a third neuron, a
modulatory interneuron, whose terminals end on and regulate
the strength of the specific synapse. These changes can result
in an increase (heterosynaptic, modulatory facilitation) or in a
decrease (heterosynaptic inhibition) in synaptic strength.

SENSITIZATION

A strengthening of the response
to a wide variety of neutral
stimuli following an intense or
noxious stimuli.

CLASSICAL CONDITIONING

Form of associative learning in
which a subject learns the
relationship between two
stimuli.

HABITUATION

A decrease in the behavioural
response to a repeated, benign
stimulus.
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tion, was repetitively stimulated at high frequency in an
anaesthetized animal, the synapses between the per-
forant path and their target cells, the granule cells of the
dentate gyrus, were strengthened. This phenomenon
was subsequently termed long-term potentiation (LTP).
The discovery of LTP was important for several reasons.
First, it showed that long-term synaptic plasticity was
possible in the adult mammalian brain. As the hippo-
campus had been implicated in human memory by the
work of Penfield, and of Scoville and Milner, the finding
of synaptic plasticity in this area of the brain was partic-
ularly intriguing54. Second, further investigation of this
form of plasticity showed that in most cases it is
induced by a homosynaptic associative mechanism
resembling that described by Hebb. It depends on coin-
cident pre- and postsynaptic firing and it is input-spe-
cific, at least to a first approximation6,26,55,56.

With time, it has become clear that LTP is not a uni-
tary phenomenon, but a family of processes that vary
in their cellular and molecular mechanisms. The exis-
tence of these various forms of LTP was first found in
the three main pathways of the hippocampus, but
other variants were discovered in the cerebellum, in the
lateral nucleus of the amygdala and in the prefrontal
cortex6,57–60. Nevertheless, each variant of LTP exam-
ined so far has an early phase (E-LTP) and a late phase
(L-LTP). For example, in the Schaffer collateral path-
way, E-LTP induced by one weak train of stimuli lasts
about 1–3 hours, whereas the L-LTP induced by four
weak trains is stable beyond 24 hours. In each case, the
late phase differs from the early phase in that it requires
protein and messenger RNA synthesis61–64. Moreover, at
all the synapses that have been studied so far, the induc-
tion of this late phase requires, at least in part, cAMP,
PKA and MAPK (REFS 65–73).

The most detailed analysis has been obtained in the
Schaffer collateral pathway between areas CA3 and
CA1 in the hippocampus. Glutamate released from the
axon terminals of the Schaffer collateral pathway acts
on two types of postsynaptic receptors: AMPA (α-
amino-3-hydroxy-5-methyl-4-isoxazole propionic
acid) and NMDA (N-methyl-D-aspartate) receptors6,7.
Under normal circumstances, only the AMPA receptors
are activated by glutamate, because magnesium blocks
the pore of the NMDA receptor. The induction of LTP
leads to the activation of the AMPA receptors, which
depolarizes the postsynaptic cell, removes the magne-
sium block and leads to the activation of the NMDA
receptor channel. Activation of the NMDA receptor is
the critical trigger for this form of LTP — it leads to
influx of calcium into the postsynaptic cell and results
in the activation of several protein kinases including
calcium/calmodulin-dependent protein kinase II
(CaMKII). So to activate the NMDA receptor channel
and to initiate LTP, two events need to occur simultane-
ously: glutamate needs to bind to the receptor; and the
postsynaptic membrane needs to be depolarized suffi-
ciently by the activation of the AMPA receptor to expel
magnesium from the NMDA channel. Thus, the
NMDA receptor is ideally suited to act as a molecular
coincidence detector in Hebbian plasticity, where

of protein kinase C (PKC). PKA and PKC then act on
several substrates to enhance transmitter release24–28.

The early efforts to examine the role of synaptic plas-
ticity in memory storage concentrated on short-term
synaptic changes and their relation to short-term mem-
ory processes lasting minutes to hours. In the late 1970s
and early 1980s the focus shifted to the study of long-
term events. It was found that memory in invertebrates
has phases29, much as had been shown earlier for verte-
brates30. Whereas one noxious stimulus to the tail of
Aplysia leads to short-term sensitization of the reflex
that lasts minutes12, five or more training trials spaced in
time lead to long-term sensitization that lasts several
days21,31 and requires the synthesis of new proteins32. It
seems that the distinction between memory phases evi-
dent on the behavioural level is also evident on the cel-
lular level. As with behaviour, the heterosynaptic plas-
ticity that mediates sensitization has both a transient
and a persistent phase, and the persistent phase of het-
erosynaptic facilitation differs from the early phase in
requiring new protein synthesis and transcription29,33.

A model of the reflex and its plasticity can be created
in a culture consisting of a single sensory neuron con-
nected to a single motor neuron. Their synapses can
then be modulated by a single 5-HT cell or even by
pulses of 5-HT33–35. In culture, one brief pulse of 5-HT
— the transmitter released by a sensitizing tail stimulus
in the intact animal — produces short-term presynaptic
facilitation that lasts minutes. This facilitation requires
only covalent modifications of pre-existing proteins,
induced largely by PKA and to a lesser degree by
PKC24,27,28,36–39. With five spaced applications, 5-HT
recruits PKA and mitogen-activated protein kinase
(MAPK). They both translocate to the nucleus and acti-
vate the transcription factor CREB (the cAMP response
element binding protein). CREB, in turn, activates a cas-
cade of genes that leads to the growth of new synaptic
contacts between the sensory and the motor neurons
and to a facilitation of synaptic strength that persists for
days33,40–46. These morphological changes in vitro47,48 are
similar to the synaptic growth associated with behav-
ioural sensitization in vivo, where the memory lasts for
weeks and the increase in the number of sensory neuron
synapses parallels the retention of the memory49–51.

These experiments, and parallel studies carried out
with an inhibitory interneuron and its modulatory
transmitter48,52, showed that heterosynaptic plasticity is
recruited during different forms of learning and that,
with repetition, heterosynaptic modulation is both nec-
essary and sufficient to activate transcription. This leads
to the growth (or retraction) of synaptic connections,
thereby producing persistent changes in synaptic
strength that can contribute to long-term memory stor-
age. But what about homosynaptic processes? Can they
also persist?

Long-term potentiation in the hippocampus
In a groundbreaking study in 1973, Bliss and Lømo
described a homosynaptic Hebbian form of plasticity in
the mammalian brain53. They found that when the per-
forant path, a fibre pathway in the hippocampal forma-
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The late phase of LTP
Is there any relation between the mechanisms of long-
lasting heterosynaptic facilitation in Aplysia and homo-
synaptic LTP in the hippocampus? Studies of L-LTP in
hippocampal pathways have led to the surprising find-
ing that the late phase of LTP, which requires PKA and
protein synthesis, has a further requirement for a het-
erosynaptic modulatory input that recruits the cAMP
cascade85–88.

So far the strongest evidence for the requirement of a
modulatory input for L-LTP is pharmacological. For
example, in the Schaffer collateral pathway, inhibiting the
D1/D5 dopamine-mediated receptors, which are posi-
tively coupled to adenylyl cyclase, selectively blocks 
L-LTP without affecting E-LTP (FIG. 2a)89–91. Conversely,
application of D1/D5 agonists increases cAMP levels and
induces L-LTP (FIG. 2a)90,92. These findings indicate that 
L-LTP in this pathway requires the activation of a
dopamine-mediated input that acts on D1/D5 receptors.

A similar requirement is present in the mossy-fibre
pathway — inhibitors of the β-adrenergic receptors
block L-LTP (FIG. 2b), and application of β-adrenergic
agonists facilitates L-LTP (FIG. 2b)87,93. Finally, in the corti-
co-amygdala pathway, blocking of β-adrenergic recep-
tors also blocks L-LTP (FIG. 2c)71.Although these modula-
tory transmitters have various other actions, including
the modulation of components of E-LTP in some
cases93–96, they consistently seem to be required for L-LTP.

How these modulatory inputs are recruited is still
not clear. The axons of the noradrenaline neurons from
the LOCUS COERULEUS, those of the 5-HT neurons from the
DORSAL RAPHE and those of the dopamine neurons from

synaptic strengthening can result from coincident firing
of the pre- and postsynaptic neurons6,55,56.

Whereas a single 100 Hz tetanus activates the kinases
required for E-LTP (CaMKII, for instance), this phase
typically does not persist for more than a few hours. To
induce persistent L-LTP a very strong tetanus or multi-
ple tetani are required66,72,74. The induction protocols for
L-LTP not only recruit CaMKII, they also increase intra-
cellular cAMP and recruit further kinases including
PKA and MAPK, which activate CREB-mediated tran-
scription66,75. The role of CREB in the transcription-
dependent component of LTP was first suggested by
Silva and colleagues, who found that LTP and hippo-
campus-dependent learning were disrupted in a mouse
lacking the two most prevalent forms of CREB76. The
role for CREB in LTP and memory storage has been fur-
ther supported by studies in knockout and transgenic
mice77–79. However, one study in mice did not find a role
for CREB in L-LTP80, perhaps because, in mice as in
Aplysia, transcription factors other than CREB may also
be required for the long-term process81. Nevertheless,
the parallel between CREB activation and long-term
memory seems quite good. Indeed, Daniel Storm and
his colleagues found that a lacZ reporter gene activated
by a CREB-responsive promoter is activated during the
tetanic stimuli used for the induction of L-LTP in
vitro72,82, as well as by certain forms of hippocampus-
dependent learning in vivo75. Finally, with one impor-
tant exception83, there has also been a good correlation
between Hebbian LTP in the Schaffer collateral pathway
and hippocampus-dependent memory in general, and
L-LTP and long-term memory in particular84.
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Figure 2 | Modulatory transmitters enhance the duration of long-term potentiation. Studies in the Schaffer collateral pathway, the mossy fibre hippocampal
pathway and the cortico-amygdala pathway have shown that late-phase LTP ( L-LTP) requires the participation of a heterosynaptically released modulatory transmitter.
a | In the Schaffer collateral pathway, an inhibitor of the D1/D5 dopamine receptors (SCH23390, 0.1 µM) blocks L-LTP induced by three tetani (shown as arrows)
without affecting the early phase (top panel) and the application of a D1/D5 agonist (6-Bromo-APB, 50–100 µM) induces L-LTP (bottom panel). b | In the mossy-fibre
pathway, an inhibitor of the β-adrenergic receptor (timolol, 10 µM) can block L-LTP (top panel) and application of the β-adrenergic agonist isoproterenol (ISO, 10 µM)
facilitates L-LTP (bottom panel). This effect of ISO is protein synthesis-dependent, as shown by the addition of anisomycin, an inhibitor of translation. c | In the cortico-
amygdala pathway, blocking the β-adrenergic receptor (propranolol, 1 µM) also blocks L-LTP induced by five tetani (top panel), whereas β-adrenergic agonists (ISO,
15 µM) facilitate L-LTP (bottom panel). (Modified from REFS 71,90,93.)

LOCUS COERULEUS

Nucleus of the brainstem. The
main supplier of noradrenaline
to the brain.

DORSAL RAPHE

Nucleus of the brainstem. The
main supplier of serotonin to the
brain.
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stimulus to one pathway is enhanced by activity in
another, but differs in requiring associative pairing of
the two stimuli. When a weak stimulus to the siphon
(conditioned stimulus, CS) is repeatedly paired with a
shock to the tail (unconditioned stimulus, US), the
withdrawal response to stimulation of the siphon is
enhanced. The enhancement of the response to the CS
in classical conditioning is greater than with sensitiza-
tion, where the weak siphon stimulus and tail shock are
not paired. For example, even a single pairing of the
siphon stimulus and tail shock can produce condition-
ing that lasts more than 24 hours, whereas either stimu-
lus by itself produces no long-term effect (FIG. 3a).
Classical conditioning is reflected at the cellular level as
an enhanced strengthening of the synaptic connections
of the sensory neurons to their target cells, an enhance-
ment that is also greater than that of the unpaired
training107–109,112.

In classical conditioning as in sensitization, the tail
stimulus activates modulatory neurons that stimulate
adenylyl cyclase and PKA, producing presynaptic facili-
tation of sensory neurons in the CS pathway. In classi-
cal conditioning, however, the CS is paired with the US,
resulting in enhanced facilitation. This enhancement is
due to the interaction of a homosynaptic process with a
heterosynaptic one. When 5-HT released by the modu-
latory neurons of the US pathway acts on a sensory
neuron that has just fired and undergone homosynap-
tic activity as a result of being activated by the CS, the
calcium influx into the sensory neuron enhances the
ability of 5-HT to activate adenylyl cyclase. So the tem-
poral pairing of heterosynaptic facilitation and
homosynaptic activity produces an enhanced increase
in cAMP levels and in synaptic strength26,111,113. These
increases are greater than the sum of those produced by
the heterosynaptic and homosynaptic processes alone,
so the combination can be considered a new category
of plasticity.

In addition to contributing to this activity-depen-
dent presynaptic facilitation, the US also depolarizes
the motor neurons, activating postsynaptic NMDA
receptors114–116. The calcium influx through the
NMDA receptor channels in turn activates a signalling
cascade in the postsynaptic cell that seems to generate
a retrograde signal that further facilitates the presy-
naptic enhancement of transmitter release117,118. So
facilitation of the connections between the sensory
and motor neurons that occurs with classical condi-
tioning superimposes on the activity-dependent het-
erosynaptic facilitation, a homosynaptic, Hebbian
component that requires calcium influx into the post-
synaptic cell. These synapses combine the two associa-
tive mechanisms proposed earlier by Hebb, and by
Kandel and Tauc, resulting in a hybrid mechanism.
This example illustrates the general idea that the basic
forms of plasticity may constitute an alphabet of ele-
mentary mechanisms that can be combined in various
ways for different functional purposes. As we shall dis-
cuss below, such a combinatorial mechanism may
serve both to extend the duration of the plasticity and
to provide greater synapse specificity.

the VENTRAL TEGMENTAL AREAS, run along with the fibres of
the Schaffer collateral, the mossy fibre, the perforant
and the cortico-amygdala pathways stimulated for
LTP97,98. The ascending dopamine fibres are highly con-
centrated in the pyramidal cell layer of the CA1 and
CA3 regions, where they contact the soma and the
proximal dendrites of pyramidal cells99. Similarly, there
is an extensive noradrenaline projection from the locus
coeruleus to the dentate gyrus and to the STRATUM LUCIDUM

of the CA3 region where the glutamate-mediated
mossy fibres terminate100,101. This overlapping distribu-
tion of dopamine axons and the Schaffer collateral ter-
minals in the CA1 region, and the noradrenaline axons
and the mossy fibre terminals in the CA3 region, pro-
vides an opportunity for heterosynaptic interaction
between the two pathways in each case. Indeed, β-adren-
ergic receptors have been localized to both the dentate
gyrus and the CA3 region102,103, and activation of these
β-adrenergic receptors increases the level of cAMP in
the hippocampus104,105.

Although there are several ways in which the gluta-
mate  pathways could activate the modulatory path-
ways, the nature of these interactions is not clear. The
simplest possibility is that stimulating the Schaffer col-
lateral or the perforant pathway  also directly activates
these modulatory axons. Alternatively, during high-
frequency stimulation, the increased release of gluta-
mate might lead to its spillover to presynaptic glutamate
receptors on the terminals of the noradrenaline and
dopamine axons, causing the release of these transmit-
ters independently of activity in the modulatory axons
themselves106.

The repeated elicitation of homosynaptic LTP
required to induce L-LTP seems to recruit a modulatory
input whose action is required for the maintenance of
the late phase. So can homosynaptic LTP by itself persist
for days, or is heterosynaptic modulation an obligatory
requirement for persistence? Pharmacological data indi-
cate that Hebbian homosynaptic plasticity per se does
not persist, and that the modulatory transmitters can
produce persistent changes by themselves. But these
findings in the hippocampus and amygdala are only
suggestive because it is difficult to elicit homosynaptic
LTP alone in any of these pathways without also activat-
ing fibres of passage from one or another modulatory
system. However, the technical advantages of the gill-
and siphon-withdrawal reflex in Aplysia, both in the
intact animal and in culture, allow independent activa-
tion of the same synapses either homosynaptically, het-
erosynaptically or in combination. These studies sup-
port the findings of the pharmacological experiments in
the hippocampus and raise the interesting possibility
that homosynaptic action alone may not be sufficient to
produce long-lasting plasticity.

Homosynaptic and heterosynaptic interactions
More direct insight into the nature of the interaction
between homo- and heterosynaptic plasticity has come
from studies of classical conditioning of the gill- and
tail-withdrawal reflexes in Aplysia107–111. Classical condi-
tioning resembles sensitization in that the response to a

VENTRAL TEGMENTAL AREA

Nucleus of the midbrain. The
main supplier of dopamine to
the cortex.

STRATUM LUCIDUM

The site of termination of the
hippocampal mossy fibres.
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homosynaptic Hebbian potentiation that has properties
similar to LTP. As with LTP in the Schaffer collateral
pathway, this form of LTP is blocked by injecting calci-
um chelators into the postsynaptic cell and, when
repeated, is also blocked by NMDA receptor antago-
nists114,116,120. This homosynaptic potentiation is both
cell-wide and transient; it is evident at all the connec-
tions of the sensory neuron and it lasts around one
hour. Even when a series of four spaced tetani are given,
the resulting potentiation is not enhanced in its dura-
tion and also lasts only about one hour. So in this culture
system, we can see directly what could only be inferred
in the hippocampus and in the amygdala: a homo-
synaptic, Hebbian type of LTP by itself is not main-
tained and lasts only about 1–2 hours. However, if a sin-
gle homosynaptic train of activity in the presynaptic
sensory neuron is combined with even a single pulse of

Stabilizing transient homosynaptic plasticity
From the perspective of the presynaptic neuron,
homosynaptic plasticity is cell-wide, whereas hetero-
synaptic modulation can be restricted to a single
synapse35,81. How do these two processes interact at the
level of the single synapse? Martin et al.35 have devel-
oped a culture preparation in Aplysia, consisting of a
single bifurcated sensory neuron that forms indepen-
dent synaptic connections with each of two motor
neurons (FIG. 3a). This culture has allowed a new ap-
proach to the study of how homosynaptic and hetero-
synaptic mechanisms interact at the level of individual
synaptic connections119.

A single homosynaptic tetanus applied to the gluta-
mate-releasing sensory neuron produces not only post-
tetanic potentiation (PTP) that is evident in the first few
minutes after the tetanus, but also a subsequent
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Figure 3 | Comparison of homosynaptic facilitation with paired homo- and heterosynaptic facilitation. a | In Aplysia, a single
pairing of a stimulation to the siphon (CS1) or mantle (CS2) and a tail shock (US) can produce behavioural conditioning that lasts more
than 24 hours. Left panel: experimental preparation. Centre panel: Differential training protocol. Right panel: Duration of withdrawal 24
hours after pairing. Pretest values were obtained before conditioning. Only the CS paired with the shock continued to elicit increased
withdrawal 24 hours after pairing. b |The bifurcated sensory neuron–two motor neuron culture. The bifurcated sensory neuron makes
synaptic contacts with two spatially separated L7 motor neurons. Homosynaptic activation was applied by delivering electrical
stimulation to the cell body of the sensory neuron. Heterosynaptic modulation was achieved by delivering a single pulse of 5-HT at a
specific sensory-motor synapse. c | Time course of homosynaptic and paired homo- and heterosynaptic facilitation. A single
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The findings that blockade of modulatory neuro-
transmitters in intact animals and people can interfere
with the formation of emotionally charged memories
indicate that heterosynaptic plasticity induced by mod-
ulatory pathways may provide the attentional and moti-
vational significance for long-term storage of a memory
in the brain. Dopamine and noradrenaline neurons, as
well as acetylcholine neurons that project widely to
other brain areas, have been found to fire in relation to
the expectation of reward134–136. Activation of these
modulatory systems could serve a ‘now save’ function
for long-term memory formation in brain areas that are
active at the same time as the rewarding input.

5-HT to one of the two branches of the bifurcated cul-
ture, the synaptic strength of that branch, and only that
branch, is selectively enhanced for more than a day. So a
single heterosynaptic pulse of 5-HT is sufficient to
greatly extend — about 20-fold — the duration of the
homosynaptic potentiation (FIG. 3b)120,121.

These results lead to three conclusions. First, like
LTP in the hippocampus, homosynaptic potentiation
in Aplysia is transient in its response to both a single
train or to repeated trains. Second, the combination of
this homosynaptic potentiation (lasting only 1–2 hours)
with a single heterosynaptic stimulus that, by itself,
results in facilitation that lasts for 10–20 minutes, pro-
duces effects that are more than just additive — a facili-
tation that lasts more than 24 hours (FIG. 4). Third,
whereas Hebbian homosynaptic plasticity can invari-
ably provide some specificity and short-term synaptic
changes, it does not seem to ensure the persistence nec-
essary for the storage of long-term memory. In con-
trast, heterosynaptic facilitation can provide persistence
— repeated application of modulatory transmitters
readily leads to persistent changes. So what might be
the functional significance of this dichotomy between
homo- and heterosynaptic facilitation?

Modulatory transmitters and memory
The noradrenaline-mediated and the dopamine-
mediated modulatory projections important for differ-
ent variants of hippocampal L-LTP are thought to be
relevant for modulating memory storage, especially of
emotionally charged material, but also during the nor-
mal heightened arousal that accompanies attentive
learning122–127.

Important insights into the functional significance
of modulatory transmitters have come from studies of
how memory storage is modulated in rodents and peo-
ple. When a rat or a mouse hears a tone paired with a
mild electrical shock, after a few pairings the animal
responds to the tone as if it is afraid. This form of con-
ditioned fear is dependent on the amygdala128. Studies
pairing a neutral tone with a loud noise have shown
that the amygdala plays a similar role in the implicit
learning of fear in humans129. Using positron emission
tomography, Larry Cahill, James McGaugh and col-
leagues found that activity in the amygdala at the time
of learning coincides with the long-term storage of
those explicit memories with emotional content.
Blockade of β-adrenergic receptors interferes with the
formation of emotional memory in humans and, con-
versely, local infusion of β-adrenergic agonists into the
amygdala in animals enhances memory consolida-
tion130. Similarly, dopamine D1/D5 receptor antago-
nists impair learning, and D1/D5 agonists enhance
learning and L-LTP in both young131 and old92,132 ani-
mals. Because β-adrenergic receptors and D1/D5
receptors, like the 5-HT receptor in Aplysia, are G-pro-
tein-coupled receptors that activate cAMP production,
these studies indicate that the cAMP pathway is proba-
bly important for the storage of certain types of memo-
ry in mammals, much as it is important for memory in
invertebrates133.
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Figure 4 | Non-additive interaction of homo- and
heterosynaptic plasticity. a | The homosynaptic stimulation
of the presynaptic cell produces short-term facilitation of each
sensory–motor neuron synapse that lasts about 1 hour. b | The
application of a single pulse of 5-HT to one synapse of the
bifurcated culture produces short-term facilitation of only that
synapse, which lasts 10–20 minutes. c | Pairing a single
homosynaptic train of activity in the presynaptic sensory
neuron with a single pulse of 5-HT to one of the two branches
of the bifurcated culture produces a selective increase in
synaptic strength of only that branch that now persists for at
least 24 hours. So the combination of homosynaptic LTP with
a single heterosynaptic stimulus produces more than an
additive effect.
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When homosynaptic Hebbian and heterosynaptic
modulatory mechanisms are recruited together, as we
propose to occur under many experimental and natu-
rally occurring behavioural situations (FIG. 2), the combi-
nation can result in new categories of synaptic plasticity
that are more than the sum of the individual com-
ponents (FIG. 3). These combinations have at least two
novel properties. First, the combined mechanisms
enhance the duration of the plastic change in a non-
additive way (FIG. 4). Second, the combined mechanisms
sharpen the synapse specificity of the plastic change by
restricting the long-term plasticity to a smaller set of
synaptic connections than either mechanism alone
(FIG. 5). Homosynaptic Hebbian plasticity is not restrict-
ed presynaptically, but only in relation to other inputs
on a given postsynaptic cell. Any presynaptic neuron
that becomes recruited by learning will end on many
postsynaptic target cells, any one of which might also be
facilitated. With heterosynaptic facilitation, there is no
obligatory restriction to a single synapse either, as the
modulatory neuron that is recruited by a reinforcing
stimulus can affect a number of potential targets. When
homo- and heterosynaptic mechanisms are combined,
however, the spatial distribution of the combined effects
now becomes restricted to their point of overlap, result-
ing in a greater level of synapse specificity. These exam-
ples illustrate the idea that the elementary forms of
homo- and heterosynaptic plasticity may form an
alphabet that can be combined in various ways to pro-
duce new types of plasticity with new properties, ex-
panding the capabilities of the nervous system for
encoding information.

The ability in Aplysia to stimulate selectively either
the homosynaptic glutamate synapses of the intrinsic
circuitry, or the 5-HT-mediated modulatory inputs of
the heterosynaptic extrinsic circuitry, has allowed the
induction of either homosynaptic or heterosynaptic
plasticity alone or in combination. This has aided the
analysis of each category of synaptic change and the
contribution that each makes to the combined, interac-
tive facilitation. We have proposed here that a similar
interaction is required in the mammalian brain to
cause the stabilization of Hebbian homosynaptic plas-
ticity and the maintenance of long-term memory. To
make a rigorous comparison of the relative contribu-
tions of homosynaptic Hebbian and heterosynaptic
modulatory mechanisms in the mammalian brain, it
will be necessary to develop methods for selectively
activating homosynaptic and heterosynaptic processes
similar to those that have served well in Aplysia.

The combinatorial power of synaptic rules
We have reviewed recent studies and current thinking
on two main rules for learning-related synaptic plastici-
ty — homosynaptic and heterosynaptic plasticity —
and have considered the evidence indicating that these
forms of synaptic plasticity have different properties
and serve different functions108,111,137. The homosynap-
tic Hebbian plasticity mechanism of LTP persists for
one or more hours but there is no clear evidence that,
when initiated by itself, LTP can persist for longer peri-
ods of time at most synapses (FIG. 2). So the Hebbian
mechanism may be used primarily for learning and for
short-term memory, and it may not be able to recruit
the signalling pathways and transcriptional events
required for synaptic growth and for the maintenance
of stable long-term memory. In contrast, heterosynap-
tic mechanisms when presented repeatedly can readily
and by themselves recruit long-term memory mecha-
nisms that lead to transcription and to the growth of
new synaptic connections.
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Figure 5 | Interaction of homo- and heterosynaptic mechanisms sharpens long-term
synapse specificity. a | Although Hebbian plasticity ensures specificity on a given postsynaptic
target, the active presynaptic neuron can, in principle, induce a synaptic change on all of its
follower cells. b | As with homosynaptic activation, in heterosynaptic plasticity there is no obligatory
restriction to a single set of synapses because the modulatory neuron can equally affect a
number of potential targets. c, d | When homo- and heterosynaptic mechanisms are paired, the
spatial distribution of the combinatorial effect now becomes restricted to their point of overlap
(blue shading), resulting in a sharpening of long-term synapse specificity. This enhancement in
synapse-specificity can be expressed presynaptically (c), postsynaptically (d), or both.
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