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Hebbian Learning

“When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is
increased.” (Donald Hebb, 1949)

“Fire together, wire together”

Simple model of Hebbian learning:
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= η〈yµxµ
i 〉µ (2)

⇐⇒ ∆w = η〈yµxµ〉µ . (3)

In the following we will drop µ for convenience.
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Linear Model Neuron

A linear model neuron is described by:

y =
N∑

i=1

wixi = wTx . (4)

This corresponds to a projection of the data onto the axis given by w
scaled with ‖ w ‖.

x1

x2

-2 21-1

-1

1 w

-2

-4

0

2

4
y



Linear Model Neuron

A linear model neuron is described by:

y =
N∑

i=1

wixi = wTx . (4)

This corresponds to a projection of the data onto the axis given by w
scaled with ‖ w ‖.

x1

x2

-2 21-1

-1

1 w

-2

-4

0

2

4
y



Linear Model Neuron

A linear model neuron is described by:

y =
N∑

i=1

wixi = wTx . (4)

This corresponds to a projection of the data onto the axis given by w
scaled with ‖ w ‖.

x1

x2

-2 21-1

-1

1 w

-2

-4

0

2

4
y



Linear Model Neuron

A linear model neuron is described by:

y =
N∑

i=1

wixi = wTx . (4)

This corresponds to a projection of the data onto the axis given by w
scaled with ‖ w ‖.

x1

x2

-2 21-1

-1

1 w

-2

-4

0

2

4
y



Linear Model Neuron

A linear model neuron is described by:

y =
N∑

i=1

wixi = wTx . (4)

This corresponds to a projection of the data onto the axis given by w
scaled with ‖ w ‖.

x1

x2

-2 21-1

-1

1 w

-2

-4

0

2

4
y



Hebbian Learning with a Linear Model Neuron

∆w
(3)
= η〈yx〉 (Hebbian learning)

y
(4)
= wTx , (linear neuron)

∆w
(3)
= η〈yx〉 (5)
(4)
= η

〈
(wTx)x

〉
(6)

= η
〈
x(xTw)

〉
(7)

= η
〈
xxT

〉
w (8)

=⇒ wt+1 = wt + η
〈
xxT

〉
wt (9)

=
(
I + η

〈
xxT

〉)
wt (10)

Hebbian learning with a linear model neuron can be interpreted as an
iterated multiplication of the weight vector w with matrix (I + η〈xxT 〉).
The ’sign’ of the input vectors x is irrelevant for the learning.
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Illustration of Hebbian Learning

∆w
(6)
= η

〈
(wTx)x

〉
(Hebbian learning for a linear unit)
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Problem: The weights grow unlimited.
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Explicit Normalization of the Weight Vectors

First apply the learning rule,

w̃ t+1
i = w t

i + ηfi with, e.g.,fi = yxi . (11)

Then normalize the weight vector to length one,

w t+1
i =

w̃ t+1
i√∑

j

(
w̃ t+1

j

)2
. (12)

We can verify that

√∑
i

(
w t+1

i

)2 (12)
=

√√√√√√√√√
∑

i

 w̃ t+1
i√∑

j

(
w̃ t+1

j

)2


2

=

√√√√√√√
∑
i

(
w̃ t+1

i

)2

∑
j

(
w̃ t+1

j

)2 = 1 .

(13)

Problem: Explicit normalization is expensive and biologically implausible.



Implicit Normalization of the Weight Vector

Explicit normalization yielded

w t+1
i (η)

(12)
=

w t
i + ηfi√∑

j

(
w t

j + ηfj

)2
.

To optain a simpler/more plausible normalization rule, we compute the
Taylor-expansion of w t+1

i in η at η′ = 0 under the assumption that wt is
normalized, i.e.

∑
j

(w t
j )

2 = 1,

w t+1
i (η) ≈ w t+1

i (η′ = 0) + η
∂w t+1

i (η′)

∂η′

∣∣∣∣∣
η′=0

(14)

= w t+1
i (η′ = 0) + η


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√∑
j

(
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j + η′fj
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j +η′fj
)
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j

(
w t

j +η′fj
)2

∑
j

(
w t

j + η′fj
)2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
η′=0

(15)

= w t
i + η

fi − w t
i

∑
j

fjw
t
j

 . (16)
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Implicit Normalization of the Weight Vector

Taylor-expansion of the explicit normalization rule resulted in

w t+1
i

(16)
≈ w t

i + η

fi − w t
i

∑
j

fjw
t
j

 .

For Hebbian learning, i.e. with fi = yxi and y =
∑

j xjwj , this becomes

∆wi
(16)
= η

fi − wi

∑
j

fjwj

 (17)

= η

yxi − wiy
∑

j

xjwj︸ ︷︷ ︸
=y

 (18)

= η
(
yxi − y2wi

)
∀i (19)

⇐⇒ ∆w = η (yx− y2w) . (Oja’s rule) (20)

This rule is simpler, e.g. ∆wi does not depend on wj anymore.
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Oja’s Rule

Implicit normalization yielded

∆w
(20)
= η (yx− y2w) . (Oja’s rule)

For small y we have
∆w ≈ ηyx , (21)

which corresponds to Hebb’s rule.

For large y we have
∆w ≈ −ηy2w , (22)

which results in a shortening of the weight vector.

The second term only affects the length but not the direction of the
weight vector. It therefore limits the length of the weight vector without
affecting the qualitative behavior of the learning rule.

Question: What will be the final length of the weight vector?

Question: How will the weight vector develop under Oja’s rule in general?
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Linear Stability Analysis

y
(4)
= wTx (linear unit)

∆w
(20)
= η(yx− y2w) (Oja’s rule)

1. What is the mean dynamics of the weight vectors?

1

η
〈∆w〉µ = ?

2. What are the stationary weight vectors of the dynamics?

0
!
= 〈∆w〉µ ⇐⇒ w = ?

3. Which weight vectors are stable?

w = ? stable ⇐⇒ ?
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What is the mean dynamics of the weight vectors?

y
(4)
= wTx (linear unit)

(∆w)µ (20)
= η(yµxµ − (yµ)2w) (Oja’s rule)

In order to proceed analytically we have to average over all training
patterns µ and get

〈(∆w)µ〉µ =
1

M

M∑
µ=1

(∆w)µ (23)

(20)
=

1

M

M∑
µ=1

η(yµxµ − (yµ)2w) (24)

⇐⇒ 〈∆w〉µ = η〈yx− y2w〉µ (25)

For small learning rates η this is a good approximation to the real
training procedure (apart from a factor of M).
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What is the mean dynamics of the weight vectors?

y
(4)
= wTx , (linear unit)

〈∆w〉µ
(25)
= η〈yx− y2w〉µ . (Oja’s rule, averaged)

1

η
〈∆w〉µ

(25)
= 〈yx− y2w〉µ (26)

(4)
=

〈
(wTx)x− (wTx)(wTx)w

〉
µ

(27)

=
〈
x(xTw)− (wTx)(xTw)w

〉
µ

(28)

=
〈
(xxT )w − (wT (xxT )w)w

〉
µ

(29)

= 〈xxT 〉µw − (wT 〈xxT 〉µw)w (30)[
C := 〈xxT 〉µ = CT

]
(31)

(31)
= Cw −

(
wTCw

)
w (32)
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Interim Summary

y
(4)
= wTx (linear unit)

∆w
(20)
= η(yx− y2w) (Oja’s rule)

1. What is the mean dynamics of the weight vectors?

1

η
〈∆w〉µ

(32)
= Cw −

(
wTCw

)
w

with C
(31)

:= 〈xxT 〉µ

2. What are the stationary weight vectors of the dynamics?

0
!
= 〈∆w〉µ ⇐⇒ w = ?

3. Which weight vectors are stable?

w = ? stable ⇐⇒ ?



What are the stationary weight vectors?

C
(31)
= 〈xxT 〉µ = CT , (symmetric matrix C)

1

η
〈∆w〉µ

(32)
= Cw −

(
wTCw

)
w . (weight dynamics)

For stationary weight vectors we have:

0
!
= 〈∆w〉µ (33)

(32)⇐⇒ Cw =
(
wTCw

)
w (34)[

λ :=
(
wTCw

)]
(35)

(35)⇐⇒ Cw = λw (36)

Stationary weight vectors w are eigenvectors of matrix C.

λ
(35)
= wTCw

(36)
= wTλw = λwTw = λ‖ w ‖2 (37)

⇐⇒ 1 = ‖ w ‖2 (38)

Stationary weight vectors w are normalized to 1.
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Interim Summary

y
(4)
= wTx (linear unit)

∆w
(20)
= η(yx− y2w) (Oja’s rule)

1. What is the mean dynamics of the weight vectors?

1

η
〈∆w〉µ

(32)
= Cw −

(
wTCw

)
w

with C
(31)

:= 〈xxT 〉µ

2. What are the stationary weight vectors of the dynamics?

0
!
= 〈∆w〉µ ⇐⇒ w = cα

with Ccα (36)
= λαcα (eigenvectors of C)

∧ 1
(38)
= ‖ cα ‖2 (with norm 1)

3. Which weight vectors are stable?

w = ? stable ⇐⇒ ?



Reminder: Eigenvalues and Eigenvectors

Aa = λa (eigenvalue equation) (39)

Solutions of the eigenvalue equation for a given quadratic N × N-matrix A are
called eigenvectors a and eigenvalues λ.

For symmetric A, i.e. AT = A, eigenvalues λ are real, and eigenvectors to
different eigenvalues are orthogonal, i.e. λα 6= λβ ⇒ aα⊥aβ .

A symmetric matrix A always has a complete set of orthonormal eigenvectors
aα, α = 1, ..., N (orthonormal basis), i.e.

Aaα = λαaα , (right-eigenvectors) (40)

⇐⇒ aαTA = (Aaα)T = aαT λα , (left-eigenvectors) (41)

‖ aα ‖ =
√

aαTaα = 1 , (with norm 1) (42)

aαTaβ = 0 ∀α 6= β . (orthogonal) (43)

∀v v =
N∑

α=1

v ′
αaα mit v ′

α = aαTv (complete) (44)

=⇒ ∀v v =
N∑

α=1

aαaαTv ⇔ 1 =
N∑

α=1

aαaαT (45)

‖ v ‖2 =
∑

i

v 2
i

(42, 43, 44)
=

∑
α

v ′
α

2
(46)



Reminder: Eigenvalues and Eigenvectors

AT = A , (symmetric) (47)

Aaα = λαaα , (eigenvectors) (48)

aαTaβ = δαβ ∀α, β . (orthonormal) (49)

x

a

a

β

α

x1

x2

aλβ
β

aλα
α

Ax



Which weight vectors are stable?

1

η
〈∆w〉µ

(32)
= Cw −

(
wTCw

)
w (50)

Ansatz: w := cα + ε (with small ε) (51)

∆ε><
w ε

?
c

c

β

α

How does ε develop under the dynamics?
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Which weight vectors are stable?

1

η
〈∆w〉µ

(32)
= Cw −

(
wTCw

)
w

w
(51)

:= cα + ε (with small ε)

1

η
〈∆ε〉µ

(51)
=

1

η
〈∆w〉µ (52)

(32)
= Cw −

(
wTCw

)
w (53)

(51)
= C(cα + ε)−

(
(cα + ε)TC(cα + ε)

)
(cα + ε) (54)

≈ Ccα + Cε− (cαTCcα)cα − (cαTCε)cα

− (εTCcα)cα − (cαTCcα)ε (55)
(36,41)
= λαcα + Cε− (cαT λαcα)cα − (cαT λαε)cα

− (εT λαcα)cα − (cαT λαcα)ε (56)
(38)
= λαcα + Cε− λαcα − λα(cαT ε)cα

− λα(εTcα)cα − λαε (57)

= Cε− 2λα(cαT ε)cα − λαε . (58)



Which weight vectors are stable?

w
(51)

:= cα + ε ,
1

η
〈∆ε〉µ

(58)

≈ Cε− 2λα(cαT ε)cα − λαε .

For simplicity consider the change of the perturbation along the
eigenvector cβ .

Tβc ∆ε< > ?
cβ εT

∆ε><
w ε

cβ

cα
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Which weight vectors are stable?

w
(51)

:= cα + ε ,
1

η
〈∆ε〉µ

(58)

≈ Cε− 2λα(cαT ε)cα − λαε .

For simplicity consider the change of the perturbation along the
eigenvector cβ .

1

η
cβT 〈∆ε〉µ

(58)

≈ cβT
Cε− 2λα(cαT ε)(cβT

cα)− λα(cβT
ε) (59)

(36,41)
= λβ(cβT

ε)− 2λα(cαT ε)(cβT
cα)− λα(cβT

ε) (60)
(42,43)
= λβ(cβT

ε)− 2λα(cαT ε)δβα − λα(cβT
ε) (61)

= λβ(cβT
ε)− 2λα(cβT

ε)δβα − λα(cβT
ε) (62)

= (λβ − 2λαδβα − λα) (cβT
ε) (63)

=

{
(−2λβ)(cβT

ε) if β = α

(λβ − λα)(cβT
ε) if β 6= α

(64)



Which weight vectors are stable?

w
(51)

:= cα + ε ,

1

η
cβT 〈∆ε〉µ

(64)

≈

{
(−2λβ)(cβT

ε) if β = α

(λβ − λα)(cβT
ε) if β 6= α

.

With
cβT 〈∆ε〉µ = 〈cβT

∆ε〉µ (65)

= 〈cβT
(εn+1 − εn)〉µ (66)

= 〈(cβT
ε)n+1 − (cβT

ε)n〉µ (67)

= 〈∆(cβT
ε)〉µ (68)

sβ := cβT
ε (perturbation along cβ) (69)

καβ :=

{
η(−2λβ) if β = α

η(λβ − λα) if β 6= α
(70)

we get

(64)
(68, 69, 70)⇐⇒ 〈∆sβ〉µ ≈ καβsβ . (71)
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Which weight vectors are stable?

w
(51)

:= cα + ε ,

〈∆sβ〉µ
(71)

≈ καβsβ with καβ
(70)

:=

{
η(−2λβ) if β = α

η(λβ − λα) if β 6= α
.

Case 1: β 6= α, λβ < λα ⇒ καβ = η(λβ − λα) < 0,
The perturbation along cβ decays.

β = α/

cβ-Richtung

sβ
cβ

cα

ε

λ < λβ α

αβκ < 0

β∆< s >
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{
η(−2λβ) if β = α

η(λβ − λα) if β 6= α
.

Case 1: β 6= α, λβ < λα, → The perturbation along cβ decays.

Case 2: β 6= α, λβ = λα, → The perturbation along cβ persists.

Case 3: β 6= α, λβ > λα, → The perturbation along cβ grows.

Case 4: β = α, → The perturbation along cα always decays.

The weight vector w = cα is stable only if perturbations in all directions
decay, i.e.

w = cα stable ⇐⇒ λβ < λα ∀β 6= α . (72)

Only the eigenvector c1 with largest eigenvalue λ1 is a stable
weight vector under Oja’s rule.

What happens if the two largest eigenvalues are equal?
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Summary

y
(4)
= wTx (linear unit)

∆w
(20)
= η(yx− y2w) (Oja’s rule)

1. What is the mean dynamics of the weight vectors?

1

η
〈∆w〉µ

(32)
= Cw −

(
wTCw

)
w

with C
(31)

:= 〈xxT 〉µ

2. What are the stationary weight vectors of the dynamics?

0
!
= 〈∆w〉µ ⇐⇒ w = cα

with Ccα (36)
= λαcα (eigenvectors of C)

∧ 1
(38)
= ‖ cα ‖2 (with norm 1)

3. Which weight vectors are stable?

w = cα stable
(72)⇐⇒ λβ < λα ∀β 6= α



Reminder: Principal Components

c

c

1

2

Principal components are eigenvectors of the covariance matrix and point
in the direction of maximal variance within the space orthogonal to the
earlier principal components.



Learning Several Principal Components

x2

xN

x3

x1

y
y

(4)
= wTx (linear unit)

∆w
(20)
= η(yx− y2w) (Oja’s rule)

x2

xN

x3

x1

y

y

y1

2

3

yj = wT
j x +

j−1∑
k=1

vjkyk

∆wj = η(yjx− y2
j wj)

∆vjk = −εyjyk

Asymmetric inhibitory lateral connections decorrelate later from earlier
output units. The units learn the principal components in order of
decreasing eigenvalue.

(Rubner & Tavan, 1989, Europhys. Letters 10:693–8; reviewed in Becker & Plumbley, 1996, J. Appl. Intelligence 6:185–205)
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Learning a Principal Subspace

x2

xN

x3

x1

y
y

(4)
= wTx (linear unit)

∆w
(20)
= η(yx− y2w) (Oja’s rule)

x2

xN

x3

x1

y

y

y1

2

3

yj = wT
j x +

N∑
k=1
k 6=j

vjkyk

∆wj = η(yjx− y2
j wj)

∆vjk = −εyjyk

Symmetric inhibitory lateral connections mutually decorrelate output
units. The units learn the principal subspace but not particular principal
components.

(Földiák, 1989, Proc. IJCNN’89 pp. 401–405; reviewed in Becker & Plumbley, 1996, J. Appl. Intelligence 6:185–205)



The Principal Components of Natural Images

15 natural images of size 256×256 pixels.

20,000 random samples of size 64×64 pixels.

For each pixel the mean gray value over the 20,000 samples was removed.

The samples were windowed with a Gaussian with std. dev. 10 pixels.

Sanger’s rule was applied to the samples.

(Hancock, Baddeley, & Smith, 1992, Network 3(1):61–70)



The Principal Components of Natural Images

The first principal components resemble simple-cell receptive fields in the
primary visual cortex, the later ones do not.

(Hancock, Baddeley, & Smith, 1992, Network 3(1):61–70)



The Principal Components of Natural Images

The principal components look different if samples are taken from text.

(Hancock, Baddeley, & Smith, 1992, Network 3(1):61–70)


