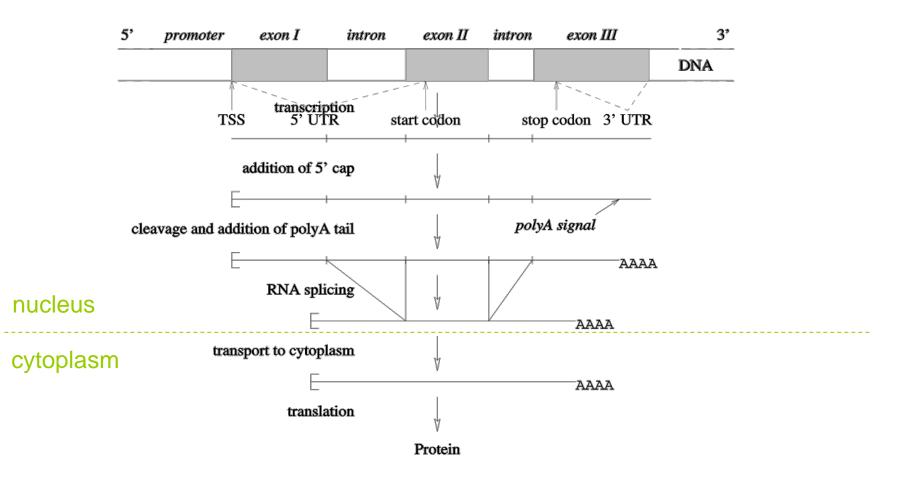
Master of Molecular Medicine

Module IV: Functional Genomics : RNA structure & gene prediction


Uwe Ohler

Berlin Institute for Medical Systems Biology Max Delbruck Center/Humboldt University uwe.ohler@mdc-berlin.de

Overview

- The RNA world
- RNA folding/secondary structure prediction
 - Nussinov algorithm: maximal base pairing
 - Zuker algorithm: minimal free energy
 - Probabilistic interpretation
- Prediction of non-coding RNAs
 - Comparative genomics
 - Deep sequencing

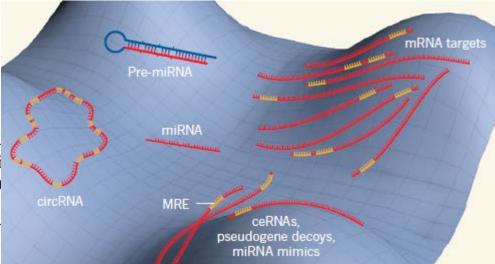
Steps in eukaryotic gene regulation

Introduction

The RNA world

- RNA is thought to be the "original" molecule of life, predating DNA as the so-called "ancient RNA world"
- RNA in modern organisms was thought to be
 - only an intermediary product: the *messenger RNA*
 - a structural component: **rRNA**
 - involved in translation: tRNA
 - but not to have an active functional role: the Central Dogma
- The "modern RNA world" recognizes that RNA molecules have a variety of important functions
 - challenging the central dogma and notion of "genes"

PERSPECTIVES: MOLECULAR BIOLOGY


Glimpses of a Tiny RNA World

Gary Ruvkun Science **294**, 797 (2001); DOI: 10.1126/science.1066315

Circles reshape the RNA world

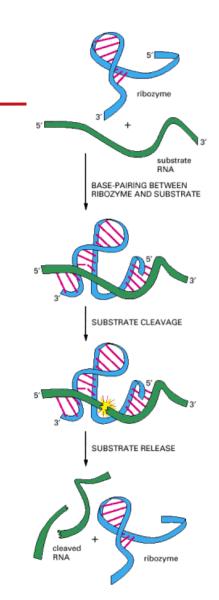
The versatility of RNA seems limitless. The latest surpri RNAs, which are found to counteract the function of an regulatory RNA — the microRNAs.

Nature Mar 21, 2013

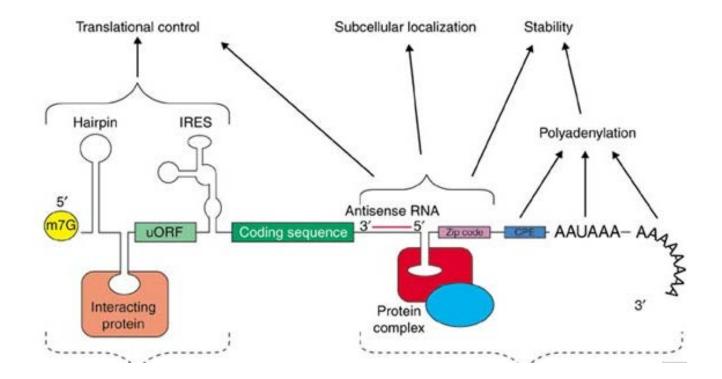
5

Post-transcriptional control

- Increased appreciation for RNA regulatory mechanisms
 - Processing (e.g. polyadenylation, splicing)
 - Export/Localization
 - Stability
 - Translation
- Driven by realization of importance of regulatory non-coding RNAs
 - <u>Caution</u>: mechanism not completely universal across kingdoms


Classes of small functional RNAs

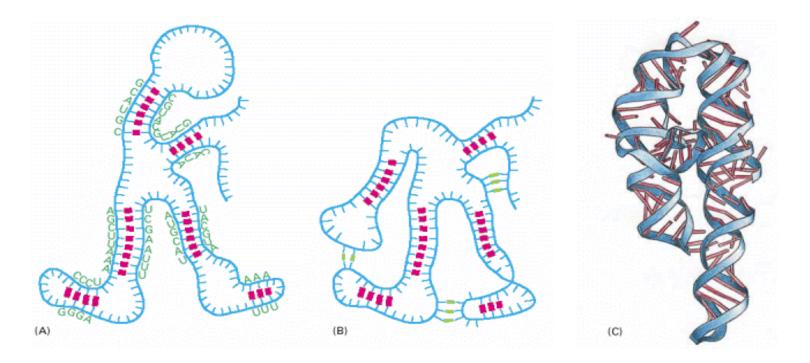
- small nuclear RNAs (snRNAs) -- Spliceosome
 - Recognize the splice sites / branch point
- Small nucleolar RNAs (snoRNAs) -- Modification
 - Lead to changes in the sequence of r/sn/m?RNAs
- Micro RNAs (miRNAs)
 - Translation repression/degradation of target mRNAs
- piRNAs (Piwi-associated RNAs)
 - Silencing of transposable elements in the germline
- Emerging picture: targeting of specific other RNAs or DNA regions


Large functional RNAs

Many different roles:

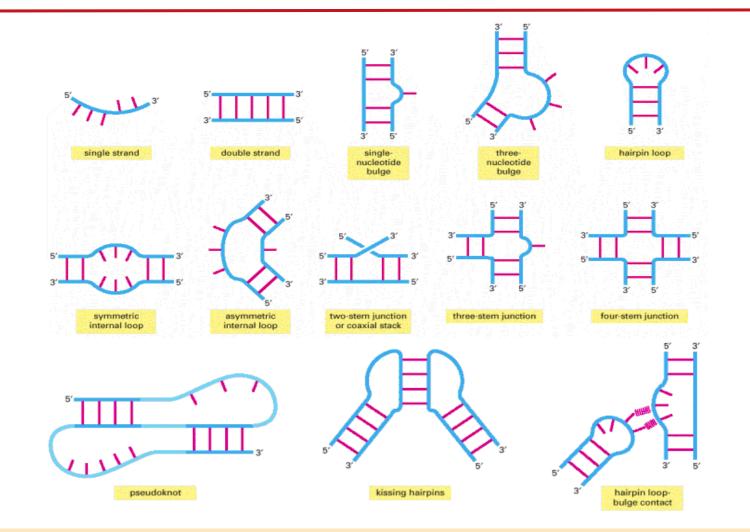
- Ribozymes --- RNA-based enzymes
 Proof of the ancient RNA world?
- Part of RNP (ribonucleo-protein) complexes, e.g. signal recognition particle for protein export or polycomb complex (chromatin repression)
- lincRNAs (long intervening RNAs)
 - Xist --- the Goliath with 17kB
 - X chromosome inactivation trigger
- "the hidden pervasive transcriptome"

The view from cis


Structure is important

 RNA is a single-stranded molecule, and can fold back onto itself: secondary structure

- G:C > A:U > G:U (Q: consequence of G:U?)


- RNAs from the same functional class often have similar secondary structure but not primary sequence
- Apart from independent RNA transcripts, secondary structure often plays a **role in** *cis*
 - Splicing \iff recognition of splice sites
 - Riboswitches > obstruction of start codon
 - Coding sequence \iff efficiency of translation
 - RNA editing \iff change of coding sequence

From primary to tertiary structure

"Tertiary" structure sometimes refers to interactions based on the secondary structure, not the 3-D structure

RNA secondary & tertiary structure

Computational problems in RNA biology

- RNA structure prediction: single molecule
 - Energy optimization
 - Probabilistic interpretation
- RNA family modeling: multiple sequences
 - Stochastic context-free grammars
 - Covariance models
- Prediction of trans-acting RNA genes/factors (microRNAs, IncRNAs...) and cis-acting regulatory RNA elements (e.g. miRNA target sites, riboswitches)

Nussinov algorithm: idea

- Premise: The more nucleotides are paired in a structure, the more stable is the structure
- Simple idea: Find the secondary structure with the highest possible number of pairs
- Naïve approach --- enumeration (have fun...)
- Instead (and I'm sure you've seen this before): Dynamic Programming !!
 - Align the sequence to itself
 - Count C:G, A:U, G:U as one, singletons as zero
 - Compute global alignment
 - But…

Nussinov algorithm: operations

- Position (*i*,*j*) in the alignment:
 - Best substructure from *i* to *j*
 - Fill matrix up to (1,*N*) and we are done
- At each position in the matrix **W**, we maximize over *four* basic cases

0	0	0	0	0
0 0	0 0	0 0	0 0	0 0
0-0	0-0	0-0	0-0	0-0
0-0	0-0	0-0	0-0	0-0
i+1 o-o j	i o-o j-1	i+1 o-o j-1	i o-oo	-oo-o j
i o	оj	i o-o j	k k	c+1
(a) i unpaired	(b) j unpaired	(c) i,j pair	(d) bifu	ircation

Consequence of (*d*) on the complexity?
 Runtime: O(N³)

Nussinov algorithm: traceback

• We potentially have *nested* substructures, so we need to use a "stack" for traceback

```
init: push (1,N)
repeat
   pop (i,j); if (i>=j) continue;
     // done in this substructure
   else if (W(i+1,j) = W(i,j)) push (i+1,j);
     // unpaired
   else if (W(i,j-1) = W(i,j)) push (i,j-1);
     // unpaired
   else if (W(i+1,j-1)+s(i,j) = W(i,j)) push(i+1, j-1);
     // base pair
   else for (k=i+1 to j-1)
     // split substructure
       if W(i,k) + W(k+1,j) = W(i,j)
       push (k+1, j); push (i,k); break;
```

Folding energy parameters

- Simply counting a match as one and a mismatch as zero is not very close to reality
- Instead, stacking energy parameters have been (and continue to be) estimated
 - Decrease in free energy by stacking one pair of nucleotides on top of the previous pair
 - Means: Dependency on neighbor ["Markov order 1"]
 - Increase by various kinds and lengths of unpaired sequences: bulges, internal, terminal/hairpin loops
 - <u>http://www.bioinfo.rpi.edu/~zukerm/cgi-bin/efiles-3.0.cgi</u>
 - Incorporate qualitative restrictions, e.g., minimum hairpin loop size

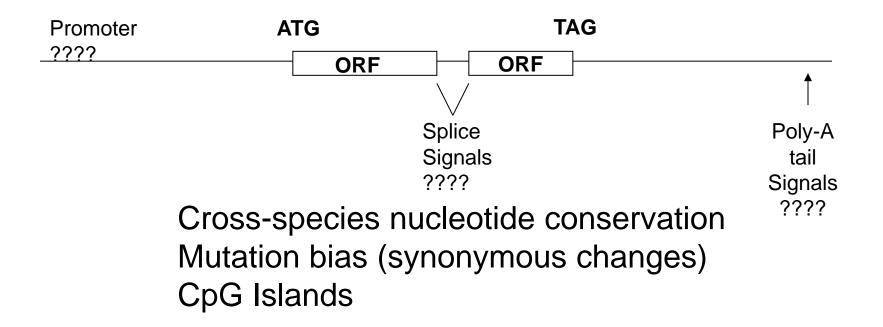
Parameter examples

Stacking energy in stem, X:Y following A:U

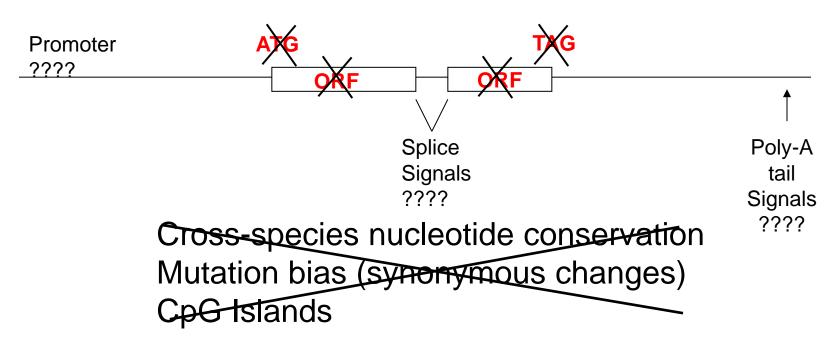
5'>	3' AX		
3' <	5' UY		
•	•	•	-0.90
•	•	-2.20	•
•	-2.10	•	-0.60
-1.10	•	-1.40	•

Terminal mismatch in hairpin loop, X:Y following A:U

5' --> 3' AX 3' <-- 5' UY -0.30 -0.50 -0.30 -0.30 -0.10 -0.20 -1.50 -0.20 -1.10 -1.20 -0.20 0.20 -0.30 -0.30 -0.60 -1.10


Zuker algorithm: idea

- Start from DP maximal base pairing algorithm, but use free energy parameters instead
 - Becomes quickly complicated:
 - Two matrices needed: overall best energy, paired energy at *i*,*j* (similar to insertion/deletion in local sequence alignment)
 - Tracking of different types of unpaired regions
 - Size restrictions of unpaired/paired regions
 - Extensions allow to find suboptimal structures
 - Current assessment: For only about ~60-70% of structures, the minimal energy structure (i.e., the base pairs) is the correct one according to the current parameter estimates
 - Modifications to standard DP algorithm allow to predict all or a set of suboptimal structures within x% of the optimal one


References

- Vienna RNA package (Ivo Hofacker)
 - <u>http://www.tbi.univie.ac.at</u>/RNA
- MFOLD (Michael Zuker)
 - http://mfold.rit.albany.edu
- RFAM database of RNA (gene) families
 - http://rfam.sanger.ac.uk
- Durbin et al, *Probabilistic sequence analysis* (chapter 10)
- Mount, *Bioinformatics 2nd edition* (chapter 8)

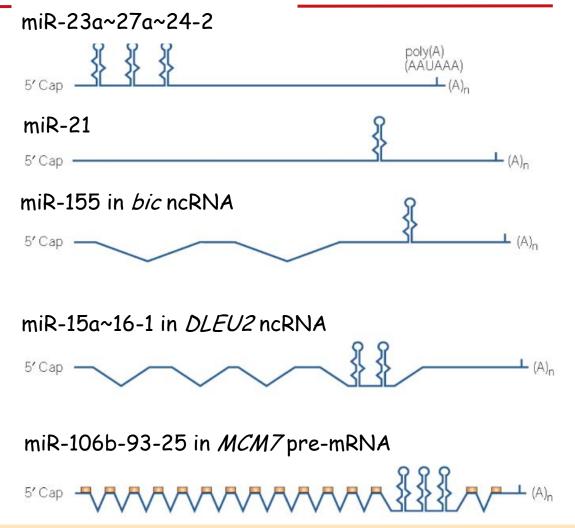
Protein-Coding Gene Prediction

ncRNA-Gene Prediction

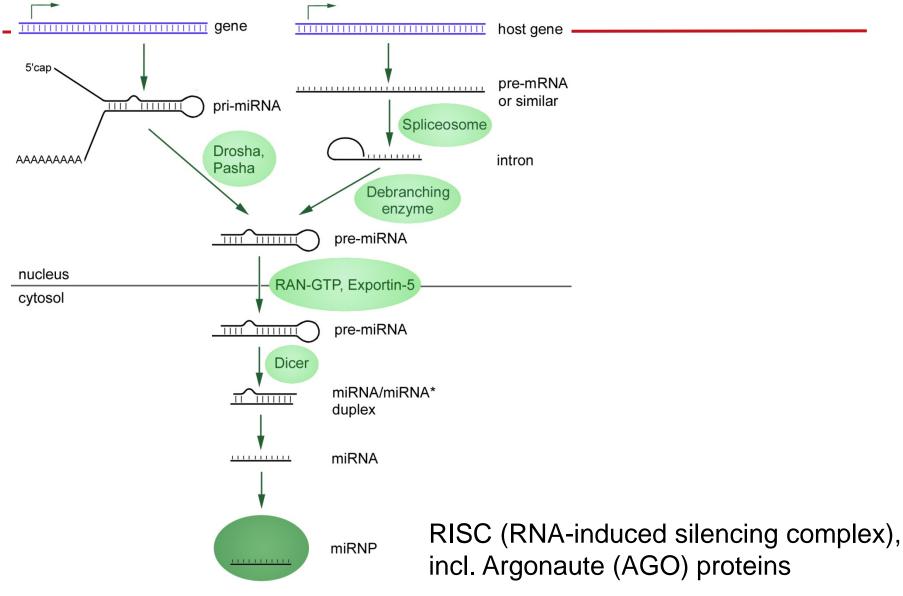
So what else is there????

More systematic ncRNA gene finding

- In an ideal world, we would like to predict RNA genes independent of their function (just like protein coding genes)
- Bad news first: A good and fancy secondary structure does **not** imply a functional RNA
 Large enough foldbacks occur frequently by chance
- Remedy I: class-specific features
- Remedy II: use comparative algorithms

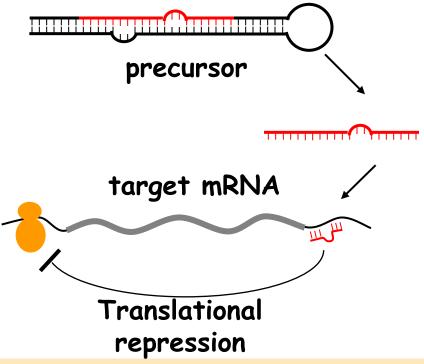

 Require either a formal model or *ad hoc* filtering
- Remedy III: deep RNA sequencing

Non-coding *regulatory* genes


- Prominent and increasingly well understood case: miRNAs
 - Small regulatory RNAs which repress target genes
 - ~50% of human genes are targeted
- To build a successful predictor, we need to understand the biogenesis of miRNAs:
 - Primary transcripts (several kb; nucleus; RNA pol II)
 - Precursor foldbacks (70 nt; nucleus; Drosha)
 - Mature miRNA (20-25 nt; cytoplasm; Dicer)
- Parallel to protein coding genes, with many different processing steps

Location of miRNA genes

- miRNAs come in a variety of disguises
 - Can be independently transcribed
 - Can be intron/exon of a non-coding transcript
 - Can be part of an intron of a proteincoding gene
 - Can come in clusters



MicroRNA biogenesis

What is the function of microRNAs?

- Animal miRNAs target protein coding genes through complementary sequence regions in their 3' UTR
- Part of a protein complex (RISC); miR defines target
- "Natural counterpart" to siRNAs/RNAi (RISC complex)

- One miRNA influences
 many target genes
- One miRNA can have several target sites in one UTR
- One UTR can have multiple miRNA targets
- miRNA genes and targets are often conserved

Identification of miRNA genes: conserved foldbacks

Example: original miRscan (Lim et al 2003)

- 1. Scan *C.elegans* genome for potential RNA hairpin structures
 - Fold every 110 base segment in genome using RNAfold (Vienna RNA software package, Hofacker *et al*)
- 2. Identify hairpins with homology to *C.briggsae* shotgun traces
 - BLAST cutoff E1.8; RNAfold *C.briggsae* sequence
- 3. Align *C.elegans* and *C.briggsae* hairpins
 - Pair must have certain secondary structure similarity
- 4. Classify foldback into miRNA/no miRNA using features representative of miRNAs

Excursion: Classification

- Many problems in molecular biology can be approached by computational methods, in particular classification
 - Finding/locating genes
 - Determining protein domains
 - Cancer diagnosis using microarrays
 - Inference of regulatory networks
- With the availability of large-scale data, we have the ability to do this
 - One needs examples to build models for different classes

Classification

- Representation:
 - Samples/objects from particular problem domain
 - Objects represented by specific *features/attributes*
- Supervised: Class labels are known
 - We have objects from several *classes* and want to distinguish between them
 - Simple: assign class label to whole sample
 - Complex: parse sample into different classes
- Unsupervised/clustering: Class unknown
 - Determine meaningful groupings of the samples

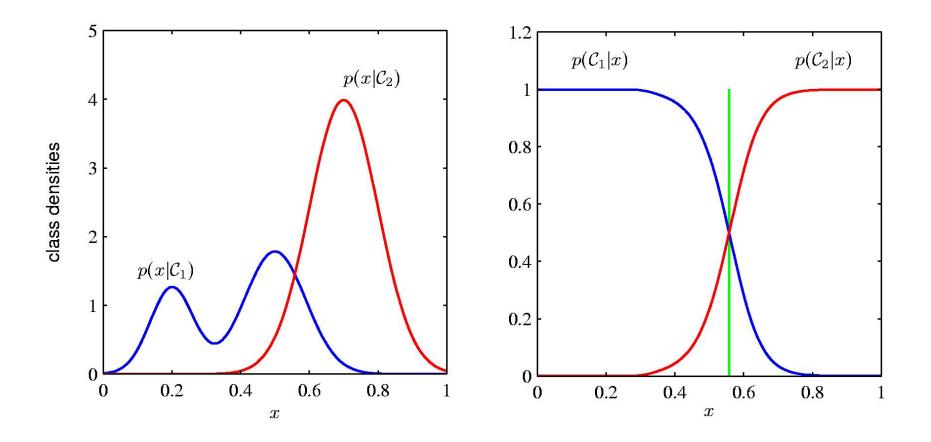
Classification systems

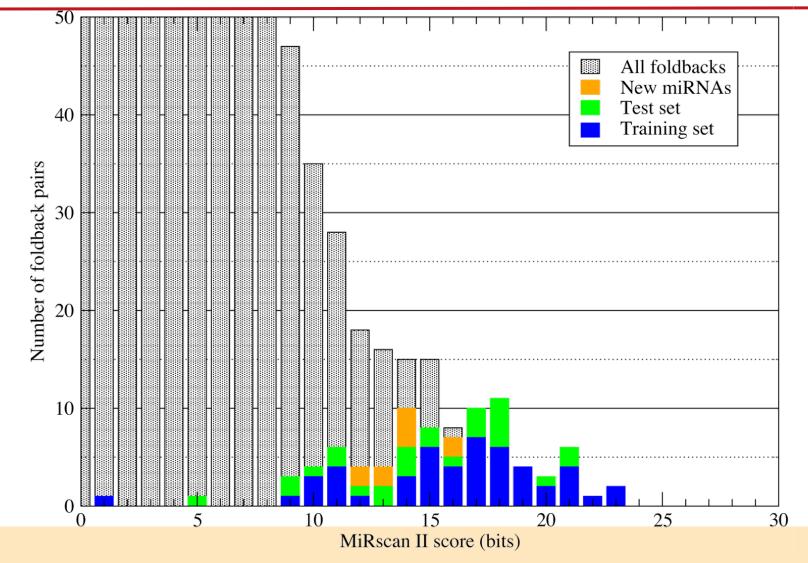

- Many classification systems consist of the following components
 - Preprocessing:
 - Noise removal (e.g. different filters)
 - Discretization
 - Normalization (to standardize input data)
 - Feature extraction:
 - Compute values from the (analog) input data
 - Categorical (e.g. male/female) or numerical (e.g. size; discrete or continuous)
 - Dimensionality reduction
 - Classification

An example you know: PWMs

- A weight matrix is a *model* of related sequences (eg, transcription factor binding sites)
 - The model represents our *knowledge* about the sequences in form of *parameters* (here, the relative frequencies or scores for nucleotides at different PWM positions)
 - The parameters are *estimated* using a *representative* set of examples (positives and negatives/background)
 - Using the log-odds scores, we evaluate the probabilities of two *competing* models: binding site vs background genomic content
- What are possible parameters for a miRNA classifier?

Example: miRNA prediction


- miRNAs are excised from precursor foldbacks/hairpins
- Real precursor foldbacks have distinct *features*
- Classifier can distinguish real miRNAs from ubiquitous foldbacks of similar size

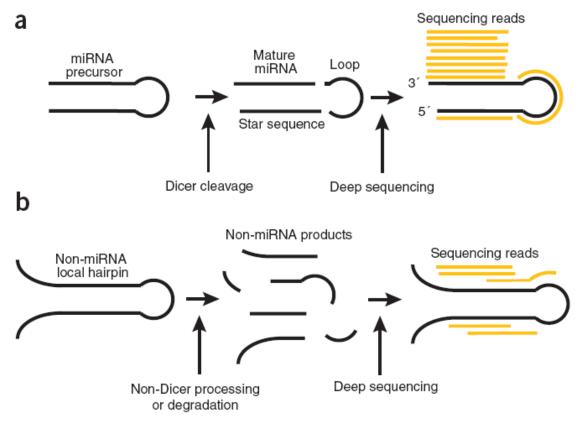

Probability-distribution based approach

- 1. **Training**: Estimate distributions for the feature values for each class from training data: the *models*
 - Discrete (e.g. histogram) or continuous (e.g. Gaussian) distributions
- 2. Classification: Determine the probability/likelihood for unseen *test* data based on their features
 - Decision rule: Class with highest posterior probability wins (*Bayes classifier*)
- If features are independent, i.e. uncorrelated: naïve Bayes
 - Separate distribution for each feature;
 - probabilities of individual features can simply be multiplied

Class-specific density vs. posterior

Back to miRs: Predictions and validations

Principles to predict specific classes of ncRNA

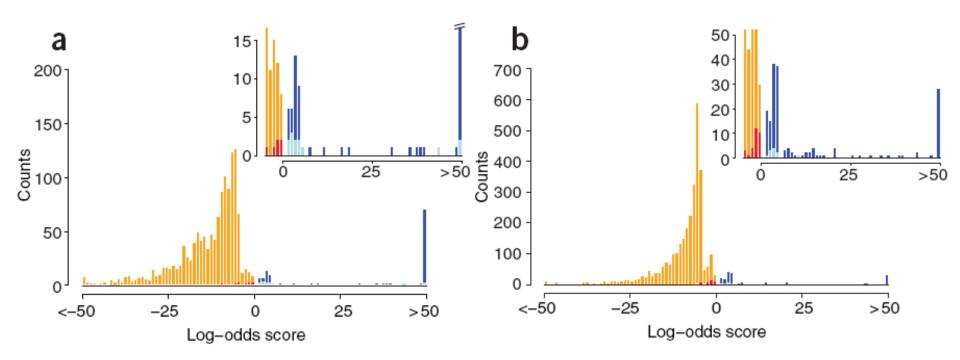

- RNAs from the same class show specific primary sequence features
- RNAs from the same class show similar secondary structure
- Other features: length, genomic context, <u>conservation patterns</u>

- Common problem: Availability of training/test data

- Combine these in a model, search for highly probable regions in the genome
 - Due to the complexity of structure prediction, this is often done in a sliding window

Current approaches: deep sequencing

 mirDeep: Simplified picture of short reads mapping to real miRs and spurious foldbacks [Friedlander et al 2008]



miRdeep (II)

- Exploit features from deep sequencing
 - Align reads, discard multiple matches
 - Cluster reads within 30nt, extract two candidates of 110 nt length, fold
 - extend on both sides: miRs can be on either 5' or 3' arm
 - Score (naïve Bayes)
 - # reads for miR candidate (position with most reads)
 - Presence of miR* (aligned position offset by 2nt)
 - Loop: region in between
 - Precursor MFE
 - Conservation of seed region

miRdeep (III)

• Results: C elegans and human

