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Overview

e The RNA world

 RNA folding/secondary structure prediction
— Nussinov algorithm: maximal base pairing
— Zuker algorithm: minimal free energy
— Probabillistic interpretation

e Prediction of non-coding RNAs
— Comparative genomics
— Deep sequencing



Steps in eukaryotic gene regulation
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The RNA world

 RNA is thought to be the “original” molecule of life,
predating DNA as the so-called “ancient RNA world”

 RNA in modern organisms was thought to be

— only an intermediary product: the messenger RNA
— a structural component: rRNA

— Involved in translation: tRNA

— but not to have an active functional role:
the Central Dogma

 The “modern RNA world” recognizes that RNA
molecules have a variety of important functions

— challenging the central dogma and notion of “genes”

Introduction



PERSPECTIVES: MOLECULAR BIOLOGY

Glimpses of a Tiny RNA World

Gary Ruvkun
Science 294, 797 (2001);
DOI: 10.1126/science. 1066315
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Post-transcriptional control

* Increased appreciation for RNA regulatory
mechanisms

— Processing (e.g. polyadenylation, splicing)
— Export/Localization

— Stability

— Translation

e Driven by realization of importance of
regulatory non-coding RNAs

— Caution: mechanism not completely universal across
kingdoms




Classes of small functional RNASs

 small nuclear RNAs (snRNAs) -- Spliceosome
— Recognize the splice sites / branch point

« Small nucleolar RNAs (snoRNAs) -- Modification
— Lead to changes in the sequence of r/'sn/m?RNAs

 Micro RNAs (mIRNAS)
— Translation repression/degradation of target mMRNAS

* pIRNAs (Piwi-associated RNAS)
— Silencing of transposable elements in the germline

 Emerging picture:
targeting of specific other RNAs or DNA regions



Large functional RNAs

Many different roles: |

* Ribozymes --- RNA-based enzymes A
— Proof of the ancient RNA world? £ ,

o Part of RNP (ribonucleo-protein) complexes, - '
e.g. signal recognition particle for protein e
export or % 5_
polycomb complex (chromatin repression) B\\) & .

* lincRNAs (long intervening RNAS) |

— Xist --- the Goliath with 17kB 5
— X chromosome inactivation trigger / %_7

« “the hidden pervasive transcriptome”



The view from cis
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Structure Is Important

 RNA is a single-stranded molecule, and can fold back
onto itself: secondary structure
— G:C > A:U > G:U (Q: consequence of G:U?)

e RNASs from the same functional class often have similar
secondary structure but not primary sequence

« Apart from independent RNA transcripts,
secondary structure often plays a role in cis
— Splicing <= recognition of splice sites
— Riboswitches <<= obstruction of start codon
— Coding sequence << efficiency of translation
— RNA editing <<= change of coding sequence

RNA structure
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From primary to tertiary structure

“Tertiary” structure sometimes refers to
interactions based on the secondary structure,
not the 3-D structure
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RNA secondary & tertiary structure

5 N
¥ 5 &
; 3 )
3 5
F 5
single strand double strand singla-
nucleotide
bulge
3
5
E‘VJ'
5 m ¥ & f e
&
symmatric asymmetric two-stem junction
internal loop internal loop or coaxial stack
5 \
\ \ 3 5
A 4

pseudoknot

kissing hairpins

3 5
5
3 5 3
three- hairpin loop
nuclectide
bulge
5 3 L3 3
JF : 3
5 — | 5 a
3 B T 5
three-stem junction four-stermn junction
] 3
3
5 ; F 5

hairpin loop-
bulge contact



Computational problems in RNA biology

* RNA structure prediction: single molecule
— Energy optimization
— Probabilistic interpretation

 RNA family modeling: multiple sequences
— Stochastic context-free grammars
— Covariance models

« Prediction of trans-acting RNA genes/factors
(microRNAs, IncRNAs...)
and cis-acting regulatory RNA elements
(e.g. mIRNA target sites, riboswitches)
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Nussinov algorithm: idea

Premise: The more nucleotides are paired in a
structure, the more stable Is the structure

Simple idea: Find the secondary structure with
the highest possible number of pairs

Naive approach --- enumeration (have fun...)

Instead (and I'm sure you’ve seen this before):
Dynamic Programming !!

— Align the sequence to itself

— Count C:G, A:U, G:U as one, singletons as zero
— Compute global alignment

— But...
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Nussinov algorithm: operations

e Position (i,)) in the alignment:
— Best substructure fromito |
—  Fill matrix up to (1,N) and we are done

e At each position in the matrix W, we maximize over four

basic cases
0 o) o) o) o)

O O O O O O O O O O
0-0 0-0 0-0 0-0 0-0
0-0 0-0 0-0 0-0 0-0

iI+1 0-0 j 1 0-0 j-1 i1+1 o-0 j-1 I 0-0--0--0--0-0 j
1 0 o} 1 0-0 j k k+1
(a) 1 unpaired (b) j unpaired (c) 1,] pair (d) bifurcation

— Consequence of (d) on the complexity?
Runtime: O(NS3)

RNA structure
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Nussinov algorithm: traceback

* We potentially have nested substructures,
SO we need to use a “stack” for traceback
init: push (1,N)
repeat
pop (1,3); 1f (i>=j)) continue;
// done iIn this substructure
else 1t (W(i+1l,3) = W(1,3)) push (1+1,}));
// unpaired
else 1f (W(r,J-1) = W(r,3)) push (1,J-1);
// unpaired
else 1t (WQ+l,j-D+s(1,3) = W(i,3)) push(i+l, j-1);
// base pair
else for (k=i+l1l to j-1)
// split substructure
it WG,k + Wk+1,3) = W(i,j)
push (k+1, j); push (i1,k); break;

RNA structure
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Folding energy parameters

e Simply counting a match as one and a mismatch as zero
IS not very close to reality

* Instead, stacking energy parameters have been (and
continue to be) estimated

— Decrease in free energy by stacking one pair of nucleotides on
top of the previous pair
 Means: Dependency on neighbor [“Markov order 1”]
— Increase by various kinds and lengths of unpaired sequences:
bulges, internal, terminal/hairpin loops
o http://www.bioinfo.rpi.edu/~zukerm/cqgi-bin/efiles-3.0.cqi

— Incorporate qualitative restrictions, e.g., minimum hairpin loop
Size

RNA structure
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Parameter examples

Stacking energy in stem, X:Y following A:U
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Terminal mismatch in hairpin loop, X:Y following A:U
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RNA structure
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Zuker algorithm: idea

Start from DP maximal base pairing algorithm, but use
free energy parameters instead

— Becomes quickly complicated:

« Two matrices needed: overall best energy, paired energy at i,
(similar to insertion/deletion in local sequence alignment)

» Tracking of different types of unpaired regions
» Size restrictions of unpaired/paired regions

— Extensions allow to find suboptimal structures

» Current assessment: For only about ~60-70% of structures, the
minimal energy structure (i.e., the base pairs) is the correct one
according to the current parameter estimates

» Modifications to standard DP algorithm allow to predict all or a set of
suboptimal structures within x% of the optimal one

RNA structure
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Protein-Coding Gene Prediction
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NCRNA-Gene Prediction
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More systematic ncRNA gene finding

In an ideal world, we would like to predict RNA
genes independent of their function
(just like protein coding genes)

Bad news first: A good and fancy secondary
structure does not imply a functional RNA

— Large enough foldbacks occur frequently by chance
Remedy I: class-specific features

Remedy Il: use comparative algorithms
— Require either a formal model or ad hoc filtering

Remedy lll: deep RNA sequencing

RNA structure
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Non-coding regulatory genes

 Prominent and increasingly well understood
case: mIRNAS
— Small regulatory RNAs which repress target genes
— ~50% of human genes are targeted

* To build a successful predictor, we need to
understand the biogenesis of mIRNAS:
— Primary transcripts (several kb; nucleus; RNA pol 1)
— Precursor foldbacks (70 nt; nucleus; Drosha)
— Mature miRNA (20-25 nt; cytoplasm, Dicer)

« Parallel to protein coding genes,
with many different processing steps
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Location of mIRNA genes

MIRNAS come
a variety of
disguises

— Can be

iIndependently
transcribed

— Can be

IN

intron/exon of a

non-coding
transcript

— Can be part of an
Intron of a protein-

coding gene

— Can come in
clusters

Kim (2005)
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MicroRNA bioagenesis
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What i1s the function of microRNASs?

Animal miIRNAs target protein coding genes through
complementary sequence regions in their 3' UTR

Part of a protein complex (RISC); miR defines target
“Natural counterpart” to SIRNAs/RNAI (RISC complex)

:::::H::::w:::ﬂ:::::::::::::@ « One MiRNA influences
precursor AN many target genes
_ * One mIRNA can have
""""""""""" several target sites in one
target mMRNA UTR
=T  One UTR can have multiple

/v MIRNA targets

Translational  mMIRNA genes and targets

repression are often conserved
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ldentification of miIRNA genes:
conserved foldbacks

Example: original miRscan (Lim et al 2003)

1. Scan C.elegans genome for potential RNA hairpin
structures

— Fold every 110 base segment in genome using RNAfold
(Vienna RNA software package, Hofacker et al)

2. ldentify hairpins with homology to C.briggsae shotgun
traces
- BLAST cutoff E1.8; RNAfold C.briggsae sequence

3. Align C.elegans and C.briggsae hairpins
— Pair must have certain secondary structure similarity

4. Classify foldback into miRNA/no miRNA using features
representative of miRNAs

29



Excursion: Classification

 Many problems in molecular biology can be
approached by computational methods, In
particular classification
— Finding/locating genes
— Determining protein domains
— Cancer diagnosis using microarrays
— Inference of regulatory networks

« With the avallability of large-scale data, we have
the abillity to do this

— One needs examples to build models for different
classes

30



Classification

 Representation:

— Samples/objects from particular problem domain
— Objects represented by specific features/attributes

e Supervised: Class labels are known

— We have objects from several classes and want to
distinguish between them
« Simple: assign class label to whole sample
« Complex: parse sample into different classes

e Unsupervised/clustering: Class unknown
— Determine meaningful groupings of the samples
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Classification systems

« Many classification systems consist of the
following components

— Preprocessing:
* Noise removal (e.g. different filters)
 Discretization
« Normalization (to standardize input data)

— Feature extraction:
« Compute values from the (analog) input data

« Categorical (e.g. male/female) or
numerical (e.g. size; discrete or continuous)

* Dimensionality reduction
— Classification

Classification
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An example you know: PWMs

« A welight matrix is a model of related sequences
(eg, transcription factor binding sites)

— The model represents our knowledge about the
sequences in form of parameters
(here, the relative frequencies or scores for
nucleotides at different PWM positions)

— The parameters are estimated using a representative
set of examples (positives and negatives/background)

— Using the log-odds scores, we evaluate the
probabilities of two competing models:
binding site vs background genomic content
 What are possible parameters for a miRNA
classifier?



Example: mIRNA prediction

« MIRNAsS are excised from
precursor foldbacks/hairpins

 Real precursor foldbacks have
distinct features

o Classifier can distinguish real
MIRNAS from ubiquitous
foldbacks of similar size

Lim et al (2002)

Extension of
base pairing
(0.5)

miRNA base
pairing (6.7)

3’ conservation
(1.9)

§' conservation
(2.2)

Initial pentamer
(0.7)

Distance from
loop (0.6)
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Probability-distribution based approach

« 1. Training: Estimate distributions for the feature values for
each class from training data: the models

— Discrete (e.g. histogram) or continuous
(e.g. Gaussian) distributions

o 2. Classification: Determine the probability/likelihood for
unseen test data based on their features

— Decision rule: Class with highest posterior probability
wins (Bayes classifier)

« If features are independent, i.e. uncorrelated:
naive Bayes
— Separate distribution for each feature;
— probabilities of individual features can simply be
multiplied

Classification
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Class-specific density vs. posterior

class densities
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Back to miRs: Predictions and validations
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Principles to predict specific classes of ncRNA

« RNAs from the same class show specific
orimary seguence features

 RNAs from the same class show similar
secondary structure

« Other features: length, genomic context,
conservation patterns
— Common problem: Availability of training/test data
e Combine these in a model, search for highly
probable regions in the genome

— Due to the complexity of structure prediction, this is
often done in a sliding window

RNA structure
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Current approaches: deep seguencing

 mirDeep: Simplified picture of short reads mapping to real
miRs and spurious foldbacks [Friedlander et al 2008]

a Sequencing reads

miRNA Mature
precursor miRNA Loop

5
D> D>
T Star sequence T

Dicer cleavage Deep sequencing

b

Mon-miRNA products
Sequencing reads

Non-miRNA —
\ local hairpin \ \
Ohe N 9
Non-Dicer processing Deep sequencing
or degradation
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miRdeep (II)

« Exploit features from deep sequencing
— Align reads, discard multiple matches
— Cluster reads within 30nt, extract two candidates of
110 nt length, fold
« extend on both sides: miRs can be on either 5’ or 3’ arm
— Score (nhaive Bayes)
« # reads for miR candidate (position with most reads)
Presence of miR* (aligned position offset by 2nt)
Loop: region in between
Precursor MFE
Conservation of seed region
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miRdeep (llI)

 Results: C elegans and human
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