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Electrical and chemical synapses exist within the same networks of
inhibitory cells, and each kind of synapse is known to be able to
foster synchrony among oscillating neurons. Using numerical and
analytical techniques, we show here that the electrical and inhib-
itory coupling play different roles in the synchronization of
rhythms in inhibitory networks. The parameter range chosen is
motivated by gamma rhythms, in which the �-aminobutyric acid
type A (GABAA)-mediated inhibition is relatively strong. Under this
condition, addition of a small electrical conductance can increase
the degree of synchronization far more than a much larger increase
in inhibitory conductance. The inhibitory synapses act to eliminate
the effects of different initial conditions, whereas the electrical
synapses mitigate suppression of firing due to heterogeneity in the
network. Analytical techniques include tracking trajectories of
coupled cells between spikes; the analysis shows that, in networks
in which the degree of excitability is heterogeneous, inhibition can
increase the dispersion of the voltages between spikes, whereas
electrical coupling reduces such dispersion.

I t is known that electrical coupling between inhibitory cells
exists in many parts of the nervous system (1–11). Inhibition

(2, 12–19) and electrical coupling (8, 20–26) are each known to
be able to foster synchrony among connected cells. However, it
is not well understood what roles each of the two kinds of
coupling current plays in the synchronization process.

Several groups (27–31) have investigated networks involving
gap junctions with and without inhibitory coupling. In those
articles dealing with spiking (not bursting) cells, the coupling is
often taken to be weak. In the weak-coupling regime, the effects
of inhibition and gap junctions sum linearly, and proportional
increases in either have similar effects on synchrony. In the case
of strong coupling, however, the effects do not sum linearly, and
new effects are created.

Motivated by experimental and large scale modeling results on
gamma rhythms in distributed networks (28), we consider here
networks in which the chemical coupling is large but the elec-
trical coupling is still weak. We use parameter values associated
with gamma frequency rhythms, in which the period of the
population rhythm is tightly tied to the decay time of the
inhibition (16, 32, 33).

We find that, in the presence of heterogeneity of currents, the
electrical coupling plays a role that is different from that of the
inhibition, and a small amount of electrical coupling, added to
already significant inhibitory coupling, can increase the synchro-
nization more than a very large increase in the inhibitory
coupling. This work helps explain the importance of gap junc-
tions in spatially distributed networks (28) in which the coupling
is heterogeneous, as well as in local networks in which the
intrinsic currents are heterogeneous. However, gap junctions
alone, unless very large, do not create the rapid synchrony
associated with inhibitory coupling in a homogeneous network.
Thus, the inhibition and electrical coupling play complementary
roles in the coherence of rhythms in inhibitory networks.

We start by showing the basic phenomena. In Fig. 1, we show
histograms of a network of quadratic integrate-and-fire (QIF)
neurons coupled with model �-aminobutyric acid type A
(GABAA)-mediated inhibition and gap junctions. The cells are
heterogeneous, with a range in natural frequency, and there is
also noise (for details, see Methods; the Inset is discussed in
Results). In Fig. 1, the cells are connected all–all. Note that there
is essentially no increase in coherence by doubling the inhibitory
coupling (A and B). If an electrical synapse whose conductance
is 20% of the synaptic conductance is added (C and D), the
coherence is sharply increased, more in D than in C. Addition of
10% electrical coupling also leads to a noticeable increase, but
not as much (data not shown). In the noiseless, homogeneous
network, synchrony is perfect within a cycle. The same phenom-
ena occur when the 100 cells are arranged in a line, with each cell
coupled with inhibition to 20 nearest neighbors on each side and
to 10 on each side by means of electrical coupling (data not
shown) so this is not just a consequence of the all–all connec-
tivity. We have done the same calculations with biophysical
models of interneurons (16), and the results are similar; in that
case, setting the electrical coupling to be even 10% of the
inhibitory coupling leads to very significant increases in coher-
ence (data not shown; details of simulations in Appendix).

In Fig. 2 we show histograms of the onset of synchronization
for different types and strengths of coupling. Fig. 2 A shows the
slow development of coherence when there are only gap junc-
tions. Fig. 2B shows that, with only inhibition, maximal coher-
ence is reached in one cycle. Fig. 2C shows that a combination
of gap junctions and inhibition leads to rapid coherence and a
larger number of cells firing than in the case of pure inhibition.

In the rest of this article, we explain the bases of the above
phenomena. We show analytically that, with significant common
inhibition to a population of cells, each cell displays a preferred
trajectory that attracts all nearby trajectories (34, 35). The result
is that there is an almost complete loss of memory of initial
conditions within one cycle. If there were no heterogeneity, the
synchrony would be almost total within one cycle. This result
explains the behavior in Fig. 2B.

To understand the effects of the inhibitory and electrical
coupling when there is heterogeneity, we analyze separately a
subinterval of the cycle in which none of the cells fires and a
complementary time interval in which all of the cells spike in
a given cycle. We show that, if there is heterogeneity, the cells
receiving common inhibition diverge in their voltages over the
nonspiking epoch. Increasing the amount of the inhibition
increases the attraction to the preferred trajectory, but actually
increases the divergence of the voltages over the interval when
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no cells are spiking. We then show that similar effects hold for
networks with mutual inhibition. Indeed, there is a limit to the
amount of possible synchronization for a fixed amount of
heterogeneity, no matter the size of the inhibition, with too large
inhibitory conductances leading to suppression of some of the
cells. Adding a relatively small amount of electrical coupling to
the inhibitory coupling can make the voltages stay much closer
during the nonspiking epoch.

During the epoch in which the cells spike, the main effect of
the electrical coupling is to decrease the amount of suppression
that would otherwise take place as the faster cells inhibit the
slower ones.

Methods
The cells we are modeling are fast-spiking interneurons, whose
behavior is well-described in Hodgkin–Huxley equations by
using only standard spiking currents. Many model inhibitory
neurons are so-called Class I excitable, including, for example,
the Wang–Buszaki (WB) model (16) and a more recent model
(30). These models are closely related to QIF neurons (36),
which we use for our analysis. For each neuron, the basic
equation is

C
dvi

dt
� gs�vi � vr��vi � vth���vth � vr�

� Ii � gin
i �t��vi � vsyn� �

Gel

M � �vj � vi�,

i � 1, . . . , N. [1]

Here, vi is the voltage of the ith neuron, vr is the rest potential,
vth is the threshold for spiking, and vsyn is the synaptic reversal
potential. Gs is the resting conductance and Gel is the strength of
the electrical coupling. For �-aminobutyric acid type A-medi-
ated synapses, vsyn is set to a value near vr. Gin

i (t) is the total
inhibitory conductance felt by cell i:

Gin
i �t� � G� in

1
Min

�
j

sj�t�,

where the sum is over all Min cells inhibiting i and sj is the synaptic
gating variable (see Appendix for details.)

The parameter range for the model is what has been called
(33) the ‘‘phasic’’ regime for an inhibitory network. This is a
regime in which the natural drive to the cells is roughly tuned to
the decay time of the inhibition; with too much drive, hetero-
geneity in drive or synaptic strength causes faster cells to precess
one another, whereas too little drive makes the slower cells very
susceptible to suppression. We use strong inhibition, so the drive
is correspondingly strong: in the absence of inhibition, the
natural rate of the cells is �100–125 Hz. In this regime, the
period is proportional to the decay time of the inhibition (32); for
a decay time associated with �-aminobutyric acid type A, the
frequency is in the gamma range (30–80 Hz). In this phasic
regime, the network is least susceptible to suppression, i.e., can
tolerate a wider range of heterogeneity for the same amount of
suppression (see also ref. 19).

Parameters for the simulations of the QIF and the WB model
(16) are found in Appendix. We attempted to choose parameters
for the QIF so that the model produced a frequency-input curve
quantitatively like the WB model (see also ref. 37). We assume
that the spike occurs when the voltage reaches vsp � vth, and that
the cell is then reset to vreset � vr. Ii is the drive to the cell, chosen
to be large enough that the cell will fire periodically in the
absence of inhibition. The inhibitory conductance Gin

i (t) is an
exponentially decaying function of time after other cells spike,
and depends on the subset of cells to which a given cell is
connected. The last term is the electrical conductance, and the
sum is done over the subset of M cells to which the ith cell is
connected. (For all–all coupling, M � N.)

Results
Inhibition and Loss of History in Homogeneous Networks. The loss of
effects of initial conditions is a direct consequence of the small

Fig. 1. Histograms for a network of 100 all-to-all-coupled QIF neurons after
a long transient. (A) Gin � 0.5, Gel � 0.0. (Inset) The effective membrane time
constant for cell 4 in the network. (B) Gin � 1.0, Gel � 0.0. (C) Gin � 0.5, Gel �

0.1. (D) Gin � 1.0, Gel � 0.2. Spike counts are in 1-ms bins.

Fig. 2. Histograms for 100 QIF neurons with all-to-all coupling. At t � 0,
coupling is turned on. (A) Gel � 0.4. (B) Gin � 0.5. (C) Gin � 0.5, Gel � 0.2.. With
Gel � 0.4, the peak coupling current has a magnitude of 28 �A�cm2 whereas
the peak current is 14 for Gin � 0.5. Note that maximal coherence takes many
more cycles in A than in B, even though the peak coupling current is higher in
A. (The frequency is higher in A because there is no inhibition.)
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effective membrane time constant when Gin
i (t) is large for all

cells. Consider first a common inhibition Gin(t). When Gin(t) is
large, Eq. 1 has (at least) two time scales, that of the decay of
inhibition and the effective membrane time scale. As seen in Fig.
1A Inset, the effective membrane time constant is around 2 ms
right after inhibition, over five times faster than the decay of
inhibition. Such two-time-scale systems have been much studied
(38), and it is well known that the voltage goes very quickly to
the value (‘‘quasi-steady state’’) at which the dv�dt � 0. If there
is no electrical coupling, the quasi-steady state of each cell is
determined only by Ii and the connectivity, independent of the
other cells and initial conditions, from the equation

0 � gs�vi � vr��vi � vth���vth � vr� � Ii � Gin�t��vi � vsyn�.

[2]

That is, the voltage quickly goes to a value that is slaved to the
inhibitory conductance. Thus, the dependence on initial condi-
tions can be lost within one cycle. If Gin

i (t) and Ii are independent
of i, the result is very fast synchronization, within one cycle.

These dynamics are illustrated in the phase plane diagram in
Fig. 3. Here, we show the trajectories of a single cell with
inhibition that decays away with a time constant of �in � 12 ms:

dv
dt

� Gs�v � vr��v � vth� � Gins�v � vsyn�,
ds
dt

� �s�� .

We plot the voltage of a single cell vs. the inhibition with a set
of different initial conditions for voltage when the inhibition
begins (Fig. 3, top of box). Note that the trajectories are all drawn
into a ‘‘river’’ (34). This observation implies that, for a set of cells
that are homogeneous, when the inhibition has worn off enough
for the cells to fire (the same level of inhibition for all cells), the
voltages are almost identical. (See ref. 35 for a similar picture for
a related set of equations.) The rivers exist even for a 5-fold
decrease in the inhibition (Gin � 0.1, data not shown).

We now replace the common input with all–all mutual inhi-
bition. Note that the common synaptic input is the sum of the
decaying exponentials contributed by each cell, shifted in time
from one another; thus, if the cells start with initial conditions
distributed widely in phase, the common inhibition may have low
amplitude (e.g., be almost constant) and need not create syn-
chronization instantly. However, in all our simulations, synchro-

nization was created quickly (within one cycle; see Fig. 2), and
multiple clusters of cells were never observed.

If there is only electrical coupling, the coupling current
becomes small as the vi get closer to one another. Thus, the
effective membrane constant is not so small, and there is no
disparity in time scales to allow the network to behave as if dvi�dt
is �0. The synchronization thus can take multiple cycles as seen
in Fig. 2 A, particularly if the coupling is not global, but rather
along a line. Fig. 2 A also shows that, even with a large peak
current, many cycles are required to achieve synchronization.

Dispersive Effects of Heterogeneity in an Uncoupled System. We
show here that heterogeneity in uncoupled cells creates disper-
sion in the voltages before any of the cells fire.

For the uncoupled cells, Gin
i (t) � 0 and gel � 0. Suppose these

cells are started together, and we record the values of the
voltages vi at the time tsp that the fastest cell reaches vsp, the spike
height. These values can be computed from Eq. 1), which can be
integrated to tsp to get an implicit formula for vi. We get

�C�ci�tan�1��vi � v0��ci	 � t sp, [3]

where ci
2 � �(vth � vr)2�4 
 Ii and v0 � (vr 
 vth)�2.

In Fig. 4A, curve c gives a numerical example of the spread in
voltage at the time the most excited cell is ready to fire. Note that,
for values of drive I near the maximum, the voltages are highly
spread out. The reason for this spread can be seen from Eq. 2,
using the shape of the arctangent near the horizontal asymptote:
a small change in Ii, and hence in ci, can make a large change in
vi. This spread is not dependent on the particular form of the QIF
neuron: the same phenomena are displayed for the biophysical
model (data not shown).

Inhibition Accentuates Dispersion in Voltage and Creates Suppression.
We now show that, if the cells get common exponentially
decaying inhibition, the dispersive effects are even larger. The
cells get common input Gin(t) � Ginexp(�t��inh), where Gin is the
maximal strength of the decaying inhibition. The cells are silent
until the inhibition wears off enough; once some cell spikes, Eq.
2 is no longer valid. But we can compute the voltages of the other
cells just before that time by using t � tsp in Eq. 2. The bottom
curve of Fig. 4A shows these voltages, again for the QIF. Similar
curves are found for the WB model (data not shown). Note that
the dispersion in voltages for those cells with drive near that of
the fastest cell is larger when there is common inhibitory input.

If the cells are coupled mutually by inhibition, they behave like
uncoupled cells with common inhibitory input between spikes,
so increasing maximal conductance can lead to larger dispersion.
This result is shown in Fig. 4B for a pair of QIF cells. For weak
inhibition, the two cells cannot lock, but, at a critical value,
locking occurs. However, due to the effects of common inhibi-
tion on the voltage spread, as Gin increases beyond some optimal
value (the minimum of the curves in Fig. 4B), the timing between
the spikes of the two cells begins to diverge. At a second critical
strength of Gin, the slower cell is suppressed, and locking does not
occur. Thus, no matter how strong the inhibition, it cannot lead
to synchronization and, in fact, can actually make it worse. To
explain this result, we use Eq. 2, with Gin

i (t) � Gin(t) independent
of i. For large values of Gin(t), there are two quasi-steady states
for each i. The lower one corresponds to an effective stable rest
state, the upper one to an effective threshold. As Gin(t) decreases,
these states come closer to one another and eventually annihilate
one another. The most excited cell (say, cell 1) fires when it
ceases to be held down by inhibition, i.e., when Gin(t) reaches a
sufficiently low value, depending on I1, at which the two quasi-
steady states for v1 merge. From this description, we can see that
increasing the strength of single inhibitory postsynaptic currents
(IPSCs) does not decrease the heterogeneity in next spike time;

Fig. 3. Phaseplane for a single QIF neuron subject to transient synaptic
inhibition. Trajectories that start with the same inhibition (i.e., on same
horizontal line of phaseplane) continue to have the same level of inhibition as
time increases; the voltage values become closer together (Gin � 0.5)
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it increases the time to the next spike, but not the dispersion of
the voltages at that time, which is determined by Eq. 2 with Gin(t)
set to the critical value for v1.

Similarly, for a fixed sufficiently large level of inhibitory
coupling, there is a maximal amount of heterogeneity for which
there is locking; beyond this amount, there is suppression (data
not shown). This analysis is for all-to-all coupling, but a similar
analysis holds for networks with spatial structure.

Between Spikes, Gap Junctions Hold the Voltages Closer Together. We
assume that the inhibition is sufficiently strong so that the
initial-condition-removal is accomplished as in the first section
of Results. Thus, we are concerned with how gap junctions deal
with heterogeneity in the network. Formally, we consider the
network all–all coupled, but some of the synapses may have zero
strength.

As above, we consider here an interval of time in which no cell
is spiking. Unlike the network with only chemical synapses, with
electrical synapses, there is coupling whether or not there is a

spike of some cell. The effect of the electrical coupling on the
dispersion of the voltages when the leading cell is at its threshold
is shown in Fig. 4 for the QIF model. The bottom curve in Fig.
4A shows the spread with Gin � 0.6, and the second from the top
shows the spread with an added electrical conductance of Gel �
0.05. The spread is considerably lower. The consequence of this
is shown in Fig. 4B for a pair of cells; gap junctions both improve
the range in which locking occurs with inhibition and also
decrease the time difference between a pair of cells.

To understand these effects, we use the full Eqs. 1, which we
rewrite as

C
dvi

dt
� F�vi� � Ii � Gin�t��vi � vsyn� �

Gel

N �
j�1

N

�vj � vi�,

i � 1, . . . , N, [4]

where F(v) � Gs (v � vr) (v � vth)�(vth � vr). Using the
differences in time scales of the voltage and decay of inhibition
as before, we see that, when no cells are firing, the voltages are
determined by

0 � F�vi� � Ii � Gin�t��vi � vsyn� �
Gel

N �
j�1

N

�vj � vi�

i � 1, . . . , N. [5]

These equations constitute the ‘‘slow manifold’’ associated with
the changes in the voltages during the slow decay of the
inhibition.

Suppose that I1 is the largest of the drives. We now compute
v1 � vi for i � 1, to see how this depends on the different kinds
of coupling in the system. Using Eq. 5,

F�v1� � F�vi� � Ii � I1 � Gin�t��vi � v1	 � �Gel�N��v1 � vi�.

[6]

We use the fact that F(vi) � F(vj) if vi � vj to factor the left hand
side to

F�v1� � F�vj� � �v1 � vi�q�v1, vi�, [7]

where

q�v1, vi� � Gs��v1 � vi� � �vth � vr�	��vth � vr�. [8]

Using Eqs. 6 and 7, we get

�v1 � vi� � �I1 � Ii���Gin�t� � Gel � q�v1, vi�	. [9]

The values of vi stay close to those satisfying Eq. 9 provided
that the slow manifold of Eq. 4 exists and remains attracting. As
discussed above, for Gel � 0, each equation has a pair of fixed
points providing that Gin(t) is large enough. As Gin(t) decays, the
fixed points coalesce to a saddle node and disappear. At this
point, a spike occurs and Eq. 5 is no longer valid. Adding gap
junctional currents couples the equations of Eq. 5, so it is not
possible to solve each separately. However, it is still correct that,
as Gin(t) declines, any of the 2N fixed points may disappear only
by coalescing with other fixed points. When Gel is not zero, the
value of Gin(t) at which this happens changes, but not the
existence of such a value.

Note from Eq. 8 that, the larger vi is (i.e., the closer it is to v1),
the more positive is q, and hence the smaller is the denominator
of the right side of Eq. 9. The term Gin(t) decays exponentially
and is at its smallest (between spikes) just when v1 reaches vth.
Thus, during the last portions of the interval between spikes, the

Fig. 4. Effects of electrical coupling on dispersion of voltages. (A) Voltage
spread due to current heterogeneity and common inhibition in the QIF. The
horizontal axis is the drive, and the vertical axis is the potential of the neuron
with the corresponding drive at the time that the fastest cell spikes (V � 10).
The bottom curve shows that the maximal spread occurs when there is only
inhibition (Gin � 0, Gel � 0), and the second curve from the bottom shows the
uncoupled case. The top two curves show that electrical coupling reduces the
spread in the potentials with or without inhibition. The values of (Gin, Gel) for
curves a–d are, respectively, (0.0,0.05), (0.6,0.05), (0, 0), and (0.6,0). (B) Con-
sequences of A for coupled cells. Time difference between the firing of two
mutually coupled cells with slightly different drive. (Top) Nonmonotonic
behavior of the spike time difference as a function of the strength of Gin.
(Middle and Bottom) How gap junctions extend the range of Gin, for which
locking occurs, and reduce the time difference. Cell 1 has I � 1.3 and cell 2 has
I � 1.36.
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major force holding the voltages together is the conductance of
the electric coupling.

Electrical Coupling Has Other Effects During Spiking Interval. At the
time the first cell spikes, the voltages of the others are spread out,
although less spread out than in the absence of the electrical
coupling. We now consider the dynamics of the epoch during
which there is firing of any of the cells that are not suppressed.

We first consider the case in which there are just two cells.
Because both the QIF and the WB model have strong nonlinear
regenerative currents (the sodium current for the WB and the
quadratic nonlinearity for the QIF), there is a threshold or state
such that the firing of a spike is inevitable (except for, perhaps,
extremely strong inhibition). That is, even if the inhibition is
abruptly increased, the postsynaptic cell will still fire. Suppose
there is no electrical coupling and the faster cell fires. If the
slower cell is sufficiently depolarized, the resulting inhibition will
not stop it from firing. However, if the inhibition comes before
the slow cell is depolarized enough to engage the regenerative
currents, then the slow cell will be suppressed for this cycle.

Let Vslow be the potential of the slow cell at the point at which
the fast cell begins its spike. (This is the point of inflection of the
voltage of the fast cell, the voltage at which a spike is inevitable.)
A short time later, the inhibition from the fast cell arrives and can
either suppress the slow cell for this cycle or allow it to fire, but
delay its firing. Let V* denote the minimal voltage of the slow cell
such that, if Vslow � V* (respectively, Vslow � V*), the slow cell
will (resp., will not) fire. For example, in the WB model with G

in � 0.5, we find V* � �57.3 mV when the fast cell reaches its
inflection point at �55 mV. In the presence of electrical
junctions, however, there are two competing influences during
the spiking epoch. While the presynaptic spike is building up
(before the inhibition is turned on), it is pulling up the slow cell
closer to its threshold. Thus, electrical junctions could decrease
the value of V*, allowing for a greater voltage spread at the point
of a spike. Indeed, for the WB, a small amount of electrical
coupling (Gel � 0.1) leads to a lowering of V* to �60.5 mV. We
can tease apart the contribution of the prespike and spiking
epochs of the gap junctions by turning them off either during the
spike or during the build-up. When the gap–junction contribu-
tion is removed for the spiking part, we find that V* � �53 and
when it is removed during the buildup, we find V* � �60.5.
Thus, the spike plays an important role in expanding the
allowable spread in the potential of the slow neuron. This finding
is consistent with results for large, biophysically detailed simu-
lations that, in either the spiking or nonspiking epochs, the
electrical coupling increases coherence (28).

The second possible effect of electrical coupling concerns the
subinterval in which the spike of the fast cell is over and its
voltage is below threshold. When the fast cell (presynaptic cell)
repolarizes after a spike, this voltage change could pull the
postsynaptic cell down and thus prevent it from firing. We have
never observed this effect, most likely because (i) the after-
hyperpolarization (AHP) of our cells is of much smaller mag-
nitude than the reversal potential of a synapse (for QIF, reset is
�67 mV and vsyn � �75 mV); and (ii) electrical coupling is
considerably weaker than the synaptic coupling so that this small
hyperpolarization is negligible compared with the synaptic
inhibition.

Now, we suppose there are many cells, not just two. We
consider the time between the spike of the most active cell and
the spike of the last unsuppressed cell. All of the arguments
above are still relevant. For spike widths that are not too narrow
and after-hyperpolarizations that are not too deep, the major
effect of the electrical coupling is to reduce suppression due to
heterogeneity. It can have a small adverse effect on the spread
of voltages right at the end of the last spike, but this effect is
washed out by the stronger common inhibition.

Discussion
In this article, we have analyzed the different roles of inhibition
and electrical coupling in the creation of synchronization of cells
interacting through both types of coupling. The central result is
that the two types of coupling are complementary in their
effects. The inhibition is especially good at wiping out effects of
initial conditions but cannot deal with significant heterogeneity
(16, 33), no matter how strong the inhibitory coupling; indeed,
stronger inhibitory coupling makes dispersion of the voltages
worse and leads to suppression of cells. The electrical coupling
acts to pull the voltages together during the intervals when no
cells are spiking and to minimize suppression during the interval
when spiking takes place. When the inhibition is sufficiently
strong to quickly synchronize homogeneous networks, it takes
only a small addition of electrical coupling to get similar results
for a heterogeneous network.

The QIF model used in our analysis (36) is closely related to the
‘‘theta model’’ (39, 40), a one-dimensional but continuous differ-
ential equation. The effect of inhibition to erase initial conditions
in those model neurons was analyzed in ref. 35. However, the QIF
model allows the addition of electrical coupling in a straightforward
way, whereas the theta model does not. Because of the ability of the
QIF to produce a spike, we do not need to add a delta-function such
as was used in ref. 29 with an integrate-and-fire-based model.

Some studies on electrical coupling and inhibitory cells (27,
31) deal with bursting neurons and address different issues.
Here, we focus on the nonlinear effects in spiking neurons that
come from adding electrical coupling to already strong inhibi-
tory coupling. With weak coupling (25, 29, 30), one can get
anti-phase locking that we do not see in our analysis, which
focuses on strong inhibitory coupling. Indeed, it is known that
weak gap junctional coupling alone can create stable anti-phase
solutions for some frequencies and spike shapes (23). The
nonlinear interaction of inhibition and electrical coupling allows
electrical coupling that might, by itself, be desynchronizing to
add to synchronization when there is strong inhibitory coupling.

The analysis in this article uses methods different from those of
previous papers on electrical coupling, including averaging methods
(24, 29, 30) or the spike-response method (23). The key idea in the
current analysis is that the interacting voltages can be tracked
between spikes, by using the fact that the strong inhibition creates
a situation in which all of the cells are controlled by the state of the
decaying inhibition. This fact allows us to see how the electrical
coupling influences the voltages between spikes. Bem and Rinzel
(31) also use differences in time scales to study the effects of gap
junctions on coupled neurons. They show that gap junctions can
stabilize the anti-phase state in reciprocally inhibiting cells whereas,
without the gap junctions, the cells oscillate in a nearly synchronous
state. Their model neurons are such that the recovery variable (for
example, the delayed rectifier) is the slowest time scale, in contrast
to the present results where the decay of inhibition dominates.

The analysis assumes that the period of the oscillation is
related to the decay time of the inhibition. This assumption is
motivated by the work of ref. 28 on gamma oscillations in a
distributed network of fast-spiking interneurons; the gamma
frequency in inhibitory networks is highly dependent on that
decay time (32). The strong inhibition creates the period of the
oscillation by enforcing an interval of silence until the inhibition
wears off. These ideas are potentially relevant to other networks
of interneurons as well. For example, the low-threshold spiking
cells (1, 41, 42), known to have electrical coupling in addition to
inhibitory coupling, produce rhythms at lower frequencies and
also give rise to inhibitory postsynaptic potentials (IPSPs) in
target cells that are considerably longer than those of fast-
spiking interneurons. However, other classes of inhibitory cells,
such as oriens-lacunosum moleculare cells of the hippocampus,
display hyperpolarization-induced currents (43); these cells
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would not synchronize according to the scenario in this paper,
because addition of hyperpolarization-activated currents
changes the synchronization properties of cells (44, 45).

Appendix
The equations for the WB model are:

dV
dt

� �0.1� V � 65� � 35m�
3 � V�h� V � 55� � 9n4� V � 90�

� Iext

dn
dt

� 5�an�V��1 � n� � bn�V�n�

dh
dt

� 5�ah�V��1 � h� � bh�V�h�

ds
dt

� as�V��1 � s� � s�12

where

m��V� � am�V���am�V� � bm�V��

am�V� � 0.1�V � 35.0���1.0 � exp� � � V � 35.0��10.0��

bm�V� � 4.0 exp� � � V � 60.0��18.0�

ah�V� � 0.07 exp� � � V � 58.0��20.0�

bh�V� � 1.0��1.0 � exp� � � V � 28.0��10.0��

an�V� � 0.01�V � 34.0���1.0 � exp� � � V � 34.0��10.00��

bn�V� � 0.125 exp� � � V � 44.0��80.0�

as�V� � as0��1 � exp� � V�2�� .

The QIF model satisfies:

dV
dt

� 0.05�V � 65��V � 57� � Iext

ds
dt

� �s�12

with the condition that, when V � 30, s is incremented by 1 and
V is reset to �67. The external current applied to each cell in
each model was a combination of a fixed random bias current
(between 1.3 and 1.6 for the QIF, and 2 and 2.5 for the WB), a
normally distributed scaled random number (with variance
0.2�dt where dt is the time step), and the total synaptic current.
The synaptic current was the sum of the electrical and chemical
synapses. Electrical synapses from k to j have the form:

Iel � �Gel�M��Vk � Vj�,

where Gel is a parameter that we varied in the paper and M is the
total number of cells to which a neuron is connected. For
all-to-all, M � 101 whereas for the line of cells, M � 21 (10
neighbors to the right and left). Chemical synapses from k to j
have the form:

Iin � �G� in�M�sk� � 75 � Vj�.

For the linear array of cells, M � 41 with 20 cells to the left
and right. Euler’s method with a timestep of 0.05 ms was used
to integrate the equations. All simulations were done by using
XPPAUT, and the equations files are available upon request
from B.E.
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