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The CA3 region of the hippocampus is a recurrent neural network that is
essential for the storage and replay of sequences of patterns that represent
behavioral events. Here we present a theoretical framework to calculate a
sparsely connected network’s capacity to store such sequences. As in CA3,
only a limited subset of neurons in the network is active at any one time,
pattern retrieval is subject to error, and the resources for plasticity are lim-
ited. Our analysis combines an analytical mean field approach, stochastic
dynamics, and cellular simulations of a time-discrete McCulloch-Pitts
network with binary synapses. To maximize the number of sequences
that can be stored in the network, we concurrently optimize the number
of active neurons, that is, pattern size, and the firing threshold. We find
that for one-step associations (i.e., minimal sequences), the optimal pat-
tern size is inversely proportional to the mean connectivity c, whereas the
optimal firing threshold is independent of the connectivity. If the num-
ber of synapses per neuron is fixed, the maximum number P of stored
sequences in a sufficiently large, nonmodular network is independent of
its number N of cells. On the other hand, if the number of synapses scales
as the network size to the power of 3/2, the number of sequences P is
proportional to N. In other words, sequential memory is scalable. Further-
more, we find that there is an optimal ratio r between silent and nonsilent
synapses at which the storage capacity α = P/[c(1 + r )N] assumes a max-
imum. For long sequences, the capacity of sequential memory is about
one order of magnitude below the capacity for minimal sequences, but
otherwise behaves similar to the case of minimal sequences. In a biologi-
cally inspired scenario, the information content per synapse is far below
theoretical optimality, suggesting that the brain trades off error tolerance
against information content in encoding sequential memories.
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1 Introduction

Recurrent neuronal networks are thought to serve as a physical basis for
learning and memory. A fundamental strategy of memory organization
in animals and humans is the storage of sequences of behavioral events.
One of the brain regions of special importance for sequence learning is
the hippocampus (Brun et al., 2002; Fortin, Agster, & Eichenbaum, 2002;
Kesner, Gilbert, & Barua, 2002). The recurrent network in the CA3 region
of hippocampus, in particular, is critically involved in the rapid acquisi-
tion of single-trial or one-shot, episodic-like memory (Nakazawa, McHugh,
Wilson, & Tonegawa, 2004), that is, memory of the sequential ordering of
events.

It is generally assumed that the hippocampus can operate in at least
two states (Lörincz & Buzsàki, 2000). One state, called theta, is dedicated
to fast, or one-shot, learning; the other state, referred to as sharp-wave
ripple, is dedicated to the replay of stored sequences. Experiments by Wilson
and McNaughton (1994), Nádasdy, Hirase, Czurkó, Csicsvari, and Buzsáki
(1999), and Lee and Wilson (2002) strongly corroborate the hypothesis that
the hippocampus can replay sequences of previously experienced events.
The sequences are assumed to be stored within the highly plastic synapses
that recurrently connect the pyramidal cells of the CA3 region (Csicsvari,
Hirase, Mamiya, & Buzsaki, 2000).

In this letter, we tackle the problem of how many sequences can be stored
in a recurrent neuronal network such that their replay can be triggered by
an activation of adequate cue patterns. This question is fundamental to
neural computation, and many classical papers calculate the storage ca-
pacity of pattern memories. There, one can roughly distinguish between
two major classes of network models: perceptron-like feedforward net-
works in which associations occur within one time step (Willshaw, Bunet-
man, & Longuet-Higgins, 1969; Gardner, 1987; Nadal & Toulouse, 1990;
Brunel, Nadal, & Toulouse, 1992) and recurrent networks that describe
memories as attractors of a time-discrete dynamics (Little, 1974; Hopfield,
1982; Amit, Gutfreund, & Sompolinsky, 1987; Golomb, Rubin, & Sompolin-
sky, 1990). Also for networks that act as memory for sequences, capacities
have been calculated in both the perceptron (Nadal, 1991) and the attrac-
tor case (Herz, Li, & van Hemmen, 1991). An important result is that the
capacity of sequence memory in Hopfield-type networks is about twice as
large as that of a static attractor network (Düring, Coolen, & Sherington,
1998).

Here, we describe sequence replay in a sparsely connected network by
means of time-discrete dynamics, binary neurons, and binary synapses. Our
model for sequential replay of activity patterns is different from attractor-
type models (Sompolinsky & Kanter, 1986; Buhmann & Schulten, 1987;
Amit, 1988). In fact, we completely dispense with fixed points of the net-
work dynamics. Instead, we discuss transients that are far from equilibrium
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(Levy, 1996; August & Levy, 1999; Jensen & Lisman, 2005). In the case of a se-
quence consisting of a single transition between two patterns (a minimal se-
quence), the mathematical structure we choose is similar to the one of Nadal
(1991) for an autoassociative Willshaw network (Willshaw et al., 1969). For
longer sequences, our analysis resembles that of synfire networks (Dies-
mann, Gewaltig, & Aertsen, 1999), although we take expectation values as
late as possible (Nowotny & Huerta, 2003).

Some of the previous approaches to memory capacity explicitly focus
on questions of biological applicability. Golomb et al. (1990), for example,
address the problem of low firing rates. Herrmann, Hertz, and Prügel-
Bennett (1995) explore the biological plausibility of synfire chains. Other
approaches assess the dependence of storage capacity on restrictions to
connectivity (Gutfreund & Mézard, 1988; Deshpande & Dasgupta, 1991;
Maravall, 1999) and on the distribution of synaptic states (Brunel, Hakim,
Isope, Nadal, & Barbour, 2004).

We propose a framework that allows discussing how a combination of
several biological constraints affects the performance of neuronal networks
that are operational in the brain. An important constraint that supports
dynamical stability at a low level of activity is a low mean connectivity.
Another one is imposed by limited resources for synaptic plasticity; that is,
not every synapse that may combinatorially be possible can really be estab-
lished. This constraint sets an upper bound to the maximum connectivity
between two groups of neurons that are to be associated. Moreover, the
number of synapses per neuron may be limited. Another important con-
straint for sequential memories is the length of replayed sequences, which
interferes with dynamical properties of the network. Finally, the capacity of
sequential memory is also influenced by the specific nature of a neuronal
structure that reads out replayed patterns. This influence is often neglected
by assuming a perfect detector for the network states.

Our approach explicitly takes into account that synapses are usually
classified into activated and silent ones (Montgomery, Pavlidis, & Madison,
2001; Nusser et al., 1998). Activated synapses have a nonzero efficacy or
weight and are essential for the network dynamics. Silent synapses, which
do not contain postsynaptic AMPA receptors (Isaac, Nicoll, & Malenka,
1995), are assumed to not contribute to the network dynamics. Changing
the state of synapses from the silent to the nonsilent state, and vice versa, acts
as a resource for plasticity for the storage of sequences. Synaptic learning
rules can set a fixed ratio between silent and nonsilent synapses, which
gives rise to an additional constraint.

In this letter, we calculate the capacity of sequential memory in a con-
strained recurrent network by means of a probabilistic theory as well as
a mean field approach. Both theoretical models are compared to cellular
simulations of networks of spiking units. We thereby describe the memory
capacity for sequences in dependence on five free parameters. The network
size N, the mean connectivity c, and the ratio r between silent and nonsilent
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synapses are three network parameters. In addition there are two replay pa-
rameters: the sequence length Q and the threshold γ of pattern detection.
The number M of active neurons per pattern and the neuronal firing thresh-
old θ are largely considered as dependent variables. It is shown how M and
θ are to be optimized to allow replaying a maximum number of sequences.
Scaling laws are then derived by using the optimal values for M and θ , both
being functions of the five free parameters.

2 Model of a Recurrent Network for the Replay of Sequences

In this section we specify notations to describe the dynamics and mor-
phology of a recurrent network that allows for a replay of sequences of
predefined activity patterns. A list of symbols used throughout this article
can be found in appendix A.

2.1 Binary Synapses Connect Binary Neurons. Let us consider a net-
work of N McCulloch-Pitts (McCulloch & Pitts, 1943) neurons that are
described by binary variables xk , 1 ≤ k ≤ N. At each discrete point in time
t, neuron k can be either active, xk(t) = 1, or inactive, xk(t) = 0. The state of
the network is then denoted by a binary N-vector x(t) = [x1(t), . . . , xN(t)]T .
A neuron k that is active at time t provides input to a neuron k ′ at time t + 1
if there is an activated synaptic connection from k to k ′. Neuron k ′ fires at
time t + 1 if its synaptic input crosses some firing threshold θ > 0.

In order to specify a neuron’s input, we classify synapses into activated
and silent ones. All activated connections contribute equally to the synaptic
input. Silent synapses have no influence on the dynamics. Therefore, the
synaptic input of neuron k ′ at time t + 1 equals the number of active neurons
at time t that have an activated synapse to neuron k ′. Silent synapses are
assumed to act as a resource for plastic changes, although this article does
not directly incorporate plasticity rules.

The total number c N2 of activated synapses in the network defines a
mean connectivity c > 0, which later will be interpreted as the probability of
having an activated synapse connecting a particular neuron to another one.
The connectivity through activated synapses in the network is described by
the N × N binary matrix C , where Ckk ′ = 1 if there is an activated synapse
from neuron k to neuron k ′, and Ckk ′ = 0 if there is a silent synapse or no
synapse at all.

Similarly, the connectivity through silent synapses is denoted by cs , and
the total number of silent synapses in the network is cs N2. Then each neu-
ron has on average (c + cs)N morphological synapses, which in turn defines
the morphological connectivity cm = c + cs . Experimental literature (Mont-
gomery et al., 2001; Nusser et al., 1998) usually assesses the ratio cs/c be-
tween the silent and nonsilent connectivities. For convenience, we introduce
the abbreviation r = cs/c. We note that the four connectivity parameters c,
cm, cs , and r have two independent degrees of freedom.
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2.2 Patterns and Sequences. A pattern or event is defined as a binary
N-vector ξ where M elements of ξ are 1 and N − M elements are 0. The
network is in the state ξ at time t if x(t) = ξ . An ordered series of events is
called a sequence. A minimal sequence is defined as a series of two events,
say, a cue pattern ξ A preceding a target pattern ξ B . The minimal sequence
ξ A → ξ B is said to be stored in the network if initialization with the cue
x(t) ≈ ξ A at time t leads to the target x(t + 1) ≈ ξ B one time step later.
Typically, the network only approximately recalls or replays the events of a
sequence (see section 4). Sequences of arbitrary length, denoted by Q ≥ 1,
are obtained by concatenating minimal sequences of length Q = 1.

In the next section, we specify how to set up the connectivity such that a
recurrent network can act as a memory for sequences.

3 Embedding Sequences and Storage Capacity

For a minimal sequence ξ A → ξ B to be stored in the network, one requires
an above-average connectivity through activated synapses from the cells
that are active in the cue ξ A to those that are supposed to be active during
the recall of the target ξ B . In what follows, we assume that all morpho-
logical synapses from neurons active in the cue pattern to cells active in
the target pattern are switched on and none of them is silent. Such a net-
work can be constructed similar to the one in Willshaw et al., 1969 (see also
Nadal & Toulouse, 1990, and Buckingham & Willshaw, 1993). Let us there-
fore consider a randomly connected network—the probability of having a
morphological synapse from one neuron to another one is cm. Beginning
with all synapses being in the silent state, one randomly defines pairs of
patterns that are to be connected into minimal sequences. Then one converts
those silent synapses into active ones that connect the M active neurons in
a cue pattern to the M active neurons in the corresponding target pattern.
Imprinting of sequences stops when the overall connectivity through acti-
vated synapses reaches the value c; that is, the total number of activated
synapses in the network attains a value of c N2.

3.1 Capacity of Sequential Memory. Let us now address the question of
how many sequences can be concurrently stored using the above algorithm
for a given mean connectivity c and morphological connectivity cm > c. In
so doing, we define the capacity α of sequential memory as the maximum
number P of minimal sequences that can be stored, normalized by the
number cm N = (1 + r )c N of morphological synapses per neuron,

α := P
cm N

. (3.1)

The number P of minimal sequences that can be stored is assessed by ex-
tending the classical derivation of Willshaw et al. (1969). Suppose that we
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have two groups of M cells that should be linked into a minimal sequence.
For each morphological synapse in the network, the probability that the
presynaptic neuron is active in the cue pattern is M/N, and the proba-
bility that the postsynaptic neuron is active in the target pattern is also
M/N. Then the probability that a synapse is not involved in this specific
minimal sequence is 1 − M2/N2. Given P stored minimal sequences, the
probability that a synapse does not contribute to any of those sequences is
[1 − M2/N2]P , and therefore the probability of a synapse being in a nonsi-
lent state is C = 1 − [1 − M2/N2]P . For a mean connectivity c, on the other
hand, the probability C also equals the ratio between the number c N2 of
activated synapses and the total number cm N2 of synapses in the network:
C = c/cm. Combining the two approaches, we can derive P for any given
pair of connectivities c and cm = c (1 + r ) and find

α = log(1 − c/cm)
cm N log (1 − M2/N2)

. (3.2)

Equation 3.2 is valid for all biologically reasonable choices of M, c, and cm

and also can account for nonorthogonal patterns, as in Willshaw et al. (1969).
A somewhat simpler expression for α can be obtained in the case M/N � 1.
Independent of specific values of c and cm, we can expand [1 − M2/N2]P ≈
1 − P M2/N2 to end up with

α = c N
c2

m M2 for 1 � M � N. (3.3)

Equation 3.3 can also be interpreted through a different way of estimating
the number P of minimal sequences that can be stored: P roughly equals the
ratio between the total number c N2 of activated synapses in the network
and the number cm M2 of activated synapses that link two patterns: P =
c N2/(cm M2). This estimate, however, requires that different patterns are
represented by different groups of neurons; there is no overlap between the
patterns, which is an excellent approximation for sparsely coded patterns,
M/N � 1.

Equations 3.2 and 3.3 for the capacity α of sequential memory, however,
do not tell us whether embedded sequences can actually be replayed. In the
next section, we therefore introduce a method to quantify sequence replay.

4 Replaying Sequences

We consider a sequence as being stored in the network if and only if it can
be replayed at a given quality. In order to be able to efficiently simulate
replay in large networks, this section introduces a probabilistic Markovian
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dynamics that approximates the deterministic cellular simulations well.
Finally, we define a measure to quantify the quality of sequence replay.

4.1 Capacity and Dynamical Stability. Let us design a network and
patterns such that the number of sequences that can be concurrently stored
is as large as possible. From equations 3.2 and 3.3 we see that the capacity
α is maximized if the pattern size M is as small as possible. However, M
cannot be arbitrarily small, which will be illustrated below and explained
in detail in section 5.

Examples of how sequence replay depends on network parameters are
illustrated by simulations of a network of N = 100,000 McCulloch-Pitts
units at low connectivities c = cs = 0.05. The choice r = cs/c = 1 roughly
resembles values experimentally obtained by Nusser et al. (1998), Mont-
gomery et al. (2001), and Isope and Barbour (2002). Minimal sequences have
been concatenated so that nonminimal sequences [ξ 0 → ξ 1 → . . . → ξ Q] of
length Q = 20 are obtained. In the simulations, the network is always ini-
tialized with the cue pattern ξ 0 at time step 0. The replay of nonminimal
sequences at times t > 0 is then indicated through two order parameters: the
number of correctly activated neurons (hits), mt := x(t) · ξ t , and the number
of incorrectly activated neurons (false alarms), nt := x(t) · (1 − ξ t), where
1 = [1, . . . , 1]T and the symbol ‘·’ denotes the standard dot product.

Figure 1 shows sequence replay in cellular simulations for two different
pattern sizes (M = 800 and M = 1600). Sequence replay crucially depends
on the value of the firing threshold θ . In general, if the threshold is too
high, the network becomes silent after a few iterations. If the threshold is
too low, the whole network becomes activated within a few time steps.
Whether there exist values of θ at which a sequence can be fully replayed,
however, also critically depends on the pattern size M. At a small pattern
size of M = 800, there is no such firing threshold, whereas for a pattern size
M = 1600, there is a whole range of thresholds that allow replaying the full
sequence. So there is a conflict between the maximization of the capacity of
the network, which requires M to be small, and the dynamical stability of
replay, which becomes more robust for larger values of M (cf. section 7).

In section 5, we will derive a lower bound for the pattern size below
which replay is impossible, and we also determine the respective firing
threshold. In connection with equation 3.2, these results enable us to calcu-
late the maximum number of sequences that can be simultaneously stored in
a recurrent network such that all stored sequences can be replayed. These
calculations require a simultaneous optimization of pattern size M and
threshold θ . A numerical treatment as shown in Figure 1, however, is infea-
sible for much larger networks. Therefore, we first introduce a numerically
less costly approach.

4.2 Markovian Dynamics. Assessing the dynamics of large networks
of neurons by means of computer simulations is mainly constrained by
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Figure 1: Stability-capacity conflict. Sequence replay critically depends on both
the firing threshold θ and the pattern size M. In all graphs, we show the fraction
mt/M of hits (disks) at time step t and the fraction nt/(N − M) of false alarms
(crosses) during the replay of a nonminimal sequence of length Q = 20. The
network consists of N = 105 McCulloch-Pitts neurons with a mean connectivity
of activated synapses of c = 5%. The ratio of silent and activated synapses
is r = 1. (A) For a pattern size M = 800, full replay is impossible. For high
thresholds θ ≥ 64, the sequence dies out, whereas for low thresholds θ ≤ 63, the
network activity explodes. (B) For a pattern size of M = 1600, sequence replay
is possible for a broad range of thresholds θ between 114 and 133.

the amount of accessible memory. Simulations of a network of N = 105

cells with a connectivity of about c = 5%, as the ones shown in Figure 1,
require about 2 GB of computer memory. A doubling of neurons would
therefore result in 8 GB and is thus already close to the limit of these days’
conventional computing facilities. Networks with more than 106 cells that
need at least 200 GB are very inconvenient. It is therefore reasonable to
follow a different approach for investigating scaling laws of sequential
memory.

To be able to simulate pattern replay in large networks, we reduce the
dynamical degrees of freedom of the network to the two order parame-
ters defined in the previous section: the number mt of correctly activated
neurons (hits) and the number nt of incorrectly activated neurons (false
alarms) at time t (see also Figure 2A). Furthermore, we take advantage of
the fact that the network dynamics has only a one-step memory and thus
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Figure 2: Pattern size and connectivity matrix. (A) At some time t, the network
is assumed to be associated with a specific event ξ t = ξ A of size M. We therefore
divide the network of N neurons into two parts. The first part consists of the M
neurons that are supposed to be active if an event ξ t is perfectly represented. The
second part contains the N − M neurons that are supposed to be inactive. The
quantities mt (hits) and nt (false alarms) denote the number of active neurons
in the two groups at time t. (B) The number mt+1 of hits and the number nt+1

of false alarms with respect to pattern ξ t+1 = ξ B at time t + 1 are determined
by the state of the network at time t, x(t) = ξ A, and the connectivity matrix C .
The average number of synaptic connections between the four groups of cells
is described by the reduced connectivity matrix

(c11 c10
c01 c00

)
, which is defined in

section 4.2.1.

reduce the full network dynamics to a discrete probabilistic dynamics gov-
erned by a transition matrix T (Nowotny & Huerta, 2003; Gutfreund &
Mézard, 1988). The transition matrix is defined as the conditional proba-
bility T(mt+1, nt+1|mt, nt) that a network state (mt+1, nt+1) follows the state
(mt, nt). We note that due to this probabilistic interpretation, the dynamics
of (mt, nt) is stochastic, although single units behave deterministically. More
precisely, we derive a dynamics for the probability distribution of (mt, nt).
How to interpret expectation values with respect to this distribution is
specified next.

4.2.1 Reduced Connectivity Matrix. In the limit of a large pattern size
M, the connectivities c and cm can be interpreted as probabilities of having
synaptic connections—in other words, the probability that in the embedded
sequence ξ A → ξ B there is an activated synapse from a cell active in ξ A to a
cell active in ξ B is cm.

This probabilistic interpretation can be formalized by means of a reduc-
tion of the binary connectivity matrix C to four mean connectivities

(c11 c10
c01 c00

)
,

which are average values over all P minimal sequences stored (see also
Figure 2B). First, we define the mean connectivity c11 between neurons that
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are supposed to be active in cue patterns and those that are supposed to be
active in their corresponding targets,

c11 = 1
P

P∑
{A,B}

1
N2

N∑
k,k ′=1

ξ A
k Ckk ′ ξ B

k ′ . (4.1)

Here the sum over {A, B} is meant to be taken over the cue target pairs
of P different minimal sequences. By construction (see section 3), c11 is at
its maximum cm. Second, the connectivity c10 describes activated synapses
between cells that are active in cue patterns to cells that are supposed to be
inactive in target patterns. Similarly, the mean connectivity c01 describes ac-
tivated synapses from neurons that are supposed to be inactive in the cue to
those that should be active in the target pattern. Finally, c00 denotes the mean
connectivity between cells that are to be silent in both the cue and the target.
The four mean connectivities are summarized in the reduced connectivity
matrix

(c11 c10
c01 c00

)
(see also Figure 2B). The interpretation of the mean connec-

tivities as probabilities of having activated synaptic connections between
two neurons can be considered as the assumption of binomial statistics.
This assumption is a good approximation for Willshaw-type networks in
the limit N � M � 1 (Buckingham & Willshaw, 1992).

Cues and targets of minimal sequences are assumed to be linked as
tight as possible, which results in c11 = cm = c (1 + r ). The remaining three
entries of the reduced connectivity matrix follow from normalization con-
ditions: since every active neuron in a target pattern, for example, ξ B , re-
ceives, on average, c N activated synapses, and those synapses originate
from two different groups of neurons in a cue pattern, for example, ξ A, we
have c N = c11 M + c01(N − M). Similarly, every inactive neuron in the target
pattern receives, on average, c N = c10 M + c00(N − M) activated synapses.
As a consequence of recurrence, every neuron of a cue pattern projects,
on average, to c N postsynaptic neurons. From that we obtain two similar
conditions with c10 and c01 interchanged and thus c10 = c01.

All entries of the reduced connectivity matrix
(c11 c10

c01 c00

)
can therefore be

expressed in terms of the mean connectivity c, the ratio r of silent and
nonsilent connectivities, the pattern size M, and the network size N,

(
c11 c10

c01 c00

)
= c

(
1 + r 1 − r M

N−M

1 − r M
N−M 1 + r M2

(N−M)2

)
. (4.2)

The assumption of binary statistics together with the reduced connectivity
matrix enables us to specify the transition matrix T as it was defined at the
beginning of section 4.2.

Calculation of the capacity α for an arbitrary connectivity c11, that is, c <

c11 < cm, between cue and target patterns is somewhat more involved than
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in the case of section 3, where patterns were connected with the maximum
morphological connectivity c11 = cm. The scenario c < c11 < cm is outlined
in appendix B. For 1 � M � N, however, equation 3.3 with cm replaced by
c11 turns out to be an excellent approximation.

4.2.2 Transition Matrix. Due to statistical independence of the activation
of different postsynaptic neurons, the transition matrix can be separated,

T(mt+1, nt+1|mt, nt) = p(mt+1|mt, nt) q (nt+1|mt, nt), (4.3)

where p(mt+1|mt, nt) is the probability that at time t + 1 a number of mt+1

cells are correctly activated, and q (nt+1|mt, nt) is the probability of having
nt+1 cells incorrectly active, given mt and nt . Defining the binomial proba-
bility

b j,l (x) =
(

l
j

)
x j (1 − x)l− j , (4.4)

with 0 ≤ x ≤ 1, and 0 ≤ j ≤ l, we obtain

p(mt+1|mt, nt) = bmt+1,M(ρmtnt ) and q (nt+1|mt, nt) = bnt+1,N−M(λmtnt ),

(4.5)

with ρmtnt and λmtnt denoting the probabilities of correct (ρ) and incorrect
(λ) activation of a single cell, respectively. Both are specified by the reduced
connectivity matrix

(c11 c10
c01 c00

)
and the firing threshold θ ,

ρmtnt =
∑

j,k; j+k≥θ

b j,M

(mt

M
c11

)
bk,N−M

(
nt

N − M
c01

)
, (4.6)

λmtnt =
∑

j,k; j+k≥θ

b j,M

(mt

M
c10

)
bk,N−M

(
nt

N − M
c00

)
. (4.7)

Equations 4.6 and 4.7 can be understood as adding up the probabilities of
all combinations of the number j of hits and the number k of false alarms
that together cross the firing threshold θ .

The transition matrix T gives rise to probability distributions �t for the
number mt of hits and the number nt of false alarms. To be able to compare
the Markovian dynamics with the network dynamics obtained from cellular
simulations (see Figure 1), we calculate the expectation values 〈mt〉 and 〈nt〉
of hits and false alarms with respect to the probability distribution �t for
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t ≥ 1:

〈mt〉=
M∑

µ=1

N−M∑
ν=1

µ�t(µ, ν|m0, n0) (4.8)

〈nt〉=
M∑

µ=1

N−M∑
ν=1

ν �t(µ, ν|m0, n0), (4.9)

where

�t(mt, nt|m0, n0) =
∑

{(m1,n1)}
· · ·

∑
{(mt−1,nt−1)}

t∏
τ=1

T(mτ , nτ |mτ−1, nτ−1) (4.10)

is the probability of having mt hits and nt false alarms at some time t, given
that the network has been initialized with m0 = M hits and n0 = 0 false
alarms at time zero. Equation 4.10 can be derived from the recursive formula
�t(.|.) = ∑

{(.)} T(.|.) �t−1(.|.), and the sums in equation 4.10 are meant to be
over all pairs (mτ , nτ ) ∈ {0, . . . , M} ⊗ {0, . . . , N − M}, for 1 ≤ τ ≤ t − 1.

An increase in numerical efficiency is gained from the fact that sums
over binomial probabilities can be evaluated by means of the incomplete
beta function (Press, Flannery, Teukolsky, & Vetterling, 1992). Moreover,
numerical treatment of the Markovian dynamics can take advantage of the
separability of T = p q (see equation 4.3). But still, for large numbers of N,
computing and multiplying p and q in full is costly. We therefore reduced p
and q to at most 5000 interpolation points, where each of them is assigned
to the same portion of probability. The reduced vectors are then used to
calculate an iteration step t → t + 1. Numerical results provided are thus
estimates in the above sense and serve as approximations to the full Markov
dynamics.

Figure 3 shows a numerical evaluation of the Markovian dynamics for
the same parameter regime as used for the cellular simulations in Figure 1.
We observe a qualitative agreement between the two approaches but also
small differences regarding the upper and lower bounds for the set of
firing thresholds allowing stable sequence replay. A further comparison is
postponed to section 5.

4.3 Quality of Replay and Detection Criterion. In the examples shown
in Figures 1 and 3, the quality of sequence replay at a certain time step is
obvious because we typically have to distinguish among only three scenar-
ios: (1) all neurons are silent, (2) all neurons are active, and (3) a pattern is
properly represented. If, however, the network exhibits intermediate states,
one needs a quantitative measure of whether a particular sequence is ac-
tually replayed. For this purpose, we specify the quality 
 at which single



916 C. Leibold and R. Kempter

 0

 1

θ=65

m/M
n/(N-M)

 0

 1

θ=64

 0

 1

θ=63

 0

 1

θ=62

 0

 1

θ=61

 0

 1

 0  4  8  12  16  20

θ=60

Time step

R
el

at
iv

e 
ac

tiv
ity

 0

 1

θ=135

m/M
n/(N-M)

 0

 1

θ=134

 0

 1

θ=133

 0

 1

θ=121

 0

 1

θ=112

 0

 1

 0  4  8  12  16  20

θ=111

Time step

R
el

at
iv

e 
ac

tiv
ity

M=1600M=800A B

Figure 3: Stability-capacity conflict for Markovian network dynamics. The ex-
pected fraction of hits 〈mt〉/M (disks) and false alarms 〈nt〉/(N − M) (crosses)
are plotted as a function of time t after the network has been initialized with the
cue pattern at t = 0. The parameters N = 105, c = 5%, r = 1, and Q = 20 are the
same as in Figure 1. (A) For a pattern size M = 800, full replay is impossible. For
high firing thresholds θ ≥ 64, the sequence dies out, whereas for low thresholds
θ ≤ 63, the network activity explodes, which is identical to Figure 1 although
the time courses of hits and false alarms slightly differ. (B) For M = 1600, se-
quence replay is possible for thresholds 112 ≤ θ ≤ 133, whereas in Figure 1, we
have obtained 114 ≤ θ ≤ 133.

patterns ξ t are represented by the actual network state xt . We consider 
 to
be a function of the numbers mt and nt of hits and false alarms, respectively
(see section 4.2). The quality function


(mt, nt) := mt/M − nt/(N − M) (4.11)

is chosen such that a perfect representation of a pattern is indicated by

 = 1. Random activation of the network, on the other hand, yields |
| � 1
in the generic scenario 1 � M � N. The quality function weighs hits much
stronger than false alarms, similar to the so-called “normalized winner-
take-all” recall as introduced by Graham and Willshaw (1997) or Maravall
(1999). Equation 4.11 is physiologically inspired by a downstream neuron
receiving excitation from hits and inhibition from false alarms.
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We say a pattern to be replayed correctly at time t if the detection criterion


(mt, nt) ≥ γ ′ (4.12)

is satisfied where γ ′ denotes the threshold of detection.
A sequence of Q patterns is said to be replayed if the final target pattern

in the Qth time step is correctly represented: 
(mQ, nQ) ≥ γ ′. Here, we
implicitly assume that all the patterns of a sequence are represented at least
as proper as the last one.

Similar to equation 4.12, we specify a detection criterion for sequence
replay approximated by the Markovian dynamics,

〈
(mQ, nQ)〉 = 
(〈mQ〉, 〈nQ〉) ≥ γ, (4.13)

where the expectation values 〈mQ〉 and 〈nQ〉 are obtained from the Q-times
iterated transition matrix T Q for the initial condition (m0, n0) = (M, 0).

The criteria 4.12 and 4.13 are obviously different. For 1 � M � N, how-
ever, they are almost equivalent with γ ≈ γ ′ because the distribution of the
quality measure 
 is typically unimodal and sharply peaked with variance
below 1/(4 M) + 1/[4(N − M)]. Moreover, we will see in the next section
that the specific value of the detection threshold does not affect scaling
laws for sequential memory.

5 Scaling Laws for Minimal Sequences

The capacity α of sequential memory is proportional to M−2 (see equa-
tion 3.3). In order to maximize α, one therefore seeks a minimal pattern size
M at which the replay of sequences serves a given detection threshold γ .
In this section, we assess this minimal pattern size for minimal sequences
(Q = 1) and sparse patterns (1 � M � N). In particular, we explain why
the minimal pattern size is independent of the network size N.

In the case 1 � M � N, the reduced connectivity matrix in equation 4.2
can be approximated through

(c11 c10
c01 c00

) ≈ c
( 1 + r 1

1 1

)
; neurons that are active in

cue patterns are connected to neurons that should be active in target patterns
with probability cm = c(1 + r ). Otherwise, the connectivity is about c (see
Figure 2).

5.1 Hits and False Alarms in Pattern Recall. At some time t, only those
M neurons are supposed to be active that belong to the cue pattern ξ A.
We then require a particular minimal sequence ξ A → ξ B to be imprinted
such that at time t + 1 event ξ B is recalled. We have assumed that the num-
ber j of inputs to each of the M “on” neurons that should be active at time
t + 1 is binomially distributed with probability distribution b j,M(c + cs) (see
equation 4.4). In the same way, the input distribution for the N − M “off”
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Figure 4: Mean quality 〈
〉 of replay and threshold parameters κ+ and κ−.
(A) Probability density of the number of synaptic inputs for “off” units, which
are supposed to be inactive during the recall of a target pattern. The verti-
cal dashed line indicates the firing threshold θ . The gray area represents the
probability 〈n〉/(N − M) of having a false alarm. (B) Same as in A but for “on”
units, which are supposed to be active. The gray area represents the probability
〈m〉/(N − M) of having a hit. (C) For 1 � M � N, the binomial distributions in
A and B can be approximated by normal distributions. The probability of hits
minus that of false alarms equals the gray area under the normal distribution
between −κ− and κ+. From equation 5.3, we see that this area can also be inter-
preted as the mean quality 〈
〉 of replay. (D) Pattern size M as a function of κ+
for different replay qualities 〈
〉 at constant r = 1 and c = 0.01; see equations 5.1
and 5.4. The dashed line connects the minima of M.

cells that should be inactive at time t + 1 is b j,M(c). As a result, a neuron
that is supposed to be inactive receives, on average, input through cM
activated synapses with a standard deviation

√
c (1 − c)M. To avoid unin-

tended firing, we require a firing threshold θ that is somewhat larger than
cM. The larger the threshold, the more noise-induced firing due to fluc-
tuations in the number of synapses is suppressed. Let us take a threshold
θ = cM + κ+

√
c (1 − c) M where κ+ is a threshold parameter that deter-

mines the number of incorrectly activated neurons (Brunel et al., 2004),
called false alarms. For κ+ = 1, for example, we have nt+1 ≈ 0.16 (N − M)
false alarms (see Figure 4A). On the other hand, the threshold θ has to
be small enough so that a neuron that is supposed to be active during
event ξ B is indeed activated. Each of these neurons receives, on average,
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cm M inputs with standard deviation
√

cm(1 − cm)M. A recall of ξ B is there-
fore achieved by a threshold that is somewhat smaller than cm M, that
is, θ = cm M − κ−

√
cm(1 − cm) M where κ− is another threshold parameter

that determines the number of correctly activated neurons, called hits. For
κ− = 2, for example, we have mt+1 ≈ 0.98 M hits (see Figure 4B).

The firing threshold θ is assumed to be the same for all neurons. Hence,
combining the above two conditions, we find

cM + κ+
√

c M (1 − c) = cm M − κ−
√

cm M (1 − cm),

which then leads to expressions for the pattern size

M = 1
c

(
κ+

√
1 − c + κ−

√
[r + 1][1 − c (1 + r )]
r

)2

(5.1)

and the firing threshold

θ = cM + κ+
√

c (1 − c) M. (5.2)

The pattern size M in equation 5.1 is independent of the network size N
and scales like c−1 for small values of c. Moreover, the firing threshold θ in
equation 5.2 is independent of the network size N. For small mean connec-
tivities c, the firing threshold θ is also independent of c. We emphasize that
the validity of these scaling laws requires an almost perfect initialization of
the cue pattern.

5.2 Optimal Pattern Size and Optimal Firing Threshold. We now
argue that the firing threshold parameters κ+ and κ− in equation 5.1
can be chosen such that M is minimal and, hence, the storage capac-
ity is maximal. As indicated by the gray areas of the binomial distri-
butions in Figures 4A and 4B, κ+ and κ− determine the mean numbers
of false alarms 〈n〉 and hits 〈m〉, respectively. For 1 � M � N, these bi-
nomial distributions are well approximated by gaussians, and we have
〈n〉/(N − M) = [1 − erf(κ+/

√
2)]/2 and 〈m〉/M = [erf(κ−/

√
2) + 1]/2, where

the error function erf(x) := 2/
√

π
∫ x

0 dt exp(−t2) is the cumulative distribu-
tion of a gaussian. These approximations yield

〈
(m, n)〉 = [erf(κ−/
√

2) + erf(κ+/
√

2)]/2, (5.3)

which can be interpreted as the area under a normal distribution between
−κ− and +κ+ (see Figure 4C).

From equation 5.3, we see that for a given mean quality 〈
〉 of replay,
the threshold parameters κ+ and κ− are not independent. More precisely,
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for some given detection criterion γ = 〈
〉 and κ+ >
√

2 erf−1(2γ − 1), equa-
tion 5.3 yields

κ− =
√

2 erf−1[2γ − erf(κ+/
√

2)]. (5.4)

For fixed 〈
〉 = γ one therefore can choose κ+ in equation 5.1 such that the
pattern size M becomes minimal. At this minimal pattern size, the capacity α

in equation 3.3 reaches its maximum, and encoding of events is as sparse as
possible. Let us therefore call this minimum value of M the optimal pattern
size Mopt for sequential memory. The dashed line in Figure 4D indicates
that Mopt := minκ+ M is located at values κ+ � 1. We also observe that the
larger the detection threshold γ , the larger is Mopt.

From equation 5.1, we find that for small connectivities c � 1, as they
occur in biological networks, the minimum pattern size Mopt can be phrased
as

Mopt = 1
c

[M(r, γ ) + O(c)], (5.5)

where M(r, γ ) is a function of r and γ that has to be obtained by nu-
merical minimization. Here, the order function O(ck) is defined through
limc→0 c−k O(ck) = const. for k > 0. At values r = 1 and γ = 0.7, for exam-
ple, we have M = 6.1 � c corroborating the scaling law Mopt ∝ c−1.

For an optimal pattern size Mopt, we can find the optimal firing threshold
θ opt from equation 5.2. In first approximation, θ opt is independent of the
connectivity c and the network size N, but depends on r and γ ,

θ opt = T (r, γ ) + O(c). (5.6)

For example, r = 1 and γ = 0.7 account for θ opt ≈ 9.1 � c.
The dependencies of Mopt and θ opt on the connectivity c are indicated

in Figure 5 through solid lines. Both Mopt and θ opt increase with increasing
detection threshold γ . These mean field results match numerical simula-
tions well: in cellular network simulations (open circles in Figure 5), Mopt

and θopt were determined as the minimal M and the corresponding θ that
account for replay at a fixed detection threshold γ = 0.5. The numerical
evaluation of the Markovian network dynamics as defined in section 4.2
(filled symbols in Figure 5) confirms the analytical results for a wider range
of c and γ .
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Figure 5: Optimal pattern size Mopt and optimal firing threshold θ opt. Lines
depict results from the mean field theory (equations 5.5 and 5.6). We also show
numerical simulations (c.s.) of the network introduced in section 4.1 (empty
circles, γ = 0.5) and Markovian dynamics defined in section 4.2 (filled symbols,
γ = 0.5, 0.7, 0.8, 0.9). (A) For small connectivities c, the optimal pattern size
Mopt scales like c−1 and increases with increasing γ . (B) The optimal threshold
θ opt is almost independent of the connectivity c for c � 10%, and θ opt increases
with increasing γ . Further parameters: sequence length Q = 1, network size N =
250 000, plasticity resources r = 1. For the Markovian dynamics, we used Brent’s
method (Press et al., 1992) to numerically find a firing threshold θ as a root
of the implicit equation 〈mQ〉/M − 〈nQ〉/(N − M) = γ , which is the detection
criterion. By subsequently reducing M, we end up with a minimal value Mopt

for which the detection criterion 〈
〉 = γ can be fulfilled. The threshold root
that is obtained at Mopt is called θ opt.

The lower bound Mopt for the pattern size in equation 5.5 enables us
to determine an upper bound for the capacity α of sequential memory.
Combining equations 3.3 and 5.5, we find

α = c N
1

(1 + r )2 M(r, γ )2 + O(c2). (5.7)

We note that α is linear in the connectivity c and the network size N, de-
creases with increasing γ and has a nontrivial dependency on the plasticity
resources r that will be evaluated below. This scaling law for minimal se-
quences can now be used to study the storage of sequences in biologically
feasible networks that face certain constraints.

6 Constrained Sequence Capacity

Biological and computational networks generally face certain constraints.
Those constraints can lead to limiting values and interdependencies of the
network parameters c, N, and r . Some constraints and their implications on
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the optimization of the capacity α of sequential memory in equation 5.7 are
discussed in this section.

6.1 Limited Number of Synapses per Neuron. A biological neuron
may have a limited number c N of synapses. If c N is constant, we find from
equation 5.7 (for constant r and γ )

α = const. and P = const.

Increasing the capacity α therefore cannot be achieved by increasing N.
Numerical results in Figure 6A (symbols) confirm this behavior for c � 1.
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Figure 6: Influence of constraints on the optimal pattern size Mopt and the
capacity α of sequential memory. (A) Synapses-per-neuron constraint. For a
fixed number cN of synapses per neuron, we find Mopt ∝ N and α = const. as
N → ∞. The capacity α increases with increasing cN. Tilted solid lines connect
symbols that refer to constant connectivities, for example, c = 0.01, 0.1, 0.25, 0.5.
(B) Synapses-per-network constraint. For a fixed number cN2 of synapses in the
network, we find Mopt ∝ N2 and α ∝ N−1 as N → ∞. The capacity α increases
with increasing cN2. For both constraints, cN = const. and cN2 = const., there is
an optimal network size at which the capacity α reaches its maximum. For r = 1
this maximum occurs at c ≈ 0.5. A further increase in c is impossible since the
morphological connectivity cm = c (1 + r ) cannot exceed 1. Other parameters
are Q = 1 and γ = 0.7. Dotted lines link symbols and are not obtained by mean
field theory.
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For r = 1, the capacity α reaches its maximum at c ≈ 0.5, where we have
cm = c (1 + r ) = 1, and the network can be considered an undiluted Will-
shaw one. For c → 0.5, the scaling law α = const. (solid line) underestimates
the storage capacity because the O(c2) term in the mean field equation 5.7
has been neglected.

In biologically relevant networks, we typically have c � 1, and thus, for
c N = const., we face the scaling law P = α (1 + r ) c N = const. Therefore,
the number c N of synapses a single neuron can support fully determines
the network’s computational power for replaying sequences in the sense
that adding more neurons to the network does not increase α or P .

In the CA3 region of the rat hippocampus, for example, we have cm N ≈
12,000 recurrent synapses at each pyramidal cell (see Urban, Henze, &
Barrionuevo, 2001, for a review). The network size of CA3 is N ≈ 2.4 · 105

(Rapp & Gallagher, 1996). From these numbers, r = 1 and c N = const., we
derive the connectivity c ≈ 0.025. A comparison of these numbers with
Figure 6A leads to estimates for the minimal pattern size being in the
order of Mopt ≈ 200 cells, a storage capacity of α ≈ 15 minimal sequences
per synapse at a neuron, and P ≈ 1.8 · 105 minimal sequences per CA3
network. The saturation of α and P at about N = 105 for c N = 6,000 (see
Figure 6A) may explain why the CA3 region has relatively few neurons
(N � 106 in humans) despite its seminal importance for episodic memory.

6.2 Limited Number of Synapses in the Network. Numerical simula-
tions of artificial networks are constrained by the available computer mem-
ory, which limits the number c N2 of activated synapses in the network. For
c N2 = const. we find from equation 5.7 (for constant r and γ )

α ∝ N−1 and P ∝ N−2.

Therefore an increase in both α and P can be achieved only by reducing
the network size N at the expense of increasing the connectivity c. Nu-
merical results in Figure 6B confirm this behavior for c � 1. The capacity
α increases with increasing c and, for r = 1, assumes its maximum at the
upper bound c = 0.5 when cm = 1. For c → 0.5, the scaling law α ∝ N−1

(solid line) underestimates the storage capacity, similar to Figure 6A.
We conclude that computer simulations of neural networks with con-

stant c N2 perform worse in storing sequences the more the connectivity
resembles the biologically realistic scenario c � 1.

6.3 On the Ratio of Silent and Activated Synapses. In the previous two
sections, we have assumed a constant ratio r between the connectivity cs

through silent synapses and the connectivity c through nonsilent synapses.
The specific choice r = 1 was motivated by neurophysiological estimates
from Nusser et al. (1998) and Montgomery et al. (2001). We now focus on
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Figure 7: Dependence of sequence replay on the resources r of synaptic plas-
ticity for a constant total number (c + cs)N of synapses per neuron. Mean field
theory (solid lines) explains numerical results obtained from the Markovian
dynamics (symbols) well as long as r < 10 and θ opt � 4. Below θ opt � 4, the
discreteness of θopt limits the validity of the mean field theory. (A) The opti-
mal pattern size Mopt (top) decreases with increasing r and saturates at values
(c + cs)Mopt = 1 (symbols). As a result, the capacity α (bottom) increases with r
until Mopt has reached its lower bound, and α exhibits a maximum. A further
increase in r reduces c but leaves Mopt constant and thus leads to a decrease of
α (see equations 3.2 and 3.3). (B) The optimal firing threshold θ opt decreases
with increasing r to its lower bound 1 (symbols). The weak dependence of θ opt

on cm = c + cs is indicated by the gray lines. Further parameters for A and B:
N = 250,000, γ = 0.7, Q = 1.

how the storage capacity α depends on this ratio r assuming that the total
number cm N of morphological synapses per neuron is constant. Because
of cm = c(1 + r ), an increase in r increases cs but reduces c. We note that
this constraint is equivalent to a fixed number c N of activated synapses per
neuron for constant r , a scenario evaluated in section 6.1.

For constant (c + cs)N, numerical results in Figure 7A (symbols) show
that the capacity α exhibits a maximum as a function of r . The maximum
capacity occurs at a pattern size at which (c + cs)Mopt = c11 Mopt = 1, that
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is, the association from a cue pattern to an “on” neuron of a target pattern
is supported by a single spike, on average. For larger r , the optimal firing
threshold θ opt remains at its minimum value of one (see Figure 7B). An
increase of r beyond its optimum reduces c but leaves Mopt constant and
thus leads to a decrease of α (see equations 3.2 and 3.3).

Values of r larger than 1 are thus beneficial for good memory
performance—in our case, the storage capacities α. Similarly, Brunel et al.
(2004) find a high ratio r to be necessary for increasing the signal-to-noise
ratio of readout from a perceptron-like structure. These findings raise the
question why values of r found in some experiments (Nusser et al., 1998;
Montgomery et al., 2001) are in the range r � 1. We suppose that the specific
value of r is due to the interplay between the recurrence in the hippocampus
and the locality of synaptic learning rule (see section 9). In contrast, Isope
and Barbour (2002) report r ≈ 4 at the cerebellar parallel fibers, which,
locally, is a feedforward system.

6.4 Scale-Invariance of Sequential Memory. Given the scaling laws
α ∝ c N of the storage capacity in equation 5.7, we can ask how the con-
nectivity in a brain region should be set up in order to have scale-invariant
sequential memory, which means

P ∝ N.

From P = αcm N ∝ c2 N2 (see equation 5.7) we then find c ∝ N−1/2 or, equiv-
alently, that the total number c N2 of synapses in the network is proportional
to N3/2. Surprisingly, the latter result is in agreement with findings from
Stevens (2001; personal communication, 2005) in visual cortex and other
brain areas. Thus, a N3/2-law for the number of synapses can generate a
scalable architecture for associative memory.

To summarize this section, constraints have seminal influence on the
scaling laws of the capacity of sequential memory, and different constraints
lead to fundamentally different strategies for optimizing the performance
of networks for replaying sequences.

7 Nonminimal Sequences

In addition to constraints on intrinsic features of the network like a small
connectivity or a limited number of synapses, there are also constraints that
may be imposed on a sequence memory device from outside, for example,
a fixed detection threshold γ and a nonminimal sequence length Q.

7.1 Finite Sequences (Q > 1). To determine the capacity α for nonmin-
imal sequences Q > 1 in dependence on the network size N, we apply the
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Markovian approximation as introduced in section 4.2. As in the case Q = 1,
replay of sequences is initialized with an ideal representation of the cue pat-
tern, (mt, nt) = (M, 0) for t = 0. Patterns that occur later in the sequence at
t ≥ 1, however, are not represented in an ideal way; typically, there is a
finite number of false alarms nt , and the number of hits mt is generally
below M (see also Figure 3). The recall of patterns amid a sequence there-
fore depends on noisy cues. As a consequence, for Q > 1, we expect that
the dependence of the optimal pattern size Mopt and the optimal threshold
θ opt on the network size N are different as compared to the case Q = 1.

Assuming a constrained number of synapses per neuron (c N = const.),
we nevertheless find that for Q > 1 the dependence of the optimal pattern
size Mopt on N is almost linear for large N (see Figure 8A). Accordingly,
the capacity α is nearly independent of N (see Figure 8B). Moreover, the
optimal firing threshold θ opt is almost constant for large N (see Figure 8C).
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Figure 8: Optimal event size Mopt, capacity α and optimal firing threshold
θ opt for nonminimal sequences in networks with a constrained number cm N =
10,000 of synapses per neuron. (A) The optimal pattern size Mopt increases half
a magnitude between Q = 1 and Q = 4 (three bottom lines) and saturates for
Q ≥ 8 (three top-most lines). (B) The capacity α is almost constant for large N
and decreases with increasing Q. (C) The optimal firing threshold θ opt reflects
the dependencies of the optimal pattern size Mopt. Numerical results (symbols)
are obtained for γ = 0.7 and r = 1. Graphs for Q → ∞ (lines) are obtained from
the mean field equation 7.1.



Capacity for Sequences Under Biological Constraints 927

These results for Q > 1 resemble the ones for Q = 1 shown in Figure 6,
some of which are also indicated by disks in Figure 8. One reason for this
correspondence is that patterns within a sequence are typically replayed at
a high quality (see Figures 1 and 3).

Figure 8B also shows that α is a decreasing function of Q. We note
that α still refers to the number of minimal sequences. Then the maximum
number of stored sequences of length Q is the Qth fraction of P = α(1 +
r ) c N. Compared to Q = 1, the storage capacity α drops about an order of
magnitude for Q = 2, 4 and soon, at Q � 8, arrives at a baseline value for
Q → ∞ (solid line) that was obtained from a mean field approximation to
be explained below.

We thus conclude that nonminimal sequences impose no fundamental
limit to the memory capacity for sequences. However, due to discrete time,
our model cannot comprise temporal dispersion of synchronous firing,
which may limit the replay of long sequences in biological networks (Dies-
mann et al., 1999).

7.2 Infinite Sequences (Q → ∞). A beneficial consequence of the weak
dependence of the capacity α on the sequence length for Q � 8 is that se-
quential memory for large Q can be more easily discussed in the framework
Q → ∞. Such a discussion requires finding the fixed-point distributions of
the transition matrix T defined in equation 4.3. Assuming that the fixed-
point distributions for hits m and false alarms n are unimodal and given the
case N � 1, we can reduce the problem of finding fixed-point distributions
of m and n to the much simpler problem of finding fixed points of the mean
values 〈m〉 and 〈n〉. Let us therefore introduce the iterated map,

(〈mt+1〉
〈nt+1〉

)
= T〈·〉

(〈mt〉
〈nt〉

)
, (7.1)

for the mean values of the order parameters. To specify the map T〈·〉 in
accordance with the Markovian dynamics introduced in section 4.2, we
define the mean synaptic inputs to “on” and “off” units,

µon = c11〈m〉 + c01 〈n〉 and µoff = c10〈m〉 + c00 〈n〉,

respectively, as well as the variances,

σ 2
on = c11〈m〉(1 − c11〈m〉/M) + c01〈n〉 [1 − c01〈n〉/(N − M)]

σ 2
off = c10〈m〉 (1 − c10〈m〉/M) + c00〈n〉 [1 − c00〈n〉/(N − M)] ,
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which are determined by the reduced connectivity matrix
(c11 c10

c01 c00

)
from equa-

tion 4.2. A gaussian approximation to binomial statistics then yields

T〈·〉

(〈m〉
〈n〉

)
= 1

2


 M

{
1 + erf

[
(µon − θ )/

√
2 σ 2

on

]}
(N − M)

{
1 + erf

[
(µoff − θ )/

√
2 σ 2

off

]}

 . (7.2)

Numerical iteration of equation 7.1 results in the fixed points (〈m〉∗, 〈n〉∗) of
the mean field dynamics and their basins of attraction (see Figure 9A). The
iterated map has two trivial fixed points that are largely independent of the
choice of firing threshold θ and pattern size M. These trivial fixed points
represent complete activation of the network, on the one hand, and no
activity at all, on the other hand. Shape and size of their basins of attraction
(black and white areas in Figure 9A), however, are modulated by the specific
values of M and θ . We also observe a third type of fixed point comprising
a large number of hits and a small number of false alarms; numerics shows
that we always find 〈
〉 � 1 at this fixed point of infinite sequence replay.
Its basin of attraction is plotted in gray and extends over a small interval of
false alarm rates; note the logarithmic scale on the ordinates in Figure 9A.

In Figure 9A we see that the smaller the pattern size, the narrower is the
range of thresholds allowing an infinite sequence replay. For a large enough
pattern size, the range of possible thresholds is broad (see also Figures 1
and 3). The region in the (M, θ ) space where infinite sequence replay can
occur is summarized in Figure 9B. The wedge-shaped stability regions are
not much affected by N but strongly depend on c.

The borders of such a stability region in Figure 9B can be described by
upper and lower bounds for the thresholds, θupper and θ lower, that can be
approximated through linear functions of the pattern size M. The upper
bound θupper is interpreted as an iso-〈
〉 line that separates the region of
a completely deactivated state with fixed point 〈m〉∗ = 〈n〉∗ = 0 from the
region of stable sequence replay where 〈m〉∗ = M 〈
〉 and 〈n〉∗ � M. From
the first line of equation 7.1, we then obtain

θupper ≈ c11 M 〈
〉 − erf−1(2〈
〉 − 1)O(
√

θupper).

Thus, for large M, the bound θupper is an almost linear function of the pattern
size with a slope c11〈
〉 ≈ c11. Similarly, from the second line of equation 7.1,
we obtain the boundary θ lower between the region where 〈m〉∗ = M and
〈n〉∗ � N and the region of a completely activated state 〈m〉∗/M = 〈n〉∗/(N −
M) = 1,

θ lower ≈ c10 M + c10 N (1 − 〈
〉) + erf−1(2〈
〉 − 1)O(
√

θ lower).
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Figure 9: Fixed points of infinite sequence replay. (A) Basins of attraction of
the mean field dynamics in equation 7.1 depend on pattern size M and fir-
ing threshold θ . The discrete dynamics of mean hit rates 〈m〉/M and mean
false alarm rates 〈n〉/(N − M) exhibits two trivial fixed points. The first is a
completely deactivated state, 〈m〉∗ = 〈n〉∗ = 0, with basins of attraction repre-
sented by a white area. The second fixed point represents maximal activation,
〈m〉∗/M = 〈n〉∗/(N − M) = 1, with basins of attraction painted black. For a few
pairs of (M, θ ), we also observe nontrivial fixed points (black dots) correspond-
ing to sequence replay. Their basins of attraction are depicted by gray areas.
Parameters (N = 105, c = 0.05, r = 1) are the same as in Figures 1 and 3. (B) Re-
gions of stable sequence replay in the (M, θ ) space are plotted in gray; connectiv-
ities are c = 0.05, 0.1, 0.2, and network sizes are N = 105, 106, 107 for r = 1. The
slopes of the upper and lower borders of these stability regions approximately
equal the connectivities c11 and c10, respectively.
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The slope of θ lower is about c10, which for r = 1 is about half the slope of
θupper. These predicted slopes agree with numerical results in Figure 9B.
The size of the region of infinite sequence replay is therefore proportional
to c11 − c10 ∝ r . The larger the ratio r between silent and nonsilent synapses,
the larger are the stability regions and, hence, the more robust is sequence
replay.

We emphasize that the above expressions for θupper and θ lower are rough
estimates that correspond to large pattern sizes M at which the distributions
of synaptic inputs to “off” and “on” units do not overlap too much (see
Figures 4A and B). Moreover, the optimal parameters Mopt and θ opt at the
tip of a stability region cannot be determined explicitly because we cannot
assess the exact value of 〈
〉 analytically.

The mean field results in Figure 9A are largely consistent with the cellular
simulations in Figure 1, but there are also important differences. Cellular
simulations have been obtained for finite sequences Q = 20 whereas mean
field results are valid for Q → ∞. Further discrepancies at the edges of
the stability regions also occur because random fluctuations in cellular
simulations can kick the network into complete activation or deactivation.
The edges of the wedge-shaped regions in Figure 9B therefore describe the
behavior of cellular networks only approximately.

To summarize, the higher the capacity, the less robust is sequence replay
against variations of the parameters M and θ . The wedge-shaped structures
of the stability regions in Figure 9B indicate that the maximal sequence
capacity and, hence, minimal M go along with a critical dependence of
stability on the firing threshold. In the limit of M → Mopt, the network lives
on the edge of dynamical (in)stability.

8 Information Content for N → ∞

The detection criterion we have proposed in section 4.3 permits a limited
amount of errors. It is intuitively clear that these retrieval errors allow an
increase of the storage capacity α as compared to an errorless case. However,
the more errors occur, the more deteriorated is the representation of each of
the patterns during replay. The common way of measuring the balance of
these two opposing effects of retrieval errors is to calculate the information
content I . The latter can be understood as the logarithm of the number of
all possible ways of concurrently storing a number of P of associations or,
more precisely (Nadal & Toulouse, 1990),

I = lg2

{(
N

m + n

)/ [(
M
m

)(
N − M

n

)]}P

. (8.1)

Here,
( N

m+n

)
/[

(M
m

)(N−M
n

)
] is the number of patterns of size M that can be

represented in a network of size N, given the hits m and false alarms
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n. We note that the number P of associations between patterns depends
on the performance of the readout device, and so does the information
content.

The information content is often calculated as a function of the so-called
coding ratio f = M/N, which is interpreted as a firing rate. In biological-
relevant networks, the firing rate is low ( f → 0) while they are required
to be operable in the limit N → ∞. This asymptotic behavior of networks
is extensively discussed in the literature (e.g., Willshaw et al., 1969; Gard-
ner, 1987; Golomb et al., 1990). In what follows we will show that in our
framework, we also have limN→∞ f = 0. In this limit, we will assess the
information content I for Q = 1 and Q → ∞.

From equation 8.1, we derive an approximation of I for f → 0 given that
the number n of false alarms is considerably smaller than the pattern size M,
as it is motivated in section 7.2. For a fixed fraction η := m/M � 1 of hits we
can approximate I by evaluating equation 8.1 with n = 0. Then, applying
Stirling’s formula and introducing the mixing entropy s(x) = −x lg2 x −
(1 − x) lg2(1 − x), we obtain

I/(cm N2) = α f [η| lg2 η f | − s(η)]. (8.2)

From equation 3.3 we know that the storage capacity α scales like N/M2

and, thus, I/N 2 ∝ | ln M/N|/M. As a corollary, this shows that minimizing
M not only maximizes α but also I .

In case Q = 1, a combined optimization of θ and M leads to Mopt being
independent of network size N (see section 5). As a result, we obtain f ∝
1/N. Accordingly, the information content per synapse I/(cm N2) ∝ ln N
increases with network size N.

In order to also obtain the asymptotic behavior of I in the case of large
sequence length, we have assessed the optimal pattern size Mopt for Q → ∞
as a function of network size N for a fixed connectivity c, that is, without
any constraint (see Figure 10). Numerics reveals a sublogarithmic behavior,
Mopt(N) ∝ (ln N)0.82; the coding ratio f ∝ (ln N)0.82/N also falls below every
bound as N → ∞, that is, coding becomes arbitrarily sparse. Together with
equation 3.3, the unconstrained storage capacity diverges like

α ∝ N/(ln N)1.64.

From equation 8.2, we thus find for N → ∞ the information content per
synapse to increase sublogarithmically:

I/N2 ∝ (ln N)−0.18.

The information content per synapse diverges for N → ∞, though very
slowly. In fact, I/N2 grows so slowly that in the range of biologically
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Figure 10: The dependency of the optimal pattern size Mopt on the network size
N is weak in the case of sequence length Q → ∞; note the logarithmic scale on
the abscissa. The connectivity c is fixed, that is, no constraint is imposed (crosses:
c = 0.1, circles: c = 0.2). The symbols represent optimal pattern sizes obtained
from numerical solution of the fixed-point equation (〈m〉∗, 〈n〉∗) = T〈·〉(〈m〉∗, 〈n〉∗)
(see equation 7.1). The solid line illustrates the asymptotic behavior Mopt ∝
(ln N)0.82 found from linear regression.

reasonable network sizes 103 < N < 107, the information content per
synapse varies only by a factor of (7/3)0.18 ≈ 1.2.

To summarize, combined optimization of M and θ provides an efficient
algorithm to set up a sequential memory network for a broad range of
network sizes. However, combining the results from sections 6 and 7 for
biologically relevant parameter regimes, one obtains information contents
I = |lg2 f α f cm N2 that are far below the theoretical maximum cm N2 of one
bit per synapse.

9 Discussion

This article combines analytical and numerical methods to assess the ca-
pacity for storing sequences of activity patterns in a recurrent network of
McCulloch-Pitts units. Results from mean field theory are validated through
simulations of cellular networks and a probabilistic dynamical description.
Our approach is new in that we concurrently optimize the pattern size M
and the firing threshold θ in order to maximize the storage capacity α.
Within this framework, we derive the capacity α in dependence on five sys-
tem parameters: network size N, mean connectivity c, synaptic plasticity
resources r , sequence length Q, and detection threshold γ .

The storage capacity of a network crucially depends on the criterion
for pattern detection. One typically requires that the quality of replay of
patterns exceeds some detection threshold γ (see equations 4.12 and 4.13).
Our retrieval criterion with γ < 1, which allows errors in the replay of
patterns, is fundamentally different from the error-free criterion γ → 1 in
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the classical Willshaw et al. (1969) network where the storage capacity is
subject to Gardner’s bound (Gardner, 1987). In the original Willshaw model,
as well as in our approach for minimal sequences (Q = 1), the network
is initialized with a perfect representation of the cue pattern, m0 = M and
n0 = 0. The Willshaw model, however, requires a perfect retrieval of a target
pattern in that the number of hits is maximal, m1 = M, and that there is less
than one false alarm on average, 〈n1〉 < 1; furthermore, the firing threshold
θ is set to the pattern size M. Then, binomial statistics yields the well-known
logarithmic scaling laws for the optimal pattern size Mopt ∝ log N and the
capacity αWillshaw ∝ N/ log2 N (Willshaw et al., 1969; Gardner, 1987; see also
equation 3.3). In terms of the coding ratio f = Mopt/N, they find αWillshaw ∝
1/( f | ln f |) for N → ∞. In contrast, in this article, we optimize both the
firing threshold θ and the pattern size M, and we use a readout criterion
that permits errors. Thus, the storage capacity α ∝ 1/ f (see equation 5.7)
diverges faster than αWillshaw.

An error-full representation of patterns is in agreement with the situa-
tion in the brain, for example, in the hippocampal CA3 network. There, the
recurrently connected pyramidal cells also have feedforward connections
to the pyramidal cells in CA1 via highly plastic synapses. It is generally
assumed (Hasselmo, 1999) that these synapses are to be adjusted by CA3
activity and local learning rules; that is, CA1 can learn replayed patterns.
Readout in CA1 may therefore be successful even if the absolute number
of false alarms in CA3 exceeds the number of hits. The detection criterion
in equation 4.13 can be motivated by such downstream neurons that re-
ceive excitation from the correctly activated neurons and inhibition from
the incorrectly activated ones (e.g., via a globally coupled network of in-
terneurons).

For sequence length Q = 1, the concurrent optimization of M and θ leads
to scaling laws for the replay of minimal sequences for biologically relevant
connectivities c � 1: the optimal pattern size is inversely proportional to
the mean connectivity, Mopt ∝ c−1, and the optimal firing threshold θopt

is independent of c. Both θ opt and Mopt are independent of the network
size N. The above dependencies finally lead to the capacity of sequential
memory that scales like α ∝ c N (see equation 5.7). Moreover, the number
of associations that can be stored scales like P ∝ c2 N2.

A main conclusion from the scaling laws α ∝ c N and P ∝ c2 N2 is that
for a constrained number of synapses per cell (synapses-per-neuron con-
straint, c N = const.), the capacity α and the number P are constant, that
is, independent of the network size N (see Figures 6 and 8). This means
that it is impossible to increase the computational power of the network by
increasing N. One could argue, however, that taking two independent net-
works doubles P and therefore would account for a performance increase
that is linear in N. The drawback of this strategy is that then each pattern
can be connected to only half of the other patterns, which are those located
in the same network module.
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A technically relevant constraint (e.g., in a computer simulation)
is a constant total number of synapses in the network (synapses-per-
network constraint, c N2 = const.). From above scaling laws, we conclude
that α and P necessarily decrease with increasing network size (see
Figure 6B).

One can also ask whether there is a scaling law for the connectivity that
accounts for scale-invariant storage, that is, P ∝ N (see section 6.3). In so
doing, we find scale invariance for c ∝ 1/

√
N. As a result, the total number

of synapses then is proportional to N3/2, which is in line with results by
Stevens (2001; personal communication, 2005).

For the synapses-per-neuron constraint, there is an optimal value for
the ratio r between silent and nonsilent synapses. For generic parameter
regimes, this optimal value is rather large (r ≈ 10; see Figure 7). However,
α exhibits a broad maximum as a function of r , and therefore the exact
value of r is not critical for sequential memory. If one considers the network
connectivity to be determined by local Hebbian learning rules, such as Spike
timing dependent synaptic plasticity, ratios r that strongly deviate from 1
are implausible, since synaptic LTP at a specific pair of pre- and postsynaptic
neurons can be compensated for locally only by LTD of another synapse
at the very same pair of neurons (Gerstner, Kempter, van Hemmen, &
Wagner, 1996; Bi & Poo, 1998; Kempter, Gerstner, & van Hemmen, 1999).
One thus can argue that the functional benefit of a very high amount of
plastic resources may no longer justify the expenses of nonlocal signaling
in synaptic plasticity. In short, ratios r ≈ 1 may be sufficient for an excellent
performance of sequential memory.

This article also shows that for long sequences (e.g., Q > 8), memory
capacity becomes virtually independent of Q (see Figure 8). For large Q,
however, the optimal pattern size is necessarily such that the network is
close to dynamical instability (see Figure 9). Yet from the point of view of
maximizing storage capacity α, the strategy of avoiding dynamical instabil-
ities by increasing pattern size M is problematic, since α is proportional to
M−2 (see equation 3.3). In order to approach the maximal storage capacity
without the danger of complete activation or silencing of the network, one
rather might introduce an activity-dependent stabilization mechanism that
provides a negative feedback after a certain number of time steps. A biologi-
cal realization that is at hand is a network of inhibitory interneurons (Bragin
et al., 1995; Battaglia & Treves, 1998; Traub et al., 2000; Csicsvari, Jamieson,
Wise, & Buzsaki, 2003). This of course may come at the cost of limiting
sequence length Q or reducing the detection threshold γ .

Our results for large sequence lengths Q are not immediately applicable
to synfire chains (Abeles, 1991; Herrmann et al., 1995; Diesmann et al., 1999).
The chief difficulty in translating our model into a more realistic network
with continuous dynamics is to preserve the temporal separation between
distinct patterns. The functional constraint of minimal sequence lengths is
thus more likely a constraint on the temporal precision of network dynamics
than on counting statistics. We speculate that for biological networks, spike
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desynchronization restricts the applicability of our results to small values
of Q.

The framework here is limited to orthogonal sequences; a particular
pattern is not allowed to occur presynaptically in more than one minimal
sequence. Nonorthogonal or loop-like sequential memories can be taken
into account by, for example generalizing the framework to neurons with
more than one-step memory (Dehaene, Changeux, & Nadal, 1987; Guyon,
Personnaz, Nadal, & Dreyfus, 1988) or adding “internal patterns” that rep-
resent repetitions (Amit, 1988) or context (Levy, 1996).

A possible neurophysiological application of our theory can be found in
the hippocampus. During slow-wave sleep, low levels of the neuromodu-
lator acetylcholine boost the impact of the excitatory feedback connections
within CA3 (see Hasselmo, 1999, for a review). Slow-wave sleep goes along
with a phenomenon called sharp-wave ripples, which is speculated to be a
result of the replay of short sequences (Draguhn, Traub, Bibbig, & Schmitz,
2000; Csicsvari et al., 2000). A sharp-wave ripple burst is a pulselike incident
of the local field potential in CA3 that is accompanied by 200 Hz oscillations.
The latter are supposed to be generated by CA3 pyramidal cells (Behrens,
van den Boom, de Hoz, Friedman, & Heinemann, 2005) and may reflect
sequence replay (Wilson & McNaughton, 1994; Nádasdy et al., 1999; Lee &
Wilson, 2002) occurring in timeslices of about 5 ms. The total duration of
ripples of about 40 ms limits the number of putative events in a sequence to
fewer than about eight. The temporal extent of a sharp wave may be con-
trolled by inhibition (Maier, Nimmrich, & Draguhn, 2003), which would
hint at dynamical stabilization of the network activity at a high level of
storage capacity (see above).

In Figure 8 we plotted the coding ratio f = Mopt/N and storage capacity
α as a function of network size for various sequence lengths. If we apply
these results to the situation in the hippocampal CA3 region of rats and
a sequence length of Q = 8, we find for a network size of N = 240,000
a synapses-per-neuron constraint of cm N = 10,000 synapses per cell and
plasticity resources r = 1, the optimal pattern size to be about 1500 cells. As
a consequence, the storage capacity is about α = 1.2 minimal sequence per
synapse at a cell, which corresponds to about 1600 full sequences of length
8 stored in the network. Interestingly the firing threshold we obtain is 55,
which is approximately the same as that assumed by Diesmann et al. (1999)
for cortical synfire networks.

To summarize, this letter provides a simple rule of how to choose pattern
size and threshold in order to optimize storage capacity under biologically
realistic constraints such as low connectivity and similar amounts of silent
and nonsilent synapses. From that, one can conclude that sequence com-
pletion in the recurrent network operates far below maximal information
content. To put it more positively, information seems to be redundantly
distributed over a large number of synapses, which seems consistent with
the picture that memories are stored in a way that is robust against synaptic
noise and some variability of morphological plasticity.
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Appendix A: List of Symbols

Symbol Meaning (Location of First Use)

t discrete time (section 2.1)
x binary network state vector (section 2.1)
θ firing threshold (section 2.1)
c mean connectivity of activated synapses (section 2.1)
cs mean connectivity of silent synapses (section 2.1)
cm mean morphological connectivity (section 2.1)
r = cs/c ratio between silent and active connectivity (section 2.1)
C = (Cnn′ ) connectivity matrix of activated synapses (section 2.1)
N network size (section 2.1)
M pattern size (section 2.2)
ξ binary pattern vector (section 2.2)
Q sequence length (section 2.2)
P number of minimal sequences stored (section 3)
α = P/(cm N) capacity of sequential memory (section 3)
m number of hits (section 4.1)
n number of false alarms (section 4.1)(c11 c10

c01 c00

)
reduced connectivity matrix (equation 4.1)

T transition matrix (equation 4.3)
b binomial probability (equation 4.4)
p conditional probability of hits (equation 4.5)
q conditional probability of false alarms (equation 4.5)
ρ conditional probability of one hit (equation 4.6)
λ conditional probability of one false alarm (equation 4.7)

 quality of replay (equation 4.11)
γ ′, γ detection thresholds (equations 4.12 and 4.13)
T〈·〉 mean transition function (equation 7.2)
f = M/N coding ratio (section 8)
I information content (section 8)

Appendix B: Memory Capacity Revisited

Let us consider a naive network of size N that initially has nosynapses at
all. To imprint the first minimal sequence ξ A → ξ B in the network, we need
M2c11 functional synapses in order to link two groups of M neurons at con-
nectivity c11 (see Figure 11). Let us first discuss the simpler case c11 = cm.
For the second sequence, ξC → ξ D, fewer synapses are needed because we
have to take into account that there are cells in pattern ξC that are already
connected to cells in ξ D because of some overlap with the first sequence.
For random patterns, the probability that a neuron is active in a specific
pattern is f = M/N, which is also called the coding ratio. As a result, the
mean number of cells that are active in both of a given pair of patterns is Mf .
Consequently, the Mf presynaptic cells that belong to both cue patterns ξ A

and ξC only have to be connected to the M (1 − f ) postsynaptic neurons
of ξ D that do not overlap with ξ B . The number of new synapses needed
is Mf · c11 · M(1 − f ). In order to complete the second minimal sequence,
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Figure 11: Consumption of synapses by subsequently storing minimal se-
quences. The first minimal sequence ξ A → ξ B consumes c11 M2 synapses. The
patterns of a second minimal sequence ξC → ξ D have some overlap f with ξ A

and ξ B ; there are Mf cells (gray) both pre- and postsynaptically that contribute
to both the first and the second minimal sequences. The number of synapses
that are consumed by ξC → ξ D is reduced by a factor of (1 − f 2); see the text.

we are left with connecting the remaining M(1 − f ) presynaptic cells of ξC

to all M postsynaptic cells of ξ D. In summary, the second sequence con-
sumes Mf c11 M(1 − f ) + M(1 − f ) c11 M = M2 c11 (1 − f 2) synapses. Simi-
larly, the kth minimal sequence consumes M2 c11(1 − f 2)k−1 synapses that
have not yet been accounted for. Summing up all contributions until we
reach the limit N2 c of available nonsilent synapses yields a condition on
the maximal number P of minimal sequences,

N2 c != M2 c11

P∑
k=1

(1 − f 2)k−1 = M2 c11 f −2 [
1 − (1 − f 2)P]

. (B.1)

In case c11 < cm, we need to take into account the probability c11/cm of
having a morphological synapse from cue to target in the nonsilent state.
The transformation f 2 → f 2c11/cm is sufficient to generalize the result in
equation B.1. Solving the generalized version of equation B.1 for P and
normalizing the result by N, we find the capacity to be

α = log(1 − c/cm)
cm N log(1 − f 2c11/cm)

, (B.2)

which can be approximated for f � 1 by

α = c N
cm c11 M2 .
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Equation B.2 is an extension to the results for the case c11 = cm = 1, origi-
nally obtained by Willshaw et al. (1969), Nadal & Toulouse (1990), and Nadal
(1991). In the main part of this article, we discuss the scenario c11 = cm < 1;
see equations 3.2 and 3.3.
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