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Spiral waves are rotating solutions of nonlinear reaction-diffusion systems in two spatial dimen-
sions. Due to the symmetries of the plane, a spiral wave can be shifted and rotated arbitrary, still
remaining a solution to reaction-diffusion system. Introducing a symmetry-breaking perturbation
of the reaction-diffusion equation, the spiral wave begins to drift, i.e. change its rotation phase
and its position on the plane. On the linear level (for small perturbations), the velocity of drift
can be calculated using the perturbation technique, projecting on the symmetry subspaces of the
unperturbed equation. For the projection one needs the eigenfunctions of the adjoint problem, since
the linearization of reaction-diffusion problem is not self-adjoint. Those adjoint eigenfunctions are
called response functions of spiral waves. In this paper, I will present results of computations of
response functions and compare the predictions of drift velocities with the help of those with the
direct numerical simulations of drifting spirals in reaction-diffusion system. Both results turn out
to be in a nearly perfect quantitative agreement.
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I. INTRODUCTION

Spiral waves are probably the most beautiful exam-
ple of spatio-temporal patter formation in active me-
dia. They have been experimentally observed in a va-
riety of physical, chemical and biological systems [1–4]
as well as in simple model equations, which are usually
of the reaction-diffusion type. The most important moti-
vation to study spirals comes from the observations that
in the human heart, emergence of spiral waves can lead
to arrhythmias, i.e. incoherent cardiac muscle contrac-
tion [2, 5], which often can lead to death.

Spiral waves are known to drift when subjected to a
(resonant periodic) forcing [6–8] as well as in medium
inhomogeneities [9]. The idea to describe slow drift of
spiral waves with the help of response functions origi-
nates from [10]. In that paper, projecting the linearized
perturbed equation on the Goldstone eigenmodes of the
unperturbed problem resulted in three simple equations
for the position and the relative phase of the perturbed
spiral. The strong localization of response functions as-
sures that only perturbations near the core affect the
dynamics of the spiral wave. For an experimentalist, the
localized sensitivity of spiral waves is a common and nat-
ural observation [6]. On the rigorous mathematical level,
the localization of response functions follows from the
Fredholm properties of the linearization about the spi-
ral [11]. A group-theoretical approach to describe drift
of spirals was formulated in [12–15].

Let me review some previous results on response func-
tions. A huge body of results on response functions of
spiral waves in the complex Ginzburg-Landau equation

∗Electronic address: Grigory.Bordyugov@uni-potsdam.de

(CGLE) [16–20] is available. There, drift velocities of spi-
rals in the CGLE were also computed with the help of re-
sponse functions. Due to the structure of the CGLE, the
existence, stability and the adjoint problems are merely
ODEs in polar radius and hence can easily be cracked
by boundary problem solvers. For the FitzHugh-Nagumo
model [21], there have been calculations of response func-
tions, based on time integration of the linear adjoint
problem, however, no drift velocities were calculated.

This paper describes results of calculation of re-
sponse functions for rigidly rotating spiral waves in
the Fitzhugh-Nagumo equations. I follow the ideas by
Barkley to compute the spiral waves as an equilibrium in
the rotating frame by a number of Newton iterations and
then to compute some of the eigenvalues of the linearized
problem using indirect iterative methods, see [22, 23]. I
also compute drift velocities predicted by the response
functions and compare them to the results of direct time
integration of the perturbed reaction-diffusion system.

II. SETUP AND MAIN ASSUMPTIONS

I consider the following reaction-diffusion system on
the whole plane R2:

∂tu = f(u) + D∆u + εh, (1)

where u = u(r, θ, t) ∈ R` is an `-valued vector of species,
f(u) is a sufficiently smooth reaction kinietics, ∆ is the
2D Laplace operator, modeling the diffusion of species,
and h is a generic bounded perturbation with a small
strength ε. Here, (r, θ, t) ∈ R+ × [0, 2π) × R denote the
laboratory polar coordinates and time. Matrix D denotes
the `× ` diffusion matrix with non-negative entries.
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A. Unperturbed spirals

I assume that for ε = 0, Eq. (1) supports a rigidly
rotating spiral wave in the form of

u(r, θ, t) = q(r, θ − ωt)

with the rotation frequency ω. The spiral wave solution
q hence solves the nonlinear existence equation for spiral
waves in the rotating frame of reference (r, θ, t) → (r, θ−
ωt, t):

D∆q + ω∂θq + f(q) = 0. (2)

For an experimentalist, it is always possible to place a
video camera in front of the spiral in such a way and
to rotate it with an appropriate angular frequency that
the spiral would appear steady on the recorded footage.
For the spiral q, one can define its tip as the point on
the plane with prescribed value of q. For rigidly rotating
spirals, the tip trajectory is always a circle, see Fig. 1 (b).

Given the spiral q as a solution of the nonlinear exis-
tence problem Eq. (2), one can raise the question of the
stability of the spiral. On the linear level, the stability is
determined by the eigenvalue problem

Lv = λv,

L : = fu(q) + ω∂θ + D∆,
(3)

where λ ∈ C is an eigenvalue and v : R2 → C` is the cor-
responding eigenfunction. Spiral q is unstable if there are
some eigenvalues λ of the stability operator L with posi-
tive real part, otherwise spiral is stable. In the following,
I assume that spiral q is stable and L has no spectrum in
the open complex right half-plane.

The symmetry with respect to shifts and rotations is
reflected in the spectrum of the linearization L about
the spiral. When considered on the whole plane R2, the
operator L has three critical eigenvalues on the imaginary
axis, given by

λ0 = 0,

λ±1 = ±iω.

The zero eigenvalue reflects the rotation symmetry, and
the corresponding eigenfunction is given by v0 = ∂θq (dif-
ferentiate Eq. (2) with respect to θ). Indeed, an infinitesi-
mal rotation is merely a shift in θ by a small angle δθ, and
we have q(r, θ−ωt−δθ) ≈ q(r, θ−ωt)−δθ∂θq(r, θ). Thus,
a small rotation is equivalent to subtracting ∂θq(r, θ)
weighted by the amount of rotation.

The pair of complex conjugate λ±1 have as eigenfunc-
tions ∂xq± i∂yq, where x and y are the Cartesian coordi-
nates with the origin at the centre of rotation of q. These
eigenvalues reflect the translational symmetry of the spi-
ral. Analogously to rotation, any infinitesimal transla-
tion can be represented as an addition of a linear combi-
nation of v±1 to the original spiral q(r, θ).

ω ω

drift

b) c)

x

y

X

Y
q

q Φ,X,Y

Φa)

FIG. 1: a) Blue curve denotes the reference spiral q whose
centre of rotation is located at the coordinate origin. Red
curve denotes another spiral qΦ,X,Y , which is rotated by Φ
and shifted by (X, Y )+ in comparison to the reference spiral.
b) Tip of rigidly rotating spiral draws a circle. Arrowed arc
shows the direction of spiral rotation. c) Tip of drifint spiral
draws a cycloid. Arrowed arc shows the direction of spiral
rotation and arrowed straight line shows the direction of spiral
drift. Drift may also occur along a non-straght trajectory.

In the following I will also need L+, the adjoint to
L [27]. Note that both on the whole plane R2 and on
bounded disks with either Neumann or Dirichlet bound-
aries with the standard scalar product, the adjoint L+ is
given by:

L+ = f+
u (q)− ω∂θ + D∆.

The adjoint L+ also has three eigenvalues µ0,∓1 with the
corresponding eigenfunctions w0,∓1. The eigenfunctions
of L and those of the adjoint L+ satisfy the biorthogo-
nality condition:

〈wi, vj〉 = δij , i, j = 0,±1.

The Euclidean symmetry of the problem lifts the spiral
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q(r, θ − ωt) to a family of spirals, parameterized by the
relative phase shift Φ and the coordinate shift (X, Y )+
with respect to the reference spiral q, please compare
Fig. 1 (a). Throughout the paper I will formally denote
a spiral which is rotated by Φ and shifted by (X, Y )+
with respect to the reference spiral by

qΦ,X,Y .

Strictly speaking, the symmetries do not persist when
truncating to a finite domain, which is more physically
relevant [24]. The rotational and translational eigenval-
ues of the spiral may shift off the imaginary axis. How-
ever, spirals do not particularly care about the existence
of domain boundaries as long as the spirals are sufficiently
far from boundaries. This experimentally obvious phe-
nomen will become more clear in the following section,
where I’ll describe the localized sensitivity of spirals.

B. Drift equations

Introducing ε 6= 0 in Eq. (1) can break the symmetry
of Eq. (1) and make spirals drift. The centre of rotation
(X, Y )+ of a drifting spiral and its relative phase Φ slowly
depend on time. The tip of the drifting spiral draws a
cycloid, see Fig. 1 (c).

Let me mention two most important examples of the
symmetry breaking perturbations h which have been of-
ten considered in the literature:

1. Resonant drift: In this case, the perturbation h is
a periodic function of time only: h = h(t) = h(t +
L) and its L period equal or close to the rotation
period of the spiral 2π

ω .

2. Drift in inhomogeneities: The perturbation h de-
pends on space h = h(r, θ) and represents a varia-
tion of medium parameters in space. The simplest
case is a constant-gradient perturbation such that
∇h = const.

Further examples include drift due to interactions with
domain boundaries, drift due to interaction between two
spirals, etc.

Biktashev et al. [10] suggested that for perturbed
Eq. (1) the following ansatz can be used:

u = qΦ(εt),X(εt),Y (εt) + εs. (4)

This is nothing else but a spiral which drifts at an ε-slow
rate plus some ε-small correction s which accounts for a
possible deformation of the spiral form. After substitu-
tion of the Ansatz 4 in Eq. (1) and projection with the
help of the adjoint eigenfunctions w0,±1, one obtain the
following drift equations:

Φ̇ = −ε〈w0, h〉,

Ẋ = −2ε Re
[
e−i(ωt+Φ)〈w1, h〉

]
,

Ẏ = 2ε Im
[
e−i(ωt+Φ)〈w1, h〉

]
.

(5)

Substituting the spatial delta function instead of the per-
turbation h in Eq. (5), we see that w0,±1 tell us how sensi-
tive the spiral is at the given location. That’s why Bikta-
shev and co-authors decided to pick up the term response
functions to name the adjoint eigenfunctions w0,±1, thus
providing us with a nice intuitive description of quite ab-
stract mathematical objects like eigenfunctions of adjoint
operator.

Eqs. (5) also suggest that the adjoint eigenfunctions
w0,±1 are localized in space. Indeed, consider the reso-
nant drift of spirals on the whole plane. In this case, h is
not localized, since it doesn’t depend on the space at all.
The drift velocity however must be finite, thus suggesting
that the scalar products in Eq. (5) must converge even
for infinitely large domain size.

Usually, the magnitude of the drift velocity is more
interesting than its direction. For time-periodic pertur-
bations of period L = 2π

Ω (where Ω is the frequency of the
perturbation), one can average Eq. (5) over L, obtaining

ϕ̇ = ω − Ω− εH0,

˙̄X = 2ε|H1| cos ϕ,

˙̄Y = 2ε|H1| sinϕ,

(6)

where Hn is the n-th Fourier component of the projection
of the perturbation h on wn:

Hn =
1
L

t+L/2∫
t−L/2

dt e−inΩt〈wn, h(t)〉,

where we omitted the spatial dependence of perturbation
h for the sake of brevity. In the equations above, ϕ is the
difference between the phase of the spiral and the phase
of the external perturbation: ϕ = (ω−Ω)t + Φ̄ + argH1,
the bar represents an average over the time period L.

Note that both resonant drift and drift in gradients
represent examples of periodic perturbations. The former
is obvious, whereas in the latter one should keep in mind
that the adjoint eigenfunctions w0,±1 are functions of the
rotating angle θ − ωt and the gradient which is time-
independent in the laboratory coordinate is time-periodic
in the rotating coordinate frame.

III. METHODS

The challenge of computing response functions for
rigidly rotating spiral waves consists of two sub-tasks:
First, one has to solve the nonlinear problem Eq. (2) in
order to compute spiral q(r, θ − ωt) itself, and secondly
one has to compute three critical eigenvalues of the ma-
trix, which represents the discretized stability operator
L and its adjoint L+.

Numerically, both tasks were solved on a disk domain
of radius R with Neumann boundary conditions. I used
a polar grid with Nθ equidistant angular discretization
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points and Nr radial equidistant discretization points
plus one point in the origin. This scheme thus produced
a set of N = `(1 + NrNθ) real values to approximate the
spiral and N complex values to approximate a complex-
valued eigenfunction of the linearization or adjoint. The
Laplace operator was formulated in the polar coordi-
nates. I used a pseudospectral approximation for angle
derivatives and three-point scheme for radial derivative.
In the origin, the Laplace operator was computed as an
average over Nθ/4 five-point stencils.

a. Nonlinear problem Back in 1992, Barkley [22]
successfully used the Newton method in order to solve
the nonlinear problem and to compute spiral waves and
I stick to the same method. Since the Newton method
involves solving a larger system of linear equations for
the Jacobian matrix of the nonlinear problem, one has to
choose such representation of the solutions that results
in a possibly slimmer Jacobian matrix. In my compu-
tations, the variables are packed in a one-dimensional
solution vector in such an order that the species index
changes first, then the angular discretization index and
then the radial discretization index. This scheme results
in the Jacobian matrix with only `Nθ nonzero sub- and
superdiagonals. As initial condition, I used the results
of numerical time-integration of the reaction-diffusion
system with the help of Barkley’s software EZspiral. I
stopped Newton iterations once the residual norm had
become smaller than a given tolerance, typically 10−8.

To exclude the rotation symmetry of spirals on disk, I
pinned the spiral at a chosen point, prescribing a value to
one of ` species there. Thus I obtained one variable free,
and at that position in the solution vector the unknown
value of the rotation frequency ω was substituted. The
derivative of the left-hand side of Eq. (2) with respect
to ω is given by the angular derivative of the spiral ∂θq,
which filled out a whole column in the Jacobian matrix,
making it non-banded. However, this is a rank-one per-
turbation and can be dealt with by using the Sherman-
Morrison formula [25].

I also used a primitive continuation procedure, slowly
changing one of the parameters of the equations or the
disk radius to obtain the spiral with desired parameter
values.

b. Linear problem Once the solution of the nonlin-
ear problem had been obtained within the desired ac-
curacy, I built the linearization matrix and the matrix,
representing the discretization of the adjoint L+. Let
me denote that finite-dimensional matrix by A. I had
to compute three eigenvalues of A which were close to
0,±iω, where ω is the rotation frequency of the computed
spiral q. For that purpose, I used ARPACK library which
offers an implementation of the iterative Arnoldi method
for computing eigenpairs for large sparse matrices (see
http://www.caam.rice.edu/software/ARPACK/).

ARPACK offers among others two modes of computa-
tions: for eigenvalues with largest modulus and for eigen-
values with largest real part. I experimentally found that
the largest modulus mode worked faster and much more

a) b) c)

d) e)R=25

FIG. 2: a) Color-coded U -component of the spiral wave so-
lution. b) Color-coded real part of U component of the rota-
tional eigenfunction of L. c) Color-coded real part of U com-
ponent of the translational eigenfunction of L. d) Color-coded
real part of U component of the rotational eigenfunction of
L+ (rotational response function). e) Color-coded real part of
U component of the translational eigenfunction of L+ (trans-
lational response function). For all panels parameters are as
in text, disk radius R = 25, blue values represent smaller val-
ues than the red one. For b) to e), white colour corresponds
to zero level.

reliable, hence I needed to modify my matrix A and map
away its critical eigenvalues at 0,±iω possibly far from
the origin of the complex plane. As suggested in [23], I
used the Cayley transformation to build another matrix
B, which is related to A by

B =
A + Iη

A + Iξ
,

where I denotes the identity matrix and η and ξ are
complex parameters of the transform. The eigenvalues
of A which are close to −ξ are mapped to eigenvalues of
B with large absolute value. I hence chose −ξ to be in
the region of my interest, namely close to 0 and iω. The
parameter η was set to i Imξ.

As a convergence criterion, I used the machine accu-
racy mode of ARPACK, which resulted in convergence to
the eigenpair within a few iterations. The residuals did
not exceed 10−14.

Allow me to stress again that on bounded disks, I ex-
pected the translational eigenvalues to be slightly off the
imaginary axis. This is due to the fact that the transla-
tional invariance is broken when truncating the domain
to a finite size.

IV. RESULTS

As a paradigmatic example of reaction-diffusion sys-
tems, the two-variable Fitzhugh-Nagumo system [26] was
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chosen, which reads

∂tU =
1
ε

(
U − U3/3− V

)
+ ∆U,

∂tV = ε(U − aV + b)
(7)

with parameters a = 0.5, b = 0.68 and ε = 0.3.

A. Computing response functions

After a round of simulations with EZspiral, my Newton
solver converged to a rigidly rotating spiral wave solution
within less than 10 iterations. After that the critical
modes v0,±1 of the linearization L and the critical modes
w0,±1 to the adjoint L+ were computed.

I first checked the biorthogonality of vi and wi, com-
puting the scalar products 〈wi, vj〉. The difference in the
magnitude of the scalar product for cases i = j and i 6= j
was of the order 108, which can be considered as a good
orthogonality.

The graphical representation of the solution of the non-
linear problem and examples of eigenfunctions of lin-
earization L and adjoint L+ can be found in Fig. 2.
As expected, the rotation mode of L is nothing else but
the angular derivative of the spiral and the translational
mode is just slightly rotated y derivative. Both modes are
not localized as the spiral is not localized itself. In con-
trast to that, the response functions, both translational
and rotational one, are strongly localized near the core
region of the spiral. The behaviour and the localization
properties of the imaginary part of U and those of V com-
ponent of the Fitzhugh-Nagumo kinetics is qualitatively
the same as in the presented plots for Re U .

Fig. 3 summarizes the results on the convergence of
the method. Due to the pseudospectral discretization in
angle θ, the convergence with respect to the number of
angular grid points is exponential. Due to the three-point
scheme for the radial derivative, the convergence in ∆r is
quadratic. Fig. 3 also shows that the translational eigen-
values approach the imaginary axis at an exponential rate
while increasing radius of the disc.

B. Computing drift velocity

I used the response functions of spirals in the Fitzhugh-
Nagumo system in order to compute drift velocities for
the perturbed problem:

∂tU =
1
ε

(
U − U3/3− V

)
+ ∆U + εh,

∂tV = ε(U − aV + b).
(8)

Here h denotes the external perturbation that makes the
spiral drift, and ε is a small perturbation strength.
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FIG. 3: a) Dependence of spiral frequency ω, real and imag-
inary part of translational eigenvalue on number of angular
discretization points Nθ. Starred values are for Nθ = 128.
Other parameters as in text, ∆r = 0.2, R = 16. b) Depen-
dence of spiral frequency ω, real and imaginary part of trans-
lational eigenvalue on radius of disk R. Starred values are for
R = 32. Other parameters as in text, ∆r = 0.2, Nθ = 96. c)
to e) Dependence of spiral frequency ω, real and imaginary
part of translational eigenvalue on radial discretization step
∆r.Other parameters as in text, R = 16, Nθ = 96.

1. Resonant drift

Here I set perturbation h to be a periodic continua-
tion of a step function which assumes value −1 during
the first half-period and 1 during the second half-period.
The period of h coincides with the computed period of
rotation of the spiral wave. Eq. (6) suggest that such
perturbation do not influence the rotation frequency of
the spiral, since it has a zero mean over the period. For
simulation of spiral wave I again used Barkley’s software
EZspiral.

The comparison of the prediction by response func-
tions for the magnitude of the drift and the value from
direct numerical simulations is plotted in Fig. 4, panel
(a). There is a nice correspondence between the predic-
tion by response function and the results of simulation
in a quite wide range of perturbation strength ε. At the
maximal value of ε that I used, the drift velocity of spiral
was that high that the spatial translation of the spiral
between two successive rotations was comparable to the
radius of the unperturbed tip trajectory.
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2. Drift in inhomogeneities

Here I chose for the perturbation h(x, y) = x − x0,
where x is the current cartesian coordinate on the plane
and x0 is a reference point. In the rotating coordinate
frame (r, θrot) associated with the spiral this perturba-
tion becomes time-periodic h (r, θrot) = r cos (ωt + θrot),
where θrot = θ − ωt. Thus the spiral experience a time-
periodic resonant perturbation in this case, too.

While drifting in an inhomogeneity, the spiral possible
moves to regions with different value of h and its rotation
frequency and spatial profile may change. This implies
that in an inhomogeneous medium, the drift velocity and
drift direction of the spiral is location-dependent. Since
it would be quite involving to compute spiral and its
response functions for several positions on the plane, I
decided to choose a very mild value of the inhomogeneity
gradient and try to compare two different experimental
protocols for direct simulations: In the first one, I just
kept the value x0 constant close to the initial position
of the spiral and in the second one I shifted x0 together
with the drift of the spiral wave tip. Results of numerical
simulations according to both protocols are displayed in
Fig. 4 (b). Strangely enough, but it seems that shifting
the reference point x0 together with the spiral tip doesn’t
produce any improvements over the static inhomogeneity.

V. CONCLUSIONS AND OUTLOOK

The results of this study suggest that response func-
tions of rigidly rotating spiral waves in reaction-diffusion
systems can be computed in a systematic manner using
the freely available ARPACK library. Those response
functions, being the eigenfunctions of the adjoint prob-
lem, satisfy the requirement of orthogonality to the crit-
ical eigenfunction of the linearization about spiral. They
can hence be used in projections techniques for comput-
ing drift velocity under external symmetry-breaking per-
turbations.

Probably the main mystery for me in this story is how
to bring together rigorously the theory for drifting spi-
rals on the whole plane with the results of modeling on
bounded domains. Of course, due to the localization of
response functions, the spiral would not sense the pres-
ence of the boundaries in (numerical) experiments any-
way, but strictly speaking, the influence of boundaries
is non-zero, but rather exponentially small. Cutting the
long story short, there is still no rigorous theory for spiral
drift on bounded domains. Such a theory would result

in a drift velocity which should be dependent on the lo-
cation of spiral relative to the domain boundaries. Even
without external forcing, spirals would drift even due to
the interaction with the boundaries.
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FIG. 4: Magnitude of drift velocity c as function of the pertur-
bation amplitude ε. In both a) and b) straight line represent
the predictions with the help of response functions. a) Crosses
show results of numerical integration of spiral which was ho-
mogeneously perturbed at the frequency equal to the rotation
frequency of spiral itself b) Crosses and asterisks show results
of numerical integration of spiral in constant gradient. Red
crosses correspond to experimental protocol 1, blueish aster-
isks correspond to experimental protocol 2, see text.
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