

HUMBOLDT-UNIVERSITÄT ZU BERLIN

INSTITUT FÜR THEORETISCHE BIOLOGIE

THEORETISCHE BIOLOGIE MODELLIERUNG

Prof. Hanspeter Herzel Dr. Grigory Bordyugov Sarah Lück Vorlesung: Montag 08:30 Übung (vorläufig): Dienstag 18:00, ITB

5. Übung

Ausgabe: 18.11.13, Abgabe: 25.11.13, in der Vorlesung Beschriften Sie bitte Ihre Abgabe mit Namen und Matrikelnummer

PHARMAKOKINETIK

Der Blutspiegel x(t) eines Arzneistoffes, welcher jede zweite Stunde eine Stunde lang verabreicht wird, lässt sich durch folgende Differentialgleichung modellieren:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -ax + b(t),$$

wobei a > 0. Der inhomogene Term b(t) beschreibt die periodische Arzneimittelzufuhr:

$$b(t) = \begin{cases} 0 & \text{zu ungeraden Stunden,} \\ 1 & \text{zu geraden Stunden.} \end{cases}$$

- (a) Skizziere den zeitlichen Verlauf von b(t).
- (b) Löse die Differentialgleichung für $t \in [0,1)$ und $t \in [1,2)$.
- (c) Drücke x(t = 2) durch x(t = 0) aus.
- (d) Stelle die Abbildungen von einer geraden bzw. ungeraden Stunde zu der anderen

$$x_{2n} = f(x_{2n-2})$$
 und $x_{2n+1} = g(x_{2n-1})$

auf. Dabei bezeichnet x_k die Konzentration x(t) zum Anfang der k-ten Stunde.

- (e) Bestimme die Fixpunkte und ihre Stabilität für beide Abbildungen.
- (f) Anhand beider Abbildungen, diskutiere das Verhalten der Konzentration x(t) für $t \to \infty$.
- (g) Überzeuge dich und begründe, warum die Abbildungen für gerade und ungerade Stunden qualitativ ähnliche Ergebnisse bringen.