

HUMBOLDT-UNIVERSITÄT ZU BERLIN

INSTITUT FÜR THEORETISCHE BIOLOGIE

THEORETISCHE BIOLOGIE MODELLIERUNG

Prof. Hanspeter Herzel Dr. Grigory Bordyugov Sarah Lück Vorlesung: Montag 08:15 Übung: Mittwoch 08:15

2. Übung

Ausgabe: 26.10.15, Abgabe: 2.11.15, in der Vorlesung Beschriften Sie bitte Ihre Abgabe mit Namen und Matrikelnummer

1. Inhomogene Differentialgleichung

In einem biochemischen System wird der zeitliche Verlauf der Konzentration x durch folgende Gleichung bestimmt:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \beta - \alpha x, \qquad \alpha, \beta > 0.$$

- (a) Interpretiere die Parameter α und β . In welchen Maßeinheiten müssen sie angegeben werden?
- (b) Bestimme den stationären Zustand x^{st} . Ist dieser stabil? Skizziere die Linien gleicher stationäre Zustände in Abhängigkeit von beiden Parametern α und β .
- (c) Löse die Differentialgleichung durch Variation der Konstanten. Diskutiere das Verhalten der Lösung x(t) für $t \to \infty$.
- (d) Folgende Messergebnisse von x(t) liegen vor:

Zeitpunkt <i>t</i>	0	1	2	3	4	5
Konzentration <i>x</i>	3.0	2.4	2.1	2.05	2.02	2.01

Schätze die Parameter α und β mithilfe dieser Werte ab.

2. INTEGRATION DURCH PARTIALBRUCHZERLEGUNG Um das in der Vorlesung diskutierte Wachstumsmodell

$$\frac{\mathrm{d}x}{\mathrm{d}t} = ax - bx^2, \qquad a, b > 0$$

zu integrieren, wird die sogenannte Partialbruchzerlegung verwendet.

(a) Führe die Separation der Variablen aus und stelle die Integrale beider Seiten der Gleichung auf.

HUMBOLDT-UNIVERSITÄT ZU BERLIN

INSTITUT FÜR THEORETISCHE BIOLOGIE

(b) Um die Stammfunktion von

$$\int \frac{\mathrm{d}x}{ax - bx^2}$$

zu finden, zerlege den Integranden in eine Summe von zwei rationalen Funktionen, i.e. finde solche A und B, daß

$$\frac{1}{ax - bx^2} = \frac{A}{x} + \frac{B}{a - bx}.$$

Begründe, warum diese Zerlegung möglich ist.

(c) Mithilfe der Zerlegung bestimme die Stammfunktion vom obigen Integral und schliesslich löse die Differentialgleichung des Wachstumsmodells.