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Abstract

‘Minimal’ excitatory postsynaptic potentials (EPSPs) are often recorded from central neurones, specifically for quantal analysis.
However the EPSPs may emerge from activation of several fibres or transmission sites so that formal quantal analysis may give
false results. Here we extended application of the principal component analysis (PCA) to minimal EPSPs. We tested a PCA
algorithm and a new graphical ‘alignment’ procedure against both simulated data and hippocampal EPSPs. Minimal EPSPs were
recorded before and up to 3.5 h following induction of long-term potentiation (LTP) in CA1 neurones. In 29 out of 45 EPSPs,
two (N=22) or three (N=7) components were detected which differed in latencies, rise time (Trise) or both. The detected
differences ranged from 0.6 to 7.8 ms for the latency and from 1.6–9 ms for Trise. Different components behaved differently
following LTP induction. Cases were found when one component was potentiated immediately after tetanus whereas the other
with a delay of 15–60 min. The immediately potentiated component could decline in 1–2 h so that the two components
contributed differently into early (B1 h) LTP1 and later (1–4 h) LTP2 phases. The noise deconvolution techniques was applied
to both conventional EPSP amplitudes and scores of separate components. Cases are illustrated when quantal size (6) estimated
from the EPSP amplitudes increased whereas 6 estimated from the component scores was stable during LTP1. Analysis of
component scores could show apparent double-fold increases in 6 which are interpreted as reflections of synchronized quantal
releases. In general, the results demonstrate PCA applicability to separate EPSPs into different components and its usefulness for
precise analysis of synaptic transmission. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recordings of single-fibre (‘unitary’) EPSPs or cur-
rents are used for studies of synaptic transmission in
the central nervous system (CNS), specifically, for
quantal analysis (see reviews Redman, 1990; Korn and
Faber, 1991; Stevens, 1993; Voronin, 1993; Walmsley,
1993; Thomson and Deuchars, 1995). However, the

unitary EPSPs may consist of several components with
different latencies and waveforms because a presynaptic
fibre may establish several synaptic connections at vari-
ous electrotonic distances from the recording site. In
practice, instead of unitary EPSPs, so-called ‘minimal’
EPSPs are often analyzed so that the number of acti-
vated fibres can be more than one (Raastad, 1995).
Accordingly, the EPSPs may show signs of the presence
of different components: notches at the initial slope
(Voronin et al., 1992; Alger et al., 1996), bimodal
latency distributions (Edwards et al., 1990; Stern et al.,
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1992; Torii et al., 1997) and different waveforms for
different amplitude ranges (Stricker et al., 1996;
Voronin et al., 1996). The application of the formal
quantal analysis to responses with several components
may give false results.

One way to separate different EPSP components is to
consider their latencies (Stern et al., 1992; Voronin et
al., 1996; Torii et al., 1997). However, the measure-
ments from single trials are not reliable when the
latency differences and signal-to-noise ratios are small.
A better separation may be achieved using full informa-
tion contained in both EPSP latencies and waveforms.
One way is to use the principal component analysis
(PCA). This multivariate technique (Hotellin, 1933;
Harmon, 1979; Jackson, 1991) had been applied to
CNS studies including the brain imaging (see Friston,
1996 for review), artificial neural nets (Churchland and
Sejnowski, 1992) and especially electroencephalo-
graphic evoked responses (Glaser and Ruchkin, 1976;
Barth and Di, 1992; Chapman and McCrary, 1995).
There is an example of PCA of extracellular recordings
from retina single cells (Chapman et al., 1981), but to
our knowledge there were no attempts to perform PCA
on intracellularly recorded EPSPs. Our aims were: (1)
to elaborate algorithms suitable for PCA of minimal
EPSPs; (2) to test them against lasting intracellular
recordings from hippocampal slices; (3) to explore the
possibility of analysis of the resulting EPSP compo-
nents using a variant (Astrelin et al., 1997) of the noise
deconvolution which is a standard technique of the
quantal analysis (Redman, 1990; Voronin, 1993; Walm-
sley, 1995).

2. Models and methods

2.1. Principal components analysis

PCA is a mathematical method that finds the most
important directions of the data variance in a linear
fashion. Detailed discussion of PCA is available in
standard texts (e.g. Harmon, 1979; Jackson, 1991). Its
electrophysiological applications were reviewed by
Glaser and Ruchkin (1976) and Chapman and Mc-
Crary (1995). Here we briefly describe a PCA algorithm
adapted for analysis of minimal EPSPs with amplitude
fluctuations and response failures.

Let Si(t) be the function describing the waveform of
a single EPSP with number i (i=1, 2..., N) from a set
of N responses. Let Si(t) be defined by a set of numbers
Sit, i.e. we take amplitude measurements from a win-
dow of T discrete time points. It is convenient to align
the measurements in such a way that the mean ampli-
tude of each single response over the window was equal
to 0. The basic assumption of the PCA is that the set of
the data waveforms Sit can be represented as a linear

combination of K independent fundamental waveforms
(components) fit. In our case, EPSP waveform Sit

recorded in time bin t on trial i can be represented as a
linear combination of responses from K independent
inputs plus noise (bit). Therefore

Sit= %
K

k=1

cik fkt+bit, (1)

where the weighting coefficients or scores cik indicate
the amount of each component present on each trial.
Each component ( fkt) represents a temporal pattern of
component loadings i.e. the morphology of the funda-
mental waveform of this component (or of kth input in
case of EPSP recordings). If we ignore the noise, the
following procedure may be used to find the first com-
ponent (C1) or f1t. We assume

%
T

t=1

f 2
1t=1 (2)

and define C1 scores as

ci1= %
T

t=1

f1tSit (3)

Let the ‘residual’ S(1)it= (Sit−ci1f1t). From Eqs. (2)
and (3) it follows: �f1tS(1)it=0. Therefore we find f1t so
that the sum of respective residuals for all N responses
is minimal, i.e.

%
N

i=1

%
T

t=1

(S(1)it)2 � min

which is equivalent to

%
T

i=1

c2
i1 � max. (4)

After finding f1t, we calculate the second component
( f2t) or C2 using equations similar to Eqs. (2) and (3),
i.e. � f 2

2t=1, ci2=�T
t=1 f2tS(1)it, the condition of com-

ponents ‘orthogonality’ in the space of response ampli-
tudes (� f1t f2t=0), and a minimization procedure
�N

i=1 �T
t=1 (S(2)it)2 � min. Here the residual S(2)it=

Sit−ci1f1t−ci2f2t. Again similar to Eq. (4), � c2
i2 is

maximized. The procedure can be repeated up to the
last component. As a result, each response is described
in new coordinates (ci1, ci2,..., ciT) instead of the previ-
ous temporal coordinates Sit.

The PCA can be described in terms of signal space
geometry (Glaser and Ruchkin, 1976; Harmon, 1979).
In these terms, EPSP waveforms are first defined in a
data signal vector space of T dimensions so that each
data sample represents a single vector. We used T=
40–80 so that a window included 0–1.5 ms before the
average (N=300–2200) EPSP beginning, initial slope
and might include its peak. The task of the PCA was to
determine if the same data signal vectors could be
adequately represented in a subspace of fewer dimen-
sions. Therefore, the principal components represent
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linear combinations of the original EPSP waveforms
which explain successively a maximum amount of the
system variance and are orthogonal to each other.

In practice, the results of the initial PCA are often
difficult to interpret. To obtain a meaningful interpre-
tation of the basic waveforms and their scores, several
procedures can be used, most popular being ‘varimax
rotation’ (Glaser and Ruchkin, 1976; Harmon, 1979;
Jackson, 1991). These procedures produce new ‘com-
ponents’ that may be useful although they are ob-
tained by different criteria from PCA. Here we
elaborated and tested a variant of graphical proce-
dures (Harmon, 1979) suitable for minimal EPSPs
(Section 3.1.3).

2.2. Simulation experiments

EPSP waveform (Fig. 1Aa) was described as a func-
tion of time by two exponentials: E(t)=A [exp(− t/
Tdecay)−exp(− t/Trise)] where amplitudes A were
uniformly or normally distributed. The waveforms
were convolved with a Gaussian noise (Fig. 1Ab). The
standard deviation (S.D.) of the noise (Sn) was varied
in different experiments giving different signal-to-noise
ratios. Either non-quantal (continuously distributed)
or ‘quantal’ EPSPs were simulated. For the latter, the
number of release sites (n) was taken to be one or
two. The release probability was usually set at 0.5 so
that either about 50% (n=1) or 25% (n=2) of the
waveforms represented failures with zero mean and
S.D. equal to Sn. Either ‘small’ (0.15–0.36) or large
(\6 or \Sn) intrinsic quantal variation (S6) could be
added to the non-failures. To simulate two compo-
nents, different time constants or latencies were intro-
duced, and the two waveforms were mixed so that the
sample (typically N=500) consisted of failures, mono-
and bicomponent waveforms (Fig. 1A).

We tested also influences of response non-linearity.
One known example (Martin, 1966) is the nonlinear
relation between conductance and potential changes at
the postsynaptic membrane which might be expected
in dendrites with large local EPSP amplitudes. To
imitate the non-linearity, the simulated amplitudes
S(t) were transformed into R(S(t)) where R(x) is a
non-linear function. Either known formulae of non-
linear EPSP summation (Martin, 1966) or other
asymptotic non-linear functions (e.g. arctg(x)) could
be used as R(x)).

2.3. Physiological experiments

Hippocampal slices from 5–6 weeks old male Wis-
tar rats were prepared as described previously (As-
trelin et al., 1997). The solution in the superfusion
experimental chamber contained (in mM): NaCl 124,
KCl 1.5, MgCl2 1.3, CaCl2 2.45, KH2PO4 1.25,

NaHCO3 25, glucose 10, picrotoxin 0.1 at 30°C. The
recording patch pipettes (2–3 MV) was filled with
K+ gluconate 135, KCl 5, MgCl2 2, HEPES 10,
glucose 20 (pH 7.2). EPSPs were recorded from CA1
pyramidal cells in the current clamp mode. To avoid
the epileptic activity a cut was made between CA3 and
CA1 regions and tetrodotoxin (TTX, 2 nM) was
added in the perfusion solution. Paired 0.2 ms pulses
(50 ms interpulse interval) were delivered to stratum
radiatum each 6 or 8 s. The stimulus strength (20–50
mA) was adjusted to evoke just suprathreshold (‘mini-
mal’) EPSPs with failures in response to the first pulse
in the pair. LTP (Bliss and Collingridge, 1993) was
induced by 3 trains (1 s, 100 Hz with 0.4–0.6 ms
stimulus duration, 20 s intervals) accompanied by 20
mV depolarization through intracellular current injec-
tion. From 120 to 300 responses were collected before
tetanization and up to 2000 responses afterwards. Af-
ter conventional amplification (Patch Clamp L/M-
EPC-7, List-Medical, Darmstadt, Germany), data were
digitized at 5 kHz and analyzed off line.

2.4. Noise decon6olution

A variant of the noise deconvolution procedure
(Redman, 1990) was applied. Peak EPSP amplitudes
or component scores were used as input data. Our
algorithm (Astrelin et al., 1997) used a L1-metric in
the space of distribution functions for minimization
procedure and applied linear programming methods to
decompose the amplitudes (or scores) into a convolu-
tion of Gaussian (noise) and discrete distributions. S6
was assumed to be 0.156 on the basis of studies on
slices from mature animals (Kullmann, 1993; Voronin
et al., 1993; Wahl et al., 1995). The pretetanic and
post-tetanic recordings were divided into several re-
gions without essential drifts. Each region contained
from 100 to 400 trials. The weighted mean interval
between the components of the deconvolution solution
(i.e. resulting discrete distribution): was used to define
6=xi � Pi / �i � Pi. Here xi, location (distance from 0)
of component i and Pi, its probability. The mean
quantal content (m) was evaluated as the mean ampli-
tude (or component score) divided by 6. ‘Significant
differences’ correspond to PB0.01 (t-test).

3. Results

3.1. Simulation experiments

The aims of the simulation experiments was to test
PCA algorithms, to assist elaboration of the alignment
procedure (Section 3.1.3) and to facilitate interpreta-
tion of the physiological results.
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Fig. 1. Principal component analysis of simulated waveforms. Two waveforms with different latencies and with response failures were simulated
and mixed. Either non-quantal or quantal release with two release sites was suggested. (A) Simulated waveforms with shorter (Comp. 1) and
longer (Comp. 2) latencies and also their mixture (column a) and the same waveforms contaminated with noise (column b). (B) Plot of the scores
of the two initial principal components from the experiments with simulations of non-quantal (a) and quantal (b) waveforms. Note characteristic
parallelograms suggesting the presence of two components. (C) The scores of the third principal component plotted against the first (a) and the
fourth (b) ones. Note the narrow band (a) and the cloud (b) suggesting that the third and fourth components were absent. (D) ‘Alignment’
procedure and extraction of the simulated waveforms. The plots a and b represent transformed (‘aligned’) plots of Ba and Bb, respectively. Note
that the parallelograms of B transformed into rectangular fields. Insets (1–3) show waveforms obtained by averaging the simulations
corresponding to the dots from different parts of the plots in b: 1, for the band along the x-axes with y values within 092Sn ; 2, for the band
along the y-axes with x values within 092Sn ; 3, for the cloud with both x and y\2Sn. Note that the procedure restores the waveforms (Db,
1–3) identical to the simulated ones (A). The arrow (Db3) marks the notch corresponding to the beginning of the longer-latency component. 500
waveforms were simulated in each of the experiments shown here and in Figs. 2–6.

3.1.1. ‘Optimization’ of the number of PCA
components

The importance of PCA is its ability to adequately
represent a T variable data set in KBT dimensions.

The larger K, the better fit of the PCA model; the
smaller K is, the more simple model will be. Determina-
tion of the optimal value of K (‘when to stop?’, see
Jackson, 1991) is essential: it permits to ignore compo-



A.V. Astrelin et al. / Journal of Neuroscience Methods 79 (1998) 169–186 173

nents that explain very little of the total variance and,
in addition, may not be readily interpretable. There are
a large number of the respective criteria (Jackson, 1991)
but generally the problem of K determination does not
seem to be solved.

In our case, the components which describe noise do
not represent any essential interest. Therefore, to opti-
mize K we compared PCA results obtained from the
responses and from the background noise. The idea was
formulated as follows. Let define for every k from Eq.
(1) wk= (1/N) � �N

i−1 (cik)2 which is the squared mean
deviation of the PCA scores from 0. Let represent the
background noise as values Bit in the same way as Sit

(Section 2.1). Now let obtain its scores hik in the same
PCA basis: hik=�T

t=1 Bit fkt and calculate dk= (1/
N) � �N

i=1 (hik)2. If a component does not contain any
information about the response i.e. it corresponds to
the noise, wk should be approximately equal to dk where
k=1, 2,..., T is the number of the components. There-
fore we considered the sequence ok=wk/dk which was
decreasing and tended to approach 1. According to our
criteria we can ignore components which give ok smaller
than a certain constant (e.g. 1.2). We shall see below
that the two-dimensional (2D) plots of the last simu-
lated component against the next (non-simulated) com-
ponent represented a band (Fig. 1Ca) with the width
comparable to that of the respective plot for the noise,
i.e. passing the above criterion. In practice, on the basis
of the analysis of physiological data (see below) we
used K=5.

3.1.2. Basic PCA analysis
Fig. 1 considers the algorithm implementation using

simulated EPSPs (Fig. 1A) with two components hav-
ing different latencies. The first step was to input the
chosen parts (Section 2.1) of the simulated waveforms
for calculation of the PCA scores. The second step was
to consider the 2D plot of the scores of the two initial
principal components. The illustrated plot (Fig. 1Ba)
represented a parallelogram with an apex at (0, 0)
which was typical for bicomponent simulations. The
next step was to consider similar plots between C1 or C2

and later (C3–C5) components. The C1/C3 plot (Fig.
1Ca) represented a band with the width comparable to
that of the noise indicating the absence of C3 (see
Section 3.1.1). The C3/C4 plot (Fig. 1Cb) was practi-
cally indistinguishable from the noise plot. Bands simi-
lar to Fig. 1Ca were observed for other combinations of
C1 or C2 with later components and the noise clouds
similar to Fig. 1Cb were observed for other compo-
nents which had not been simulated. Summarizing, the
above considerations are in agreement with the simula-
tion of the two-component EPSP.

The band-like plots similar to Fig. 1Ca were ob-
served also when only one component was simulated
(Fig. 2Aa). For simulations of the waveforms with

variable kinetics (Fig. 2Ba) the dots outlined a ‘fan’
starting from (0, 0) coordinate. Non-linear cases (Fig.
2Ca) created curved plots. In the two latter cases (Fig.
2Ba, Ca), the width depended on Sn as well as on the
waveform variability or the degree of the non-linearity,
respectively. For comparison, Fig. 2D illustrates a sim-
ulation of two components with the same latency but
different kinetics. It represented a parallelogram typical
for the bicomponent plots (Fig. 1Ba).

The ‘quantization’ did not change general shapes of
the plots in the linear cases (Fig. 1Bb, Fig. 2Ab and
Db), except separation of the cloud of failures around
the coordinate (0, 0) and additional groupings of com-
ponent scores. Fig. 1Bb illustrates simulations with two
quantal levels and small S6 (see Section 2.2); Fig.
2Ab–Db represent monoquantal responses with S6\
Sn.

3.1.3. Alignment procedure and component
identification

If K is the ‘optimal’ number of components (Section
3.1.1), we can consider the following signal representa-
tion instead of Eq. (1): Sit=�k

k=1 cik fkt+Rit, where Rit

is a small residual which we can ignore. To facilitate
physiological interpretation (Section 2.1) we can define
new functions Flt so that Sit=�K

l=1 CilFlt. We shall look
for Flt in the form: Flt=�K

k=1 Alk fkt. Therefore, fkt=
�K

l=1 A %klFlt where the matrix A% is the inverted matrix
A. Then Cil=�K

k=1 cikA%kl i.e. the coefficients Cil can be
obtained from cik in Eq. (1) by a linear transformation.
To facilitate component identification we performed a
transformation of the 2D plots according to the follow-
ing: (1) The dots around (0,0) coordinate should pre-
serve their position within 92Sn (where Sn is the noise
S.D. for respective component). This condition follows
from the above formulations of the linear transforma-
tion of the coefficients cik into Cil. (2) All Cil should be
positive within 92Sn. This condition is natural for
purely excitatory inputs. (3) The borders of the compo-
nent plots (Fig. 1Ba,b) should be aligned along the
coordinate axes (Fig. 1Da,b). The objective was to
obtain a full range of ‘pure’ component scores for one
input (response component) which corresponds to
about zero values for the other input. This condition
stresses one limitation of our identification procedure:
the presence of response failures for every component
to be unequivocally identified. (4) If the plot contains
gaps (Fig. 1Bb and Fig. 2Db) they should also be
aligned. This condition is natural because the gaps
reflect ‘quantization’ which creates additional borders.
They facilitated the alignment (see below) especially
when N and the number of failures (N0) were low.

Therefore, the further step of our analysis was the
alignment of the visually inspected C1/C2 plots (Fig.
1Ba). We used a computer algorithm based on the
above conditions. The result of the alignment of Fig.
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Fig. 2. Comparison of the PCA of simulated waveforms with one (A–C) and two (D) components. The scores of the two initial principal
components are plotted. Columns a and b represent simulations of non-quantal and monoquantal waveforms, respectively. The simulated
monocomponent EPSPs (A–C) has a stable waveform (A), waveform variations (B) or non-linear measurements (C) based on arctg(x) transform
(Section 2.2) of a stable waveform. (D) Simulations of EPSPs with two components having different response kinetics but the same latency. Note
the band-like shape of the plot in the monocomponent cases (A), the fan-like plot in B, complicated fields in C and the parallelograms in the
bicomponent cases (D).

1Ba is shown in Fig. 1Da. It gave a rectangular plot
typical for bicomponent cases. As noted, the quantiza-
tion (Fig. 1Bb) facilitated the alignment (Fig. 1Db) due
to gaps and additional borders.

The aligned plots were used to interpret the meaning
of the components and to ‘restore’ the simulated wave-
forms. We averaged the waveforms which corresponded
to about 0 scores (within 92Sn) for all coordinates
except one (Fig. 1Db, insets 1 and 2). For example, Fig.
1Db1 was obtained by averaging the waveforms corre-
sponding to the dots along the x-axes with y values
close to 0. Fig. 1Db2 represents the dots along the
y-axes. The recovered components (Fig. 1Db1, 2) were
identical to the simulated waveforms with different
latencies (Fig. 1Aa). Accordingly, the averaging of the
simulations corresponding to both x and y positive
(Fig. 1Db3) was identical to the mixture of the simu-
lated components (Fig. 1Aa). The inflection point (Fig.
1Bb3, arrow) corresponded to the beginning of the
longer latency component.

Fig. 3A illustrates aligned plots for simulations of
two components having the same latency but different
kinetics (Fig. 2D). Insets 1–3 (Fig. 3A) give the results
of the recovery of the simulated components with the
fast (Fig. 3A1) and slow (Fig. 3A2) kinetics as well as
their mixture (Fig. 3A3) using the above averaging
procedure. The result was in complete agreement with
the actually simulated waveforms.

In contrast to the bicomponent cases (Fig. 1D and
Fig. 3A), the alignment of the variable waveforms (Fig.
2B) gave the plot (Fig. 3B) with a negative correlation
and with the shape close to a triangle rather than to a
square. The star in Fig. 3Ba denotes the blank region
without cases with large C1 and C2 scores. This agrees
with the fact that no independent components were
simulated. The plots with waveform variations (Fig.
2B) were more difficult to align, especially with small N
(B200) and large noises (6/SnB2) due to less clear
borders as compared to the bicomponent plots (Fig. 1B
and Fig. 2D). For the variable waveforms (Fig. 3B), the
above averaging procedure resulted in appearance of
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Fig. 3. ‘Alignment’ of the PCA scores and extraction of the simulated waveforms in experiments with simulations of two (A, B) or four (C)
components. The components had different kinetics (A), waveform variations (B) or different latencies (C). (A, B) Transformed (‘aligned’) plots
of Fig. 2D and 2B, respectively, with simulations of non-quantal (a) and monoquantal (b) EPSPs. Note that the parallelograms of Fig. 2D
representing bicomponent waveforms transformed into a square (A) whereas the ‘fan’-like plot for the variable waveform (Fig. 2B) transformed
into a triangle (B). The star indicates the lack of waveforms having large scores for both components. Insets 1–3 in Ab show waveforms obtained
by averaging the EPSP simulations corresponding to different parts of the plots (see Fig. 1D legend for more details). The averages 1 and 2 were
identical to the simulated components with different kinetics; the inset 3 represents the mixture of 1 and 2. Similar averages in B (1–3) reflect
variations of the simulated waveform. (C) Initial (a) and aligned (b) plots from an experiment with simulations of four monoquantal components
with different latencies (5, 15, 25 and 35 conventional units) and fixed rise time (10 units). Insets (0, 0) and 1 show waveforms obtained by
averaging the simulations corresponding to the failure cloud and to the positive x values with about 0 y values, respectively. They contain two
and three additional longer latency components, respectively.

waveforms with different kinetics (Fig. 3B1–3). The
result was also in agreement with the simulations used
for Fig. 3B because the simulated rise and decay times
varied between those obtained in Fig. 3B1 and B3.
However, by itself the result did not decide whether the
initial data (Fig. 2Bb) contained discrete components or
represented a continuum of variable waveforms. Our
simulations showed that to answer this question one
should first analyze the C1/C2 plots (Fig. 2) and to try
to align them (Fig. 3). The rectangular plots without
correlations (Fig. 1D and Fig. 3A) would indicate

occurrence of two independent components whereas a
triangle structure with a blank sector (Fig. 3Ba, star)
would suggest waveform variations.

3.1.4. Simulations of more than two components
The simulations of the variable waveform (Fig. 3B)

imitate also cases with a large number of different
components, each appearing with a low probability.
When three or four independent components were sim-
ulated, the initial C1/C2 plots (Fig. 3Ca) had a more
complicated shape as compared to the parallelograms
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of the bicomponent plots (Fig. 1B). It represented a
hexagon- or an octagon-like field for three or four
simulated components, respectively. The absence of
clear borders made the alignment difficult. It was possi-
ble to perform only at high signal-to-noise ratios (6/
Sn\2.5) with clear quantal groupings (Fig. 3Cb). At
lower 6/Sn or non-quantal simulations, considerations
of the plots of different PCA components could indi-
cate the presence of \2 simulated components, but
their separation was not possible. In the illustrated case
with large latency differences between four simulated
components (Fig. 3C), 16 clouds in 4D space were
observed. After their alignment, every 2D plot ((C1/
C2...C2/C4) contained four clouds as in the illustrated
C1/C2 plot (Fig. 3Cb). Insets in Fig. 3Cb show that the
averaging procedure applied to the 2D plots confirmed
existence of several components but did not separate
them. One characteristic difference from the bicompo-
nent simulations is the presence of the responses at the
average corresponding to about (0, 0) coordinates (Fig.
3Cb). Our algorithm included an option for the averag-
ing in a multidimensional space. In addition to the high
6/Sn, a sufficiently high N0 for each component was
necessary for the complete component separation using
this algorithm.

3.1.5. Exploration of different signal-to-noise ratios
Limits of the resolution of the identification proce-

dures were explored in over 60 simulations of variable
signal-to-noise ratios (Fig. 4), Trise and latencies (Fig.
5). In the experiment of Fig. 4 (column b) we simulated
one biquantal and one monoquantal component with
different latencies. We diminished 6 for the latter from
A to E so that 6/Sn decreased. The width of the failure
cloud (at the (0, 0) coordinate) in Fig. 4Ab and Bb was
comparable to that of the noise cloud (Fig. 4Aa) be-
cause Sn was constant. However the width of the gap
between the upper and lower raws diminished when
6/Sn decreased. Nevertheless, even at 6/Sn=2 (Fig.
4Cb) it was possible to apply the averaging procedure
(Section 3.1.4) to identify C1 (Fig. 4C1) and C2 (Fig.
4C2). At smaller 6/Sn (Fig. 4Db and Eb) the rectangu-
lar plot (Fig. 4Ab–Cb) regressed to a band with the
width comparable to that of the noise cloud (Fig. 4Aa)
so that the plot became similar to those for monocom-
ponent cases (Fig. 2A, Section 3.1.1). Nevertheless, it
was possible to extract C2 (Fig. 4Eb2) using responses
corresponding to the failure cloud. Therefore, the
present algorithm provides a method to identify a com-
ponent with the amplitude well below the noise level
provided that another component has a sufficiently
large N0 and signal-to-noise ratio. Note, however, that
the scores of the noisy component are not suitable for
quantal analysis (see below).

Column c (Fig. 4) shows variations of 6/Sn for both
biquantal components. The groupings and gaps (Fig.

4Ac) became less prominent with decreased 6/Sn (Fig.
4Bc) and disappeared at 6/SnB2 (Fig. 4Dc) so that the
plot became similar to those for non-quantal cases (Fig.
1Da, Fig. 3Aa). At even smaller 6/Sn (Fig. 4Ec), the
plot lost clear borders so that both alignment and
component separation became problematic.

3.1.6. Exploration of different latencies and rise times
In Fig. 1, the component latencies differed for four

times. Fig. 5A and B presents C1/C2 plots before (a)
and after (b) alignment for the same waveforms and
with the same 6/Sn=2.5 but with decreasing differences
(DL) between the latencies of the first and the second
components (L1 and L2). In Fig. 5Aa and Ba the
quantal groupings and gaps were visible and the plots
had clear borders. The alignment was easy to perform
and resulted in the characteristic rectangles (Fig. 5Ab
and Bb). However, at less than two-fold latency differ-
ence the initial plot (Fig. 5Ca) became close to the
band-like monocomponent plots (Fig. 2A). The align-
ment (Fig. 5Cb) did not produce a rectangle with clear
borders so that component separation became generally
unreliable. Nevertheless, averages corresponding to dif-
ferent parts of the plot (Fig. 5Cb1–3) had different
latencies indicating the presence of different compo-
nents. Our simulations showed that when the compo-
nents had different latencies, a criterion for the presence
of two components is the absence of intermediate laten-
cies in the parts of the plot presumably corresponding
to the component mixture (Fig. 5Cb3). Otherwise, the
plot corresponds to latency variations either due to the
intrinsic properties of the response or to noise contami-
nation. It is clear that analogous criterion was impossi-
ble to use for waveforms with different Trise having the
same latencies because the component mixture should
have intermediate Trise independent of whether separate
components exist or not. It should be stressed that
when the plot has no clear borders and the alignment
does not produce a rectangular, the components can be
detected (identified) but not completely separated so
that the scores of the individual components can not be
used for further analysis.

Fig. 5Da illustrates simulations with even smaller
than in Fig. 5Ca latency differences but with two
monoquantal components having 50% difference in 6.
The additional difference improved the groupings and
gave a possibility to resolve the components (Fig. 5D,
insets 1 and 2).

Our simulations showed that the ratio DL/Trise is
more important variable as compared to DL by itself.
Fig. 5 (column c) illustrates experiments with variable
Trise in two components having fixed latencies. Fig. 5Dc
shows that at too small DL/Trise the plot lost parallelo-
gram shape with clear borders (Fig. 5Ac–Cc) so that its
alignment and component separation became impossi-
ble.
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Fig. 4. Simulation experiments aimed to study the PCA algorithm resolution at varying signal-to-noise levels (A–E). Aa and columns b and c
represent C1/C2 plots for the background noise and for two experiments with simulations of bicomponent EPSPs, respectively. The first
component was biquantal with a shorter latency and the second one was monoquantal for b and biquantal for c with four-times longer latency.
Binomials with p=0.5 and n=1 or 2 were used to imitate the quantal release. For b the quantal size (6) was fixed at 6/Sn=5 for the first
component, and it was decreased for the second component from A to E to create various 6/Sn ratios as shown. The actual signal-to-noise ratio
decreased from 2.5 to 0.25 because 50% of C2 simulations represented failures. Note that at 6/Sn]2 (A–C, b) the two components can be clearly
resolved. 1 and 2 in C represent averages obtained with the selection procedure (see Fig. 1D legend). The width of the plots at 6/Sn51 (D, E,
b) was comparable to that of the noise (Aa). Nevertheless, averaging of the failures of the first component (Fig. 4E2) reveals the second component
with amplitude B0.05 as compared to the first component (Fig. 4E1). For column c, amplitudes of both components was diminished relative to
Sn by decreasing 6. At 6/SnB1 (Ec) the plot represents a cloud which can not be aligned because of the lack of distinct borders.

Fig. 6A–C summarizes additional simulations with
variations of 6/Sn, latencies and Trise. The ordinates
present the normalized C2 width in initial (non-aligned)
C1/C2 plots. The dashed line marks the C2 width (1.2)
at which the component resolution became generally
unreliable. Comparisons of circles and squares in Fig.
6A and also of Fig. 6B and C show that the analysis is
more sensitive to latency as compared to Trise differ-
ences. Thus, at equal latencies (Fig. 6C, circles) only

components with several-fold Trise differences could be
resolved at 6/Sn=2. At equal Trise (Fig. 6B), small
relative latency differences could be resolved even at
smaller 6/Sn. It should be stressed that Fig. 6A–C
represents simulations of monoquantal responses and
therefore evaluates the lower limits of the algorithm
resolution. Note also that the algorithm became essen-
tially more sensitive when both latency and Trise were
different (Fig. 6A and C, dots).
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Fig. 5. Simulation experiments to study the PCA resolution with variations of latency differences (DL in a, b) and ratios between the latency
difference and rise times (DL/Trise in c). In a and b, the latency of the second component (L2) was diminished from A to C so that the latency
ratios (L2/L1) were varied as indicated. Averages 1–3 were obtained as in Fig. 1D. At L2/L1B2(Ca) the plot became close to a band and the
alignment became difficult because of the lack of clear borders (Cb). Nevertheless, the averages from different parts of the plot gave waveforms
with different latencies (Cb1 and 2). The short latency of the average from the intermediate area (Cb3) indicates the presence of two components
rather than a continuum of latency variations. Da and b represent a simulation of two monoquantal components with different 6. Note that
separation of the components became easier in spite of even smaller latency differences than in Ca and b. D1 and D2 show averages corresponding
to the adjacent clouds. Db, 1+2 represents their superposition at an expanded time scale to demonstrate the latency difference. Column c
represents simulations of bicomponent EPSPs with different Trise but fixed latencies (5 and 9 conventional units). Note that the plot lost clear
borders and became not suitable for alignment when the latency difference became too small as compared to Trise (Dc). Because Trise was varied
in column c, the width of the window for EPSP measurements was increased from A to D.

3.2. Physiological experiments

3.2.1. Examples of EPSPs and their potentiation
Fig. 7A and Fig. 8A exemplify our recordings. Com-

parisons of the first (EPSP1) and second (EPSP2) re-
sponses show typical paired-pulse facilitation (PPF). A
large increase in EPSP1 amplitude and a decrease in
rise time after tetanus is evident in Fig. 7A and Fig. 8A,
respectively, which reflected LTP. LTP was typically
accompanied by a reduction in N0 (Fig. 7A). In addi-
tion, Fig. 7A (arrow) suggests appearance of EPSPs
with a longer latency.

3.2.2. PCA application to physiological recordings
Fig. 7B–F illustrates PCA of the EPSPs shown in

Fig. 7A. The notch in Fig. 7B (arrow) suggests exis-
tence of EPSPs with different latencies. Fig. 7C1 repre-
sents the first principal component loadings ( f1t from
Eq. (2)) reflecting essential features of the initial part of
the average EPSP (Fig. 7B). The meaning of the second
principal component loadings (Fig. 7C2) is more
difficult to interpret. The C1/C2 scores are plotted in
Fig. 7D. The shape of Fig. 7D (parallelogram similar
the simulated bicomponent plots of Fig. 1Bb and Fig.
2Db) suggested a good component separation. Accord-
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Fig. 6. Summary graphs of simulation and physiological experiments. (A–C) Relative width of the second component in C1/C2 graphs plotted
against signal-to-noise ratios (A), relative latency differences (B) and relative rise times of the second component (C). The relative C2 width is
determined as the ratio of the width of the second component in C1/C2 graphs to that for the background noise. The latency (B) and Trise (C)
differences are expressed as their ratios to Trise of the first component. Monoquantal components were simulated with p=0.5 and various 6/Sn.
Different symbols in A represent simulations with DL/Trise=0.9 and Trise2/Trise1=2.5 (dots), DL/Trise=0.9 (circles) and Trise2/Trise1=2.5
(squares). Trise or latencies were fixed in the experiments shown in B and C, respectively. (D) Distribution of the relative C2 width in physiological
experiments. The dashed lines in A–D indicates the criterion (1.2, see Section 3.1.1) for separation of plots with reliable and unreliable component
separation.

ingly, its alignment represented no difficulties, and the
aligned plot (Fig. 7E1) appeared to be similar to the
simulated plots with quantal components (Fig. 1Db
and Fig. 3Ab). Analogous plot for EPSP2 (Fig. 7E2)
showed a smaller cloud around (0, 0) as compared to
Fig. 7E1 reflecting PPF. To obtain C1 (Fig. 7F1) we
followed the procedure of Section 3.1.3 and averaged
the waveforms corresponding to the dots along x-axes
in Fig. 7E1. We performed analogous procedure to
obtain C2 (Fig. 7F2). C1 and C2 (Fig. 7F1 and 2)
appeared to be alike in their waveforms but their
latencies differed (2.3 and 5.4 ms, respectively). The
responses from the cloud with positive x and y values in
Fig. 7E1 could be interpreted as mixtures of the early
and late components. Accordingly, their average (Fig.
7F3) was similar to the general average (Fig. 7A) and
contained a notch (Fig. 7F3, arrow) corresponding to
the expected transition between the components. The
average (Fig. 7F4) corresponding to the cloud around 0
in Fig. 7E1 confirms that this cloud represented mostly
failures and indicates the absence of additional inde-
pendent components.

Existence of different components in another illus-
trated experiment (Fig. 8A) was suggested by the shape
of the aligned plot (Fig. 8B) and confirmed by the
average waveforms associated with the dots along the

x- and y-axes (Fig. 8C1 and C2, respectively). The
latencies of the components were the same (2.2 ms)
whereas their Trise differed so that they were termed
‘slow’ and ‘fast’, respectively. Fig. 8D and E illustrate
changes of their scores during the experiment.

3.2.3. Distribution of the recorded neurones according
to PCA

Altogether the algorithm was applied to 45 EPSPs
(300–2200 responses for each case). Fig. 6D shows that
in six cases (the bar to the left of the dashed line) the
width of C2 in the C1/C2 plot was close to that of the
noise plot. These cases (Fig. 9A) were similar to the
plots of the simulated monocomponent EPSPs (Fig.
2Ab). Fig. 9Ac suggests that occasional large C2 scores
in Fig. 9Aa were due to spontaneous events. Compari-
son of the averages (Fig. 9Ab1 and 2) corresponding to
different regions in Fig. 9Aa supports the existence of
only one component.

The white bars to the right of the dashed line in Fig.
6D correspond to ten cases with both initial (Fig. 9Ba)
and aligned (Fig. 9Bb) plots having structures typical
for the simulations of variable waveforms (Fig. 2Bb
and Fig. 3Bb, respectively). The averages of the re-
sponses associated with the dots along the x- and the
y-axes and in the intermediate region (Fig. 9Bb1–3)
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Fig. 7. Minimal EPSPs (A, B) and their component analysis (C–F). (A) Superpositions of consecutive single responses (N=50) before (Pretet)
and after (post-tet) tetanic stimulation. Responses to the first (EPSP1) and second (EPSP2) stimuli in the paired-pulse paradigm are shown. The
resting membrane potential (MP) was −61 mV in the beginning and −64 mV at the end of the experiment; the input resistances (R) were 157
and 132 MV, respectively. The small changes either in MP or R did not correlate with the amplitude changes. (B) Average waveform of all
recorded EPSP1. The arrow marks a notch on the rising phase suggesting existence of two components. (C, D) First (C1) and second (C2) principal
components’ loadings and their scores (D) obtained after standard PCA. (E) scores of two initial components for EPSP1 (E1) and EPSP2 (E2)
after the alignment procedure (Section 3.1.3). Note the square shape of the plots with gaps suggesting existence of separate (and quantal)
components (compare with Fig. 3Ab). (F) Separation of EPSP1 into components using the procedure analogous to that illustrated in Fig. 3Ab.
Similar to Fig. 1Db and 3Ab, the responses associated with dots along the x- (F1) and y-axes (F2) represent ‘pure’ short- and long-latency
components, respectively; F3 represents their mixture (arrow marks a notch on the rising phase); F4 represents the average of the trials
corresponding to the cloud around the coordinates (0, 0) in E1 (response failures).

suggest either strong waveform variations in one input
or activation of a large number of presynaptic axons
giving EPSPs with different Trise. In six out of the
ten cases, latency variations (for 1–3 ms) were also
evident.

The dotted bars in Fig. 6D correspond to three cases
with plots without clear borders which could not be
reliably aligned (Fig. 9C). Nevertheless using the strat-
egy elaborated in the simulation experiments (Fig. 5Cb)
it was possible to distinguish these cases from the

waveform (or latency) variation (Fig. 9B) and to detect
two components (Fig. 9Cb1 and 2) with different laten-
cies (for 1, 3 and 3 ms). Differences in Trise (for 5, 6 and
1.5 ms) were also evident in these 3 cases (compare Fig.
9Cb1 and 2). As mentioned above (Section 3.1.6), the
scores of the individual components can not be used for
reliable analysis in such cases.

The hatched and black bars in Fig. 6D represent the
cases with two (N=19) or three (N=7) components
differed in the latency (Fig. 7), Trise (Fig. 8) or both.
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Fig. 8. Minimal EPSPs (A) and their component analysis (B–E) resulting in separation of two components with the same latency. (A)
Superimposed EPSPs induced by paired pulses before and after tetanus as in Fig. 7A. MP was −62 mV in the beginning and −65 mV at the
end of the experiment, R was 148 and 122 MV, respectively. (B) Plot of the scores of two initial components after the alignment procedure. (C)
‘Pure’ first (C1) and second (C2) components obtained by averaging the responses associated with dots along the x- and y-axes in B, respectively
(see Fig. 1Db for more details). Note similar latencies but different kinetics of the ‘slow’ and ‘fast’ components. (D, E) scores of the first (D) and
second (E) components plotted against time for EPSP1 (1) and EPSP2 (2). The arrow marks tetanization. Note similar potentiation time courses
for the respective components of EPSP1 and EPSP2 but different changes for different components suggesting their association with different
synapses.

Altogether the comparison of 40 component pairs gave
eight cases with different (for 0.8–3.0 ms) latencies, but
with Trise similar within 51 ms (Fig. 7) which was
close to the confidence interval for Trise determination.
Trise varied from 4 to 9 ms (6.691.9, N=8; mean
9S.D., here and below) which gave the DL/Trise ratios
from 0.15 to 0.67 (0.3690.19, compare with Fig. 6B).

In five pairs the components differed in Trise (for 3 to 6
ms, 5.291.3 ms) without any latency differences
within the pixel size (0.2 ms). The latencies varied from
2.4 to 5.0 ms (3.591.0 ms, N=5). The other 27 pairs
showed differences in both latencies (from 0.6 to 7.8
ms; 2.591.8 ms) and Trise (from 1.6 to 5.0 ms; 3.89
1.7 ms).
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Fig. 9. Component analysis of three neurones representing a monocomponent EPSP (A), a variable waveform (B) and an EPSP consisting of two
components with different latencies (C). The graphs represent C1/C2 plots before (Aa–Ca) and after their alignment (Bb, Cb) obtained from EPSP
(Aa, B, C) and noise (Ac) measurements. (Aa) A band-like plot similar to the plots for simulated monocomponent EPSPs (compare with Fig. 1Db,
2A). 1 and 2 mark regions corresponding to small (presumably monoquantal) and large (multiquantal) responses, respectively. (Ab) Averages from
the regions 1 and 2 in Aa. The dashed curve in Ab2 represents Ab1 scaled so that its peak amplitude matches that of Ab2 to show that the time
courses are similar for the small (region 1 in Aa) and large (region 2 in Ab) EPSPs. (Ac) Component plot for the background noise obtained from
the same sweeps as used for Aa but for prestimulus periods. Note that the width of the plot along the y-axes is similar to that in Aa suggesting
the absence of a second component in Aa. (B) A ‘fan’- (a) and a triangle- (b) like plots similar to the plots for the simulated waveform variations
(compare with Fig. 2Bb and Fig. 3Bb). The meaning of 1–3 in Bb and Cb is the same as in Fig. 1Db. (C) A plot without clear borders not
allowing complete separation of two waveforms. Nevertheless, the presence of two different waveforms rather than waveform variations was
detected with comparison of averages from different parts of the plot (1–3 in Cb): the latency of the average from the intermediate part (Cb3)
was as short as the latency of the average Cb1 rather than intermediate between the latencies of Cb1 and Cb2.

3.2.4. Beha6iour of different components during LTP
The algorithm allowed us to study changes of the

separate EPSP components resulting from different
physiological and pharmacological challenges. Fig. 8D
and E illustrate this possibility and show different
post-tetanic changes of separate components. The
‘slow’ component was potentiated immediately after the
tetanus (Fig. 8D), slightly increased during the first
hour post-tetanus, was rather stable over about 1 h
more and declined afterwards even below the pretetanic
level. In contrast, the ‘fast’ component (Fig. 8E1) was

practically absent before tetanus: very rare large scores
were visible only in responses to the second pulse (Fig.
8E2). Small responses appeared soon after tetanus
(more clear in EPSP2, Fig. 8E2). Large responses ap-
peared about 40 min later (Fig. 8E1). Note also only
rare EPSP2 failures about 1.5 h post-tetanus (Fig. 8E2)
and ‘all-or-none’-like behaviour of both EPSP1 and
EPSP2 so that mostly large and zero values appeared.
The fast component (Fig. 8E) slowly declined after-
wards, but the time-course of its decline was different
from that of the slow component (Fig. 8D) and it
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Fig. 10. Deconvolution analysis of the peak amplitudes (A) and of the first component scores (B). The latter were obtained with the standard PCA
before the alignment procedure. The data were taken from the neurone shown in Fig. 7A. Experimental and predictive distributions are given by
dashed and continuous lines, respectively. The deconvolved distributions are shown as bars (Pi refers to their probabilities). I–III correspond to
different periods before (I) and after (II, III) tetanus. The insets give the mean amplitude (E), estimated quantal size (6), mean quantal content
(m), noise S.D. (Sn) and sample size (N, see B). Note more regular distances between the bars in B (I and III) as compared to A but similar m
values (except region III) and general similarity of the amplitude changes.

persisted until the end of the recording. The delayed
(for 15–60 min) but persistent potentiation of one
component (Fig. 8E and Fig. 11D) with the immediate
but decrementing (after about 1.5 h) potentiation of the
other one was observed in both illustrated neurones
(Figs. 8 and 11) and in several other cases which will be
analyzed in details elsewhere.

3.3. Decon6olution analysis of the component scores

Dashed lines and bars in Fig. 10A show peak EPSP
amplitudes and deconvolution solutions, respectively.
Although the distances between the bars were not al-
ways uniform, the formal analysis showed about two-
fold increase in 6 after tetanus (Fig. 10AII) with a
larger increase in m. The predominant increase in m
agrees with our previous results obtained with both
sharp electrode (Voronin, 1993) and whole cell (As-
trelin et al., 1997; Voronin et al., 1997) recordings (see
also Stevens, 1993; Voronin, 1993; Larkman and Jack,
1995 for similar results of other groups). Fig. 10B
shows the analysis of initial C1 scores obtained before
their alignment. The general result was similar to that
in Fig. 10A although the distances between the bars
were more uniform and the relative post-tetanic in-
crease in 6 was smaller (Fig. 10BII) and non-existent for
the later LTP period (Fig. 10BIII).

Fig. 11 illustrates PPF (Fig. 11A, B) and quantal
analysis (Fig. 11C and D) of the separate components
of the same EPSP. We stress several points which were
not possible to see from the analysis of the compound
measurements (Fig. 10). (1) Transient potentiation of
the early component (Fig. 11A and C). (2) Very large
persistent LTP of the late component, especially for
EPSP1 which was practically absent before tetanus
(Fig. 11B, x-values, 11D1) so that it represented a
‘virtually silent’ synapse before LTP induction. How-
ever, the scores of the EPSP2 components were signifi-
cantly different from 0 before tetanus (Fig. 11BI,
y-values, Fig. 11D2,I) so that the synapse was ‘presy-
naptically’ (Torii et al., 1997) rather than ‘postsynapti-
cally silent’ (Durand et al., 1996). (3) No significant 6
increases for either first (Fig. 11CII) or second (Fig.
11D2,II) component during the early LTP period. (4)
About two-fold increase in the estimated 6 for the late
EPSP2 component lately post-tetanus (Fig. 11D2,III) as
compared to the pretetanic period (Fig. 11D2,I, see also
Fig. 11D1,III).

4. Discussion

We applied PCA to minimal EPSPs. One peculiarity
of this application in comparison with the previous
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Fig. 11. Plots of component scores for two EPSPs in the paired pulse paradigm (A, B) and deconvolution analysis of separate components (C,
D). Similar to Fig. 10, the data were taken from the experiment illustrated in Fig. 7A but the separate scores of the early and late components
(Fig. 7F) were used. Comparison of the pretetanic (I) and post-tetanic (II, III) regions in A and B demonstrates very large (AII) but transient
(AIII) potentiation of the early component and persistent potentiation of the late component (BII, III). The deconvolution analysis (C, D) is
shown for the EPSP1 of the early component and for both EPSP1 (D1) and EPSP2 (D2) of the late component. The scales for bars (Pi=0.2, see
CIII) are given to the left of each graph. See Fig. 10 for other notations. Quantal parameters for CIII and D1,I are not given because of very
small number of positive scores (‘virtually silent’ synapses, see below). Note that for the early component (CI,II) the estimated 6 did not change
significantly after tetanus, whereas for the late component (D2) the apparent 6 increased about twofold during the late LTP period (D2,III) as
compared to the pretetanic control (D2,I). Note also that the late component was almost non-existent before tetanus if one considers EPSP1 (BI,
DI) i.e. it represented a ‘virtually silent’ synapse. However, occasional large EPSP2 (BI, D2,I) suggest that active postsynaptic receptors were
present and the synapse was ‘presynaptically silent’.

electrophysiological studies (Glaser and Ruchkin, 1976;
Barth and Di, 1992; Chapman and McCrary, 1995) is
that we used single (non-averaged) responses as the
input data. Therefore the results can be used for further
analysis of single trials. The standard PCA (Fig. 1B)
gives C1 scores which can be used instead of conven-
tional amplitude or slope measurements. Such ‘covari-

ance amplitudes’ (Fig. 10B) utilize more information
about the waveform and are more reliable as compared
to the conventional measures (Chapman and McCrary,
1995).

As noted by many authors who recorded electrical
evoked potentials (e.g. Collet, 1989), the physiological
meaning of the PCA components might be uncertain.
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To facilitate the interpretation we elaborated proce-
dures for extraction of distinct waveforms. We showed
that hippocampal minimal EPSPs can be often sepa-
rated into two components with different latencies and/
or time courses. The simplest interpretation of this
result is activation of more than one presynaptic fibre
or release site (see Section 1, Introduction). Indeed,
even a single axon branch can contact two to four
different dendrites of a target CA1 neurone (Harris and
Kater, 1994) so that the related synapses can be spa-
tially remote and produce EPSPs with different laten-
cies and kinetics. In addition to the Schaffer collaterals
and local circuit connections (Thomson and Deuchars,
1995) polysynaptic pathways can be activated. Their
activation demands further analysis but our preliminary
evaluations showed approximately similar latency vari-
ations for early and late components. We believe that
significant polysynaptic activation was unlikely under
our conditions (minimal stimulation, TTX, cut between
CA3 and CA1).

The interpretation of the EPSP components based on
activation of different synaptic sites is supported by our
simulation experiments with known component number
and characteristics. The plots of the component scores
appeared to be strikingly similar in the simulation and
physiological experiments. Several additional observa-
tions are compatible with physiological meaningfulness
of the EPSP components. (1) When different compo-
nents were suspected from considerations of single (Fig.
7A) or average (Fig. 7B) responses, PCA produced
expected components. (2) Comparison of EPSP1 and
EPSP2 gave expected results: the same respective com-
ponents, characteristic PPF, parallel post-tetanic
changes, smaller post-tetanic increases for EPSP2 as
compared to EPSP1 scores. The later observation
agrees with post-tetanic decreases in PPF under our
conditions (Sokolov et al., 1997; see also Kuhnt and
Voronin, 1994; Kleschevnikov et al., 1998). (3) Dissimi-
lar changes of different components with time confirm
that they represented independent identities. (4) PCA of
the background noise produced about zero scores with
occasional large values which typically corresponded to
spontaneous events similar to EPSPs by their wave-
forms. (5) Responses with about zero scores usually
represented failures.

The existence and heterogeneous behaviour of differ-
ent components have several implications. As an exam-
ple we shall briefly discuss their relation to LTP phases
(Bliss and Collingridge, 1993; Reymann, 1993). Our
recording period corresponded to two presumed phases:
LTP1 (termed also STP which covers initial 15–60 min
according to different works) and LTP2 (which devel-
ops slower and lasts up to 3–4 h). There is no general
agreement on LTP1 and LTP2 mechanisms. For exam-
ple, LTP1 was explained by primarily pre- (Bliss and
Collingridge, 1993; Voronin, 1993; Kullmann et al.,

1996) or postsynaptic (Malenka and Nicoll, 1993; Ed-
wards, 1995; Xiao et al., 1996) modifications. The
present data suggest a new view indicating that differ-
ent synaptic sites (or even inputs) may be responsible
for different phases. The delayed (15–60 min) potentia-
tion of one of the components suggests that LTP2 may
be due to morphological changes. Appearance of
synapses with completely separated transmission zones
(Geinisman et al., 1993) represents a plausible possibil-
ity (see Edwards, 1995; Voronin et al., 1995). These
synapses may synchronously release two or several
quanta and produce large EPSPs with ‘all-or-none’
behaviour (Volgushev et al., 1995). Both the character-
istics of the components with delayed LTP (Fig. 8E,
11BIII, compare with figure 2b and figure 6b in Volgu-
shev et al., 1995 respectively) and apparent 6 doubling
(Fig. 11D2) are consistent with this scenario (see
Voronin et al., 1995; Kleschevnikov et al., 1997 for
additional discussions).

Summarizing, we demonstrated that PCA is applica-
ble to minimal EPSPs. We described procedures which
separate physiologically meaningful EPSP components
presumably arising from activation of different fibres or
release sites. Under realistic signal-to-noise ratios (\
2–3) the algorithm can resolve components with about
0.8–1 ms latency or about 3 ms Trise differences. In
practice the sensitivity is often even higher (0.6 and 1.6
ms, respectively) because differences in both latency
and Trise are common. From the methodological point
of view, the PCA application can be considered as a
way to substitute recordings of single fibre EPSPs for a
less laborious and more stable recordings of minimal
EPSP. In addition, the component analysis can be used
for more precise analysis of unitary PSPs separating
activation of different transmission zones.
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