
When it is on, adipogenesis is repressed;
when it is off, adipogenesis is initiated. The
crucial role of Wnt signaling in the adipo-
genic program is emphasized by the finding
that in its absence, myoblasts are repro-
grammed to the adipocyte lineage and un-
dergo spontaneous differentiation.
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Calcium Sensitivity of
Glutamate Release in a

Calyx-Type Terminal
Johann H. Bollmann,1* Bert Sakmann,1 J. Gerard G. Borst1,2

Synaptic efficacy critically depends on the presynaptic intracellular calcium
concentration ([Ca21]i). We measured the calcium sensitivity of glutamate
release in a rat auditory brainstem synapse by laser photolysis of caged calcium.
A rise in [Ca21]i to 1 micromolar readily evoked release. An increase to .30
micromolar depleted the releasable vesicle pool in ,0.5 millisecond. A com-
parison with action potential–evoked release suggested that a brief increase of
[Ca21]i to ;10 micromolar would be sufficient to reproduce the physiological
release pattern. Thus, the calcium sensitivity of release at this synapse is high,
and the distinction between phasic and delayed release is less pronounced than
previously thought.

In response to an action potential, the presyn-
aptic release probability is strongly increased
for a few milliseconds. This phasic release is
thought to be triggered by a brief, localized
increase in [Ca21]i in the vicinity of open,
presynaptic Ca21 channels. The Ca21 sensitiv-
ity of phasic release in mammalian central syn-
apses is not yet known. On the basis of results
obtained in other synapses, it has been assumed
that a low-affinity Ca21 sensor, which is acti-
vated by local increases of [Ca21]i to .100
mM, triggers phasic release in mammalian cen-

tral synapses (1–4). In contrast, the more pro-
longed, delayed release period that, at most
synapses, follows the phasic release may be
controlled by a separate Ca21 sensor with a
much higher affinity for Ca21 (5).

We measured the Ca21 sensitivity of gluta-
mate release at a giant synapse in the auditory
brainstem, the axosomatic synapse formed by
the calyx of Held with a principal cell in the
medial nucleus of the trapezoid body. Using
laser photolysis of caged Ca21, we compared in
the same terminals release evoked by a sus-
tained, spatially uniform rise in presynaptic
[Ca21]i (6) with release triggered by action
potentials, during which changes in [Ca21]i are
transient and highly localized (3). In 9-day-old
rats, this synapse shows prominent synaptic
depression during high-frequency signaling,
which is most likely caused by rapid depletion
of the releasable pool of vesicles (6–8). In

order to relate the flash-evoked excitatory
postsynaptic currents (EPSCs) to the size of the
releasable pool in the same terminal, we first
estimated the releasable pool size in the intact
terminal. Simultaneous pre- and postsynaptic
recordings were made from the calyx and a
principal cell (9). With the presynaptic record-
ing still in the cell-attached configuration, a
train of action potentials was evoked by an
extracellular electrode (Fig. 1A). A measure of
release was obtained from the amplitudes of the
glutamatergic EPSCs simultaneously recorded
in the principal cell. During the train, the size of
the EPSCs rapidly depressed, reaching a steady
state within 100 ms. The cumulative amplitude
of the EPSCs evoked by a train of afferent
stimuli (200 ms, 200 Hz) was taken as a mea-
sure of the size of the releasable pool (7). This
estimate was corrected for the steady-state com-
ponent in the EPSCs (Fig. 1B). The cumulative
EPSC was 29.7 6 0.7 nA (n 5 43, mean 6
SEM) at a holding potential of 230 mV. The
quantal EPSC amplitude was 232 6 2 pA (n 5
10 cells) at 280 mV. Assuming that the release
of one vesicle gives an EPSC amplitude of 212
pA at 230 mV, this gave a releasable pool size
of 810 6 60 vesicles (6, 7). The amplitude of
the first EPSC was 21 6 2% (n 5 43) of the
amplitude of the cumulative EPSC. Taking the
decay of the quantal EPSC into account, this
means that about one-quarter of the releasable
vesicle pool is released by a single action po-
tential. In the presence of cyclothiazide, the 20
to 80% rise time of a single action potential–
evoked EPSC was 424 6 11 ms (n 5 43). Its
time course was not different at holding poten-
tials of 280 and 230 mV (paired t test, P .
0.05; n 5 7).

After establishing the whole-cell configura-
tion, the terminal was loaded via the patch
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pipette with a solution containing the ultravio-
let (UV)-sensitive Ca21 buffer DM-nitrophen
(DM-n) (10) and a low-affinity Ca21 indicator.
This enabled us to evoke transmitter release by
rapidly uncaging Ca21 by laser photolysis of
DM-n (11–13). The spatially uniform rise in
[Ca21]i to levels between 0.5 and 100 mM was
monitored with a photodiode (Fig. 1C), starting
;200 ms after the UV pulse. At this point, the
rapid decay component of the transient [Ca21]i

spike (11, 14) had already subsided (15). The
measured [Ca21]i decayed by about 30% in 50
ms. The increase in [Ca21]i induced a small,
slow outward current in the presynaptic termi-
nal that was not further investigated. Laser pho-
tolysis triggered EPSCs, whose amplitude de-
pended on the [Ca21]i levels that were reached.
Increases in [Ca21]i to concentrations of 7 mM
and higher evoked an EPSC with an amplitude
that was as large as the cumulative amplitude of
the EPSCs evoked by the brief afferent stimulus
train before the whole-cell configuration was
established (Fig. 1D). At lower [Ca21]i the
laser-evoked EPSCs were smaller (Figs. 1D
and 2A), probably because of the decay of the
quantal EPSCs during the rising phase of these
slower EPSCs. Therefore, our results suggest
that the measured increases in [Ca21]i after
laser photolysis targeted the same, kinetically
distinct, pool of vesicles as released by the
transient, localized increase in [Ca21]i after an
action potential (6).

We estimated the release rate per single
vesicle after a [Ca21]i jump. Larger in-
creases in [Ca21]i evoked EPSCs with a
smaller delay and a shorter rise time (Fig.

2A). Apparently, the time needed to deplete
the releasable pool depended on [Ca21]i,
suggesting that a sustained increase in
[Ca21]i of .4 mM was sufficient to deplete
the releasable pool of vesicles on a milli-
second time scale. The rising phase of the
compound EPSCs could therefore be used
to calculate release rates (16 ). The peak
release rate during a laser-evoked EPSC
was divided by the estimated number of
releasable vesicles for the same synapse,
thus correcting for pool size variability be-
tween synapses. In contrast to results ob-
tained in other preparations (17, 18), there
was no clear threshold for transmitter re-
lease. [Ca21]i increases to ;1 mM, which
is close to the [Ca21]i during the delayed
release phase in the calyx of Held (19),
triggered a sequence of individually resolv-
able quantal EPSCs (Fig. 2B). Their fre-
quency provided a direct measure of the
evoked change in release rate. The calcu-
lated release rate varied more than 10,000-
fold as [Ca21]i varied from 0.5 to 100 mM
(Fig. 2C) (20, 21). The fastest rise times of
the laser-evoked EPSCs measured were
220 6 12 ms (n 5 4), corresponding to a
maximal release rate of ;6 ms21 per ves-
icle. The delay from the UV pulse to the
start of the EPSC was less than 0.3 ms at a
[Ca21]i of .30 mM, whereas at a [Ca21]i

of ;1 mM, the delay to the first quantal
EPSC was still on average ,10 ms (Fig.
2D). This indicates that the Ca21 sensor
binds Ca21 rapidly before it triggers the
final steps of transmitter release.

We fitted the relation between peak re-
lease rate and [Ca21]i using a kinetic model
of the Ca21 sensor and its interaction with the
releasable vesicles (Fig. 2C). The model fea-
tures five identical Ca21-binding steps, fol-
lowed by a final, reversible, Ca21-indepen-
dent isomerization step that promoted vesicle
fusion (22). A satisfactory prediction of the
[Ca21]i dependence of both the release rates
and the delays was obtained with the param-
eters given in (22). Although this parameter
set was not unique, several conclusions could
be drawn from the fitting procedure. To re-
produce the fast depletion of the pool at high
[Ca21]i, a large isomerization rate constant
and fusion rate constant were needed. To
reproduce the apparent saturation of release
rates at [Ca21]i of .30 mM, a dissociation
constant (Kd) of ;10 mM for the individual
binding steps was needed, not very different
from the estimated affinities of the Ca21

sensor that triggers the release of large dense-
core vesicles (23–25), but clearly lower than
previously estimated for the release of clear
vesicles from bipolar cells of the goldfish
retina (26).

The laser photolysis experiments can be
used to calculate the typical [Ca21]i transient
observed by a Ca21 sensor during action po-
tentials (27). The rise times of the action po-
tential–evoked EPSCs indicated that peak re-
lease rates were 0.42 6 0.04 ms21 per vesicle
(n 5 43). A sustained increase of [Ca21]i to 5
mM gave release rates similar to the ones ob-
served during action potentials (Fig. 3A). This
concentration is therefore a lower estimate, be-
cause the peak [Ca21]i reached during an action
potential will be reached only very briefly and
will not trigger release as efficiently as a steady
increase to the same level.

An upper estimate can be obtained for the
[Ca21]i transient peak value for the hypothet-
ical situation that all release sites faced the
same [Ca21]i transient. We assumed that the
time course of the [Ca21]i transient at the
Ca21 sensor is not faster than the Ca21 cur-
rent during an action potential (Fig. 3B),
which was measured previously (22, 28).
With this time course, the amount of release
evoked by the simulated [Ca21]i transient
matched the release evoked by real action
potentials if the peak [Ca21]i was ;9 mM.
This estimate was largely model-indepen-
dent. After adjustment of the parameters of
other kinetic models (24, 26, 29) to satisfy the
relation between [Ca21]i and release rates, a
similar estimate was obtained (30). Assuming a
linear relation between Ca21 influx and the
peak of the [Ca21]i transient, the simulated
action potential–evoked release shared several
features with the experimentally characterized
release. Delays and rise times of EPSCs were
largely independent of the amount of Ca21

influx during the action potential (28), although
for very high Ca21 influx, a decrease in the

Fig. 1. Rapid depletion of
the releasable vesicle
pool by [Ca21]i jumps.
Data in (A) to (C) are
from the same synapse.
(A) A high-frequency
train of afferent stimuli
induced presynaptic ac-
tion potentials (Ipre, pre-
synaptic cell-attached
voltage-clamp record-
ing) and EPSCs (Ipost,
postsynaptic whole-cell
voltage-clamp record-
ing). Vertical scaling as
in (C). Postsynaptic
holding potential was
230 mV. Stimulus arti-
facts have been re-
moved. (B) The peak-to-
peak amplitudes of the
individual EPSCs shown
in (A) were summed (F) to estimate the releasable pool size in the intact terminal. The solid line is a linear
regression of the steady-state component of the train. Back-extrapolation to the start of the train gave an
estimate for the cumulative amplitude of the train in the absence of pool replenishment (6). (C) After
presynaptic whole-cell dialysis, a UV laser pulse (arrow) evoked a rapid and sustained [Ca21]i increase (top
trace) to 26 mM. The increase in [Ca21]i resulted in a rapid, large EPSC (bottom trace), whose amplitude
approximated the (corrected) sum of the amplitudes of the EPSC train in (A). Its amplitude was larger and
its rise time was faster than the action potential–evoked EPSC in the same terminal. Pre- and postsynaptic
holding potentials were 280 and 230 mV, respectively. (D) Relative size of the EPSC evoked by the UV flash
compared with the cumulative EPSC amplitude evoked by afferent trains in the same terminals, displayed on
log-log coordinates. Data were pooled from 26 experiments.
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synaptic delay and the rise time was observed.
The time course of the release probability
matched the experimentally observed time
course (28). The model predicted a fourth-pow-
er dependence of EPSC amplitudes on external
[Ca21], somewhat higher than previously mea-
sured (6). Our results do not indicate that Ca21

sensors never experience [Ca21]i of .10 mM
during action potentials. However, they suggest
that, in contrast to earlier suggestions (1–4),
most Ca21 sensors in the calyx of Held do not
experience [Ca21]i of hundreds of mM, because
even if they were exposed for a brief period,
release during action potentials would be faster
and larger than experimentally observed.

We conclude that transmitter release from
the calyx of Held exhibited a high Ca21 sensi-
tivity compared with previous estimates for the
release of clear vesicles from other synapses
(18, 26). Our characterization of the Ca21 sen-
sitivity of synaptic transmitter release may be of
use in identifying possible Ca21 sensors and in
elucidating the molecular mechanisms of
transmitter release. For example, synaptotag-
min I and II are prominent candidates for the
Ca21 sensor that triggers phasic release (2,
4). Our results suggest that its binding to
syntaxin is unlikely to be involved in the final
steps before fusion at the calyx of Held be-
cause it requires very high [Ca21]i (2). Syn-

aptic terminals contain a plethora of other
Ca21-binding proteins with a higher affinity
for Ca21, which may be considered as alter-
native candidates for the Ca21 sensor (4).

We recorded from calyces of young rats, and
the Ca21 sensitivity of release may change dur-
ing development. However, the observed high
sensitivity agrees with other observations. First,
[Ca21]i of ,10 mM evoke substantial release in
the squid giant synapse (31, 32) and in the
crayfish neuromuscular junction (33). Second,
the slow Ca21 buffer EGTA not only abolishes
delayed release (28, 34, 35), but also affects
phasic release at many synapses (28, 34, 36).
[Ca21]i of hundreds of mM are reached only in
the immediate vicinity of open Ca21 channels,
where EGTA would be ineffective. Third, at the
frog neuromuscular junction, EGTA inhibits re-
lease, but not the Ca21-dependent potassium
channels. This suggests that the Ca21 sensor
for release is farther away from the Ca21

channels than the Ca21-dependent potassium
channels (37). At the cultured neuromuscular
junction, simulations suggest that [Ca21]i is
,10 mM in most regions of a presynaptic
Ca21 entry site (38). Combined with our re-
sult that a low-affinity Ca21 sensor is not a
prerequisite for phasic transmitter release,
these results suggest that the high Ca21 sen-
sitivity of phasic release at the calyx of Held

may be a property of many synapses.
The phasic-release Ca21 sensor equilibrated

rapidly to changes in [Ca21]i and triggered
release with a high maximal speed, much faster
than for dense-core vesicles (39). However, the
Ca21 sensitivity observed in the calyx was not
very different from the sensitivity of the release
of large dense-core vesicles in, for example,
melanotrophs (23). Similar Ca21-binding
mechanisms may therefore be at work. Finally,
because the Ca21 sensor that triggers phasic
release has relatively high Ca21 sensitivity, it
may be predicted that delayed release is to a
large extent a consequence of a delayed trigger-
ing of the same sensor, rather than a result of
the triggering of a different sensor with much
higher affinity.
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Uptake of Glutamate into
Synaptic Vesicles by an

Inorganic Phosphate
Transporter

Elizabeth E. Bellocchio,* Richard J. Reimer,* Robert T. Fremeau Jr.,
Robert H. Edwards†

Previous work has identified two families of proteins that transport classical
neurotransmitters into synaptic vesicles, but the protein responsible for ve-
sicular transport of the principal excitatory transmitter glutamate has remained
unknown. We demonstrate that a protein that is unrelated to any known
neurotransmitter transporters and that was previously suggested to mediate
the Na1-dependent uptake of inorganic phosphate across the plasma mem-
brane transports glutamate into synaptic vesicles. In addition, we show that this
vesicular glutamate transporter, VGLUT1, exhibits a conductance for chloride
that is blocked by glutamate.

Synaptic transmission involves the regulated
exocytotic release of neurotransmitter. Be-
cause most classical transmitters are synthe-
sized in the cytoplasm, they require transport
into the secretory compartment for exocytotic
release, and synaptic vesicles exhibit multiple
distinct transport activities (1, 2). All of these
active transport processes depend on the pro-
ton electrochemical gradient (DmH1) across
the vesicle membrane generated by the vac-
uolar H1-dependent adenosine triphos-
phatase (H1-ATPase) (3) and involve the
exchange of lumenal protons for cytoplasmic
transmitter. In particular, the transport of
monoamines and acetylcholine (ACh) de-
pends primarily on the chemical component
(DpH) of DmH1 (4, 5), whereas the transport
of glutamate depends predominantly on the
electrical component (DC) (6, 7). Accumu-
lation of the inhibitory transmitters g-ami-
nobutyric acid (GABA) and glycine relies on
both DpH and DC (8, 9). Consistent with the
observed differences in mechanism, the ve-
sicular transporters for monoamines and ACh
belong to a family of proteins distinct from

the vesicular GABA transporter (VGAT) (2).
VGAT shows greater dependence on DC
than do the vesicular monoamine and ACh
transporters (10), suggesting that the vesicu-
lar glutamate transporter, which depends pre-
dominantly on DC, might belong to the same
family of proteins defined by VGAT. Al-
though several other proteins related to
VGAT appear to have a role in the recycling
of glutamate through glutamine at excitatory
synapses (11–14), none have been implicated
in vesicular glutamate transport.

The brain-specific Na1-dependent inor-
ganic phosphate transporter (BNPI) belongs
to a family of proteins that use the inwardly
directed Na1 gradient across the plasma
membrane to cotransport inorganic phosphate
(Pi). Originally identified as a sequence up-
regulated by the exposure of cerebellar gran-
ule cells to subtoxic concentrations of N-
methyl-D-aspartate, BNPI mediates the Na1-
dependent accumulation of Pi in Xenopus
oocytes (15). Additional work has implicated
BNPI in adenosine 59-triphosphate (ATP)
production by neurons and protection against
excitotoxic injury (16, 17). However, BNPI
is only expressed by glutamatergic neurons
(18), militating against a general metabolic
role in all neuronal populations. In Caenor-
habditis elegans, genetic screens for multiple
behavioral defects have identified mutants in
the BNPI ortholog eat-4 (19, 20), and recent
studies indicate a specific role for eat-4 in

glutamatergic neurotransmission (21). The
glutamatergic defect in eat-4 mutants ap-
pears to be presynaptic, consistent with the
localization of BNPI to excitatory nerve
terminals (21, 22). The accumulation of
cytoplasmic Pi mediated by BNPI may ac-
tivate the phosphate-activated glutaminase
responsible for biosynthesis of the bulk of
glutamate released as a neurotransmitter
(22–25). However, the family of proteins
including BNPI/EAT-4 may have functions
in addition to Pi transport.

BNPI shows sequence similarity to type I
but not type II Na1/Pi cotransporters. In con-
trast to the type II transporters that exhibit
robust Na1-dependent Pi uptake, the accumu-
lation of Pi by type I transporters is less
striking (26-28). Rather, the type I transporter
NaPi-1 transports organic anions, including
phenol red and penicillin G, with substantial-
ly higher apparent affinity than Pi (28). Hu-
man genetic studies have shown that muta-
tions in another protein closely related to
BNPI and NaPi-1 account for disorders of
sialic acid storage (29). In these conditions,
sialic acid accumulates in lysosomes because
of a defect in proton-driven export (30–33).
Although the sialin protein (29) has not been
demonstrated to mediate sialic acid transport,
these observations together with the report
that NaPi-1 accumulates organic anions with
high apparent affinity suggest that BNPI
might also transport organic anions. Local-
ization to glutamatergic nerve terminals rais-
es the possibility that it transports glutamate.
In addition, BNPI is localized to synaptic
vesicles in the brain (22) and to intracellular
membranes in transfected cells (34), suggest-
ing a role for BNPI in the transport of gluta-
mate into synaptic vesicles for regulated exo-
cytotic release. To determine whether BNPI
mediates the transport of glutamate into syn-
aptic vesicles, we transfected the rat BNPI
cDNA into rat pheochromocytoma PC12
cells (35), which lack detectable endogenous
BNPI protein (34). We then prepared a pop-
ulation of light membranes, including synap-
tic-like microvesicles, from the transfected
and untransfected cells (10) and tested their
ability to accumulate 3H-glutamate in the
presence of 4 mM chloride and ATP (36),
conditions that optimize glutamate accumu-
lation by native synaptic vesicles (6, 7).
Membranes from the transfected cells exhib-
ited an uptake of glutamate that was two to
four times the uptake by membranes from

Departments of Neurology and Physiology, Graduate
Programs in Neuroscience, Cell Biology, and Biomed-
ical Sciences, University of California at San Francisco
School of Medicine, 513 Parnassus Avenue, San Fran-
cisco, CA 94143–0435, USA.

*These authors contributed equally to the work.
†To whom correspondence should be addressed. E-
mail: edwards@itsa.ucsf.edu

R E P O R T S

www.sciencemag.org SCIENCE VOL 289 11 AUGUST 2000 957


