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Supplementary Note

Autoassociative recall as probabilistic inference

We first specify the task for autoassociative recall in a normative manner1,2. This spec-
ification leads to a natural account of the dynamics of the neurons during recall, whose
form is largely determined by the learning rule. Unfortunately, the full dynamics in-
cludes terms that are not purely local to the information a postsynaptic neuron has
about presynaptic activity. We therefore consider approximations that are based on ba-
sic biological constraints. The simulations (Fig. 2, and Supplementary Fig. 1) verify
that the approximations are not disastrous for memory.

The posterior distribution over activity patterns

Consider a device that has stored information about M traces x
1 . . .xM . In each re-

trieval trial, it is presented with an input x̃, the recall cue, which is supposed to be a
noisy version of one of the previously stored traces. A complete description of its task
then is to report a distributionP [m|x̃] as to the posterior probability that memory trace
x

m was the source of noisy input x̃. Importantly, several potential candidates will have
a probability greater than one to be the correct trace that should be recalled. Uncer-
tainty arises because of input noise. Depending on a loss function, which quantifies the
cost of retrieval errors, it is also possible to consider related tasks such as reporting the
single most likely trace.

In the case we consider, the patterns are represented on a network ofN neurons re-
currently coupled with weights W. Further, rather than reporting the distribution over
the indices of the memory traces, the network should retrieve the posterior distribution
P[x|x̃,W] over the activities of all the neurons x, also given the weights. This means
that we aim ideally to compute the probability for any given activity pattern x that it
is the correct pattern to recall given that the network receives input x̃ and has synaptic
weights W, and therefore we consider methods that work in the full space of activities
x. This posterior has added uncertainty which arises since biological synaptic plastic-
ity rules are data-lossy ‘compression algorithms’ (see main paper), and so W specifies
only imprecise information about the stored traces, in particular not being restricted to
just x ∈ {xm}.

The posterior distribution can be decomposed into three terms, following Bayes’
rule:

P[x|x̃,W] ∝ P[x] P[x̃|x] P[W|x] (S1)
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The terms in Equation S1 can be regarded as providing answers to the three different
questions that can be asked about a particular pattern x in this setting.

• ‘How probable is it in general that x could be one of the patterns stored?’ The
first term in Equation S1, P[x], specifies prior knowledge as to the statistical
characteristics of the memories: it describes the distribution from which memory
traces are drawn, and therefore gives the probability that x could be one of those
stored previously without considering any further information. We assume that
it factorizes, i.e. the activity of each neuron is generated independently from the
others when memory traces are constructed: P[x] =

∏

i Px[xi].

• ‘How likely is it that input x̃ is a noisy version of x?’ The second term in Equa-
tion S1, P[x̃|x], describes the noise process corrupting the inputs: it describes
the distribution from which input x̃ is drawn if memory trace x is to be retrieved.
For unbiased noise it will be a term in x that is effectively centered on x̃. We also
assume that the noise corrupting each element of the patterns is independent, and
independent of the original pattern, so P[x̃|x] =

∏

i P[x̃i|x] =
∏

i P[x̃i|xi].

• ‘How likely is it that weight matrix W came about by storing x among other
patterns?’ The third term in Equation S1, P[W|x], assesses the likelihood that
the weight matrix came from storing a training set of size M including pattern
x, together with M − 1 other unspecified patterns coming from the prior distri-
bution. (Uncertainty about M could also be incorporated into the model, but is
neglected here.) This distribution is complicated in x-space, but we show below
that, under some simple assumptions about the nature of synaptic plasticity, it
will be Gaussian in W-space, to a good approximation.

Under our abstraction of synaptic plasticity, the learning updates for the synapse from
neuron j to neuron i are local to the presynaptic (xm

j ) and postsynaptic (xm
i ) activities

of connected neurons when pattern x
m is stored:

∆wm
ij = Ω

(

xm
i , x

m
j

)

(S2)

Further, we assume that contributions of individual training patterns are additive,wij =
∑

m ∆wm
i,j , and that there are no autapses in the network,wii = 0.

We first consider the effects of storingM −1 unspecified patterns coming from the
prior. Storing a single random pattern drawn from the prior distribution will result in
a synaptic weight change with a distribution determined by the prior and the learning
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rule, which, by definition, has mean

µ∆w = 〈Ω (x1, x2)〉Px[x1]·Px[x2]
(S3)

and variance
σ2

∆w =
〈

Ω2 (x1, x2)
〉

Px[x1]·Px[x2]
− µ2

∆w (S4)

Thus, storing (unspecified)M −1 random patterns implies addingM −1 independent,
identically distributed random variables, and results, for at least moderately largeM , in
a synaptic weight with an approximately Gaussian distribution P[wij ] ' G (wij ;µw, σw),
with mean µw = (M − 1)µ∆w and variance σ2

w = (M − 1)σ2
∆w.

Adding a further particular pattern x is equivalent to adding a random variable
with a mean determined by the learning rule, and zero variance, thus:

P[wij |xi, xj ] ' G (wij ;µw + Ω (xi, xj) , σw) (S5)

We also make the approximation that elements of the synaptic weight matrix are in-
dependent, except for symmetric pairs wij and wji which are perfectly correlated for
symmetric or antisymmetric learning rules (considered later), and thus write:

P[W|x] =
∏

i,j<i

P[wij |xi, xj ] (S6)

.

The objective function

Rather than reporting the whole posterior distribution of Equation S1, we consider the
decision-theoretic task of finding the single most likely trace3, i.e. the activities that
maximize the posterior probability:

x̂ = arg
x

maxP[x|x̃,W] (S7)

This means that we aim to find the activity pattern x that is most probably the correct
pattern to recall given input x̃ and synaptic weights W. Having restricted our horizons
to maximum a posteriori (MAP) inference, we can consider as an objective function
the log of the posterior distribution. In the light of our factorizability assumptions, this
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is
O (x) = log P[x] + log P[x̃|x] + log P[W|x]

=
∑

i

log P[xi] +
∑

i

log P[x̃i|xi] +
∑

i,j<i

log P[wij |xi, xj ]

(S8)

Optimal neuronal update dynamics

Finding the global maximum of the objective function, as stated in Equation S7 is
computationally extravagant and biologically questionable: in general, it would require
an exhaustive scanning of the N -dimensional space of activities. In common with the
vast bulk of work on associative memory2,4, we therefore specify neuronal dynamics
arising from gradient ascent on the objective function:

ẋ ∝ ∇x O (x) (S9)

This ensures that neurons in the network change their joint activity at every point in
time such that the value of the objective function evaluated at the current activity pattern
is always increased. Since the objective function is the log-posterior (Equation S8),
this means that the activity of the network evolves such that it represents increasingly
probable solutions to the retrieval problem. Therefore the network is guaranteed to
find at least a local maximum of the posterior distribution, i.e. an activity pattern that
is locally maximally probable to be the correct memory trace to recall.

Combining Equations S8 and S9 we obtain the optimal update dynamics describing
how neuron i should change its activity xi

τx
dxi

dt
=

∂

∂xi

log P[x] +
∂

∂xi

log P[x̃|x] +
∂

∂xi

log P[W|x] (S10)

∂

∂xi

log P[W|x] =
1

2

∑

j 6=i

∂

∂xi

log P[wij |xi, xj ] +
∂

∂xi

log P[wji|xj , xi] (S11)

The first two terms in Equation S10 only depend on the activity of the neuron itself
and its input. For example, for a Gaussian prior Px[xi] = G (xi;µx, σx) and unbiased
Gaussian noise on the input P[x̃i|xi] = G (x̃i;xi, σx̃), these would be:

d

dxi

log P[xi] +
d

dxi

log P[x̃i|xi] =
µx

σ2
x

−

(

1

σ2
x

+
1

σ2
x̃

)

xi +
x̃i

σ2
x̃

(S12)

The first term on the right-hand side of the last equality expresses a constant bias; the
second involves self-decay; and the third describes the effect of the input.
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The terms in Equation S11 indicate how a neuron should take into account the
activity of other neurons based on the synaptic weights. From Equation S5, the terms
are

∂

∂xi

log P[wij |xi, xj ] =

=
1

σ2
w

[

(wij − µw)
∂

∂xi

Ω(xi, xj) − Ω(xi, xj)
∂

∂xi

Ω(xi, xj)

]

(S13)

∂

∂xi

log P[wji|xj , xi] =

=
1

σ2
w

[

(wji − µw)
∂

∂xi

Ω(xj , xi) − Ω(xj , xi)
∂

∂xi

Ω(xj , xi)

]

(S14)

Two aspects of the above formulæ are troubling. First, the last terms in each express
the effects of other cells, but in a way that is independent of the synaptic weights. We
therefore approximate these terms using their mean values over the prior distribution.
In this case

α+
i = 〈Ω (xi, xj)

∂

∂xi

Ω (xi, xj)〉Px[xj] and α−
i = 〈Ω (xj , xi)

∂

∂xi

Ω (xj , xi)〉Px[xj ]

(S15)
contribute terms that only depend on the activity of the updated cell, and so can be
lumped with the prior- and input-dependent terms of Equation S12. For the simula-
tions reported in the main paper (Fig. 2) we used these approximate formulæ. For
the supplementary simulations (Supplementary Fig. 1) we used the exact formulæ in
order to study the effects of other approximations and factors more clearly. In our ex-
perience, the approximation was benign when the number of stored memories was not
too small (M > 10 in a network of N = 100 neurons).

Second, Equation S14 includes synaptic weights,wji, that are postsynaptic with re-
spect to the updated neuron. These terms would seem to require the neuron to change
its activity depending on the weights of its postsynaptic synapses. For perfectly anti-
symmetric learning rules, such as the STDP rules considered in the main paper, this
is unnecessary, since Ω (xi, xj) = −Ω (xj , xi), and therefore wji = −wij is known.
Thus, exact gradient ascent is performed on the weight likelihood (Equation S5) if
each neuron only considers contributions from its presynaptic weights ignoring its
postsynaptic weights. The same is true for perfectly symmetric learning rules. For
asymmetric learning rules, ignoring the postsynaptic weights amounts to an approxi-
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mation, the quality of which we tested in supplementary simulations (Supplementary
Fig. 1c).

Making these assumptions, we can rewrite Equation S11 in the following way:

∂

∂xi

log P[W|x] =
1

σ2
w





∑

j 6=i

H(xi, xj) − (N − 1)αi



 (S16)

showing that a postsynaptic neuron should sum the effects of its presynaptic partners,
with the effect of a presynaptic neuron on a postsynaptic neuron given by the neural
interaction function

H(xi, xj) = wij ·
∂

∂xi

Ω (xi, xj) (S17)

Equation S17 is one of our key results, showing that there is a simple relationship
between the synaptic plasticity rule, Ω (xi, xj), and the neuronal interaction function,
H(xi, xj), that is approximately optimal for reading out the information that is encoded
in the synaptic weight matrix by that synaptic plasticity rule. It also shows that the
magnitude of this interaction should be proportional to the synaptic weight connecting
the two cells, wij . For further discussion of this result, see the main paper.

Spike timing-based networks

The optimal coupling function

The theory we have just described allows us to treat the problem of spike timing-based
autoassociative memories systematically. First, we interpret neuronal activities, xi as
firing times relative to a reference phase of the ongoing local field potential oscillation,
such as the peak of theta oscillation in the hippocampus5, and will thus be circular
variables. We will model them as being drawn from von Mises distributions, which
are also called circular Gaussians. Next, our learning rule is an exponentially decaying
Gabor-function of the phase difference between pre- and postsynaptic firing:

ΩSTDP (xi, xj) = A exp[s cos(∆φij)] sin(∆φij − φ0) (S18)

with ∆φij = 2π (xi − xj) /Tθ. STDP characteristics in different brain regions are well
captured by this general formula, but the parameters determining their exact shapes
greatly differ among regions6. We constrain our analysis to the antisymmetric case,
so that φ0 = 0, and set other parameters to match experimental data on hippocam-
pal STDP7 (see Fig. 1b, and Methods in the main paper, and also Supplementary
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Fig. 2). The neuronal interaction function that satisfies our general matching rule
(Equation S17) by substituting ΩSTDP (Equation S18) into it is

HSTDP (xi, xj) = 2πA/Tθ wij exp(s cos(∆φi,j))
[

cos(∆φij) − s sin2(∆φij)
]

(S19)
(see Fig. 1c).

The optimal phase response curve

The interaction function in Equation S19 (taken together with Equations S10 and S16)
specifies how presynaptic neuron j should influence the change in postsynaptic neuron
i’s firing phase relative to the ongoing LFPO (xi) depending on the difference of their
firing phases (xi − xj ). However, this relationship describes a continuous interaction
between the two cells, i.e. a presynaptic cell should be able to affect its postsynaptic
partners by reporting its ’firing phase’ at all times, even times during the interspike
intervals between its spikes.

If neurons are only allowed to interact at times when they fire, the most straight-
forward approximation to the key differential Equation S9, which indicates the com-
putation the network is performing, is to assume that the firing phases of neurons are
constant during interspike intervals. This is equivalent to an event-based approach of
discretizing time at the spiking events.

If the prior distribution P[xi] of memories is a (circular Gaussian) distribution with
0 mean and kx concentration parameter, and no other sources influence the neuron (ie
only the prior-dependent term contributes to Equation S10), we expect its firing phase
to obey the following equation:

τx
dxi

dt
= −kx sinxi (t) (S20)

This equation has a stable solution at xi = 0 (henceforth called the ‘baseline’ firing
phase), when the neuron phase locks to the LFPO. In other words, phase locking to an
LFPO can be interpreted as an implementation of a prior distribution in our theoretical
framework.

To account for the influence of a single spike fired by presynaptic neuron j at phase
xj , the postsynaptic neuron needs to implement an extended equation from the moment
that spike occurred:

τx
dxi

dt
= −kx sinxi (t) +

wij

σ2
w

HSTDP (xi (t) , xj) (S21)
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Here, given the discretization described above, xj (t) = xj is constant until neuron j
spikes again.

In order to determine when neuron i actually fires, Equation S21 needs to be inte-
grated until neuron i reaches its spiking point on its own spiking cycle 8. Because xi is
its firing phase relative to the LFPO, its phase on its own spiking cycle is

ψi (t) = xi (t) + 2πfθt (S22)

where fθ is the frequency of the LFPO. This means that Equation S21 needs to be
integrated until

xi (t) = −2πfθt mod 2π (S23)

(ψ = 0 defined to be the phase of spiking in the spiking cycle). We can therefore predict
the relative phase of the next spike of the neuron by integrating Equation S21 starting
from xi (0) = 0 until Equation S23 is satisfied, with different xj values corresponding
to different phases at which stimulation is applied. The deviation of the phase of the
next spike from the baseline phase can be measured as a function of the perturbation
phase, and the plot relating these two quantities is exactly the phase response curve
(PRC)8.

The predicted PRC depends on a number of parameters, out of which we system-
atically explored the effects of changing kx and wij (with τx = 1 and σ2

w = 1, as they
only scale the effect of the other two parameters and thus were redundant for our pur-
poses). We found PRCs qualitatively similar to those shown in Figure 1d (kx = 0.6,
wij = 0.025, 0.05, 0.075, 0.01) in a broad parameter regime, in which both parameters
were changed by a factor of 10. We also tested the salience of various characteristics
of the optimal PRC (listed in the Results section of the main paper) by starting our
derivations from a different type of STDP curve (with s = 0 in Equation S18) but
which still retained the most important properties of experimentally described forms of
STDP (Supplementary Fig. 2a). Supplementary Figure 2c shows that the matching
PRC was again similar to that reported in the main paper.

The main difference between the phase coupling functions (Fig. 1c and Supple-
mentary Fig. 2b) and the corresponding PRCs (Fig. 1d and Supplementary Fig. 2c,
respectively) is that in the PRCs there is no visible delay for presynaptic spikes arriv-
ing just before a postsynaptic spike. Crudely, each point of the PRC is obtained by
integrating the value of the phase coupling function associated with the correspond-
ing (near-constant) difference in phase between pre- and postsynaptic spikes across the
postsynaptic spiking cycle until a spike. Thus, effects that happen early in a cycle (pos-
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itive phases on the x-axis) will be integrated over a longer time than the effects due
to perturbations in the late part of the spiking cycle (negative phases on the x-axis).
This asymmetry in integration times explains the asymmetry of the PRCs, even if the
underlying phase coupling functions are symmetric.

It is these predicted PRCs that allow a direct experimental test of our theory. We
achieve this by injecting a controlled sinusoidal current into CA3 pyramidal cells. This
induces a cell to phase lock to the oscillation at the baseline phase (Fig. 3c, 4a). The
cell can then be subjected to an additional stimulus at a given phase of its oscillation.
The empirical PRC is the deviation of the phase of the next spike from the baseline
phase, as a function of the perturbation phase. These PRCs can be compared with
those derived from the STDP rule.

References

1. MacKay, D.J.C. Maximum entropy connections: neural networks. in Maximum
Entropy and Bayesian Methods, Laramie, 1990 (eds. Grandy, Jr, W.T. & Schick,
L.H.) 237–244 (Kluwer, Dordrecht, The Netherlands, 1991).

2. Sommer, F.T. & Dayan, P. Bayesian retrieval in associative memories with storage
errors. IEEE Trans. Neural Netw. 9, 705–713 (1998).

3. Jaynes, E.T. Probability Theory: the Logic of Science (Cambridge University Press,
Cambridge, UK, 2003).

4. Hopfield, J.J. Neurons with graded response have collective computational prop-
erties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81, 3088–3092
(1984).

5. O’Keefe, J. & Recce, M.L. Phase relationship between hippocampal place units and
the EEG theta rhythm. Hippocampus 3, 317–330 (1993).

6. Abbott, L.F. & Nelson, S.B. Synaptic plasticity: taming the beast. Nat. Neurosci. 3,
1178–1183 (2000).

7. Bi, G.Q. & Poo, M.M. Synaptic modifications in cultured hippocampal neurons:
dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neu-
rosci. 18, 10464–10472 (1998).

8. Rinzel, J. & Ermentrout, B. Analysis of neural excitability and oscillations. in
Methods in Neuronal Modeling 2nd edn. (eds. Koch, C. & Segev, I.) 251–291 (MIT
Press, Cambridge, MA, 1998).

9



����������	
����������������������������

�����������������	��
����������
�	���������	������
����
����������������������������
������	�

���������������������������
��������������������������������������� ��������������!���"�#������
��

�����	����������
����������	��
������������	��������������������������$��
�������������	�������

������������������������	�����������������
����������
���
����
������������������������������

���������%� ��������������������&������������������%��"�'���������������������(�������������

�����������������������"

����)�
�����������������������������������	��
������������������
���������$������������� �����

������"� �����������"! ��������������"� ������
���������
���������������������	�	������*�"�+�"�'��

�������������������(������������������������������������"

����,���$������������-#./�
����������������	�����0������������������	����������������

�����0	����-#./���
������������
�	����������������
�������1�2�/�����334�����	��������������

��������������	��
�����������,#.�������
����������55��������������������������	��
�����������,#.�

���������������	����������,#/��
������������������		���
"��
���
���
����

��	���������(�����

����������
�����"�6���$���
����������	��
���������������������������(
����������
�������������

�����������������������������	��
��������������		���
�-#./"�����
�	������������������������

��		���
�-#./�������������������������(������������������������������������"�7���������������

�����������������	��
����������7&"5��	�����0�������	�������		���
�-#./����������������

������������		���
�-#./�������	����	��������
����������������������		���
�-#./�������������


������(���
������	��
�����������������������������	�����������������������-#./�����������������

������	��
�������������(
����������
������������8�������������������������������"

-�����	�������������� ,������������"�9��
������������������
����������������
�	���

�
��������������

�
��������
��������

�
��
������
��



b ca
Spike timing-dependent plasticity Phase response curvesCoupling function

Consequences of a broad, smoothly varying STDP curve on the optimal coupling function and phase response curves.

(a) Memories are stored by a STDP rule that is broader and more smoothly varying than most experimentally described forms of STDP (but see

C.D. Meliza, N. Caporale & Y. Dan. Spike timing-dependent plasticity of visually evoked synaptic responses, Soc. Neurosci. Abstr. 57.10, 2004).

Nevertheless, main characteristics of STDP are still reflected: a synapse is strengthened if the presynaptic neuron fires before the postsynaptic

neuron, and is weakened if the order of firings is reversed, and time differences beyond an ideal value result in decreasing synaptic weight

change. The parameters used for this STDP curve were s=0, A=0.25, and T
"
=125 ms (see Methods and Supplementary Note). t

pre
, t
post
, times of

pre- and postsynaptic firing.

(b) Optimal coupling function for retrieving memories stored by STDP shown in a. !
pre
, !

post
, firing phases of pre- and postsynaptic cells relative

to a local field potential oscillation. (For further explanation see Figure 1c of the main paper.)

(c) Optimal phase response curves derived from the optimal coupling function (shown in b). Different curves correspond to linearly increasing

synaptic weights (w
ij
) (0.025, red; 0.05, yellow; 0.075, green; 0.01, blue), k

x
= 0.6 in all cases. (For further details and explanations, see

Supplementary Note online, and Figure 1d of the main paper.)

Supplementary Figure 2 Lengyel et al. Matching storage and recall for the hippocampus
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Supplementary Methods

Detailed experimental procedures

Slice preparation. Horizontal hippocampal slices (350 µm) were prepared from young
Wistar rats (postnatal day 13-19) of both sexes after decapitation under deep isoflurane-
induced anesthesia, in accordance with British Home Office regulations. Slices were
maintained at room temperature in a submerged-style holding chamber with artifi-
cial cerebrospinal fluid (ACSF) containing (mM): NaCl 126; KCl 3; NaH2PO4 1.25;
MgSO4 2; CaCl2 2; NaHCO3 25; glucose 10; pH7.2 − 7.4; bubbled with carbogen
gas (95% O2, 5% CO2) and transferred one by one to the recording chamber.

Recording conditions. Patch-clamp recordings of CA3 pyramidal neurons in hip-
pocampal slices were made under visual guidance by infrared differential interference
contrast video microscopy1. Patch pipettes were pulled from standard-walled borosili-
cate tubing. The electrode solution contained (mM): Potassium gluconate 110; Hepes
40; NaCl 4; ATP − Mg 4; GTP0.3 (pH7.2 − 7.3; osmolarity 280 − 300 mosmol/l).
1 µM gabazine (SR95531) was added to the extracellular solution in experiments where
excitatory postsynaptic potentials (EPSPs) were evoked by extracellular stimulation.
Whole-cell current-clamp recordings were made with an Axoclamp-2B amplifier in
bridge mode. Capacitance compensation was maximal and bridge balance adjusted
(15 − 50 MΩ) during recording. CA3 pyramidal cells were identified by their loca-
tion, shape and orientation as seen by video microscopy, and by their characteristic
responses to step current pulses. All recordings were made at temperatures29−31 ◦C.
Igor Pro software (WaveMetrics, Lake Oswego, OR, USA) was used to generate com-
mand signals, and to acquire data online, and subsequently to analyze it.

Recording protocols and dynamic clamp. In order to simulate theta oscillation in
the neuron, a sinusoidal inhibitory oscillatory conductance of 1− 2 nS peak amplitude
at 5 Hz (Fig. 3 and 4, Supplementary Fig. 4) or 8 Hz (Supplementary Fig. 3) was
injected using dynamic clamp. A positive tonic current was superimposed on the os-
cillatory input so that the membrane potential was depolarized just enough to reliably
evoke one action potential near the positive peak of each cycle of the oscillation. EPSPs
were evoked with extracellular stimulation (50 µs, 5 V) using a monopolar stimulation
electrode placed in the stratum oriens, within 100 µm from the neuron being recorded
from. In order to generate artificial EPSP, dynamic clamp-simulated excitatory post-
synaptic conductance (EPSG) of 0.5− 4.5 nS peak amplitude was injected through the

1
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patch pipette. The shape of EPSG was modeled using an alpha function2 with time to
peak at 3.85 ms. Both EPSPs and EPSGs were elicited at 20 different phases of the
oscillatory inhibitory conductance and repeated 10 times for each EPSP (EPSG) phase,
and the resulting responses averaged. Dynamic clamp was implemented using ITC-18
A-D board (Instrutech, Port Washington, NY) and custom made macros written in Igor
Pro software. The current was calculated as:

I (t) = g (t) · (Vm (t) − Erev)

where I is the current to be injected, g is the conductance waveform, Vm is the mem-
brane potential, and Erev is the reversal potential, which was 0 mV for EPSG and
−70 mV for inhibitory conductance.
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