
when it stops abruptly as it suddenly runs
out of resources or is halted by disease or
predators. A weakly concave relationship,
where θ is between 0 and 1, implies that the
net reduction in population growth per
individual is greater at low densities than at
high densities; this effect becomes espe-
cially pronounced when θ is less than zero. 

There is an important caveat in using
this analytical approach. The time series
use estimates rather than exact counts of
populations, and they therefore contain
measurement errors. Such errors can sub-
stantially bias estimates of the strength of
density dependence and make density-
independent time series appear as if they
were generated from a density-dependent
model (4). From simulations, Sibly et al.
claim that the effects of measurement error
should not bias estimates of θ toward par-
ticularly large positive or negative values.
A pure error model, in which all meaning-
ful variation in population size is swamped
by measurement error, should yield a value
of θ = 0. However, it is not yet clear what
happens to estimates of θ in the presence of
measurement error if density dependence is
weak or absent, and how this may be distin-
guished from true density dependence.

This caveat notwithstanding, the analy-
ses have turned up a major surprise. The
values of θ tend to be negative more often
than not, which means that plots of popula-
tion growth rate against population size are
concave. This implies that populations
experience strong density dependence
early in their growth, with a weaker effect
as they approach and exceed their carrying
capacity. Why might this be the case? One
possibility is that the logistic model ignores
the age, size, and developmental-stage
dependence of population structure. For
example, density dependence may act most
strongly at just one particular stage such as
during the period of juvenile survival.
Population growth rate usually includes all
individuals in the population, not just those
affected most strongly by density depend-
ence. If the whole population exceeds its
carrying capacity, there will be an immedi-
ate reduction in the recruitment of juveniles
due to density dependence. However, as
adults are better competitors, their numbers
might respond only slowly, or not at all.
Therefore, at high densities the population
would not reduce rapidly to equilibrium.
Conversely, at low densities, juvenile
recruitment will be high, and they will
grow rapidly into the adult class and swell
the population’s number. The net effect of
this differential behavior above and below
equilibrium is to generate a concave den-
sity response. However, this is pure specu-
lation and the issue clearly requires a great
deal more thought. 

The findings of Sibly et al. have some
general implications. First, their f inding
that values of θ tend to be much less than 1
violates a key assumption of the classical
logistic equation, whereby growth rate
should reduce linearly with density.
Although this may not be news to most
ecologists, the logistic model is still widely
used by theoreticians and is a staple of
textbooks. Second, the authors comment
that as a consequence of concave density
responses, many populations appear to live
at densities above the carrying capacity of
their environments. Another way of putting
this is that rates of population decline will
be slower than rates of return, perhaps for
the reasons suggested above. It might
therefore appear that we can reduce popu-
lations substantially before impairing their
productivity. However, it would be very
risky to manage populations on this basis,
for example, when attempting to obtain
sustainable yields in hunting or f ishing.

That is because parameters of the popula-
tion growth curve will change as popula-
tions are exploited. This may change the
shapes of the density responses.
Furthermore, we still have much to learn
about how measurement er ror affects
parameter estimates in such models, and
hence the shapes of these relationships.
Research on these fronts should prove
rewarding for further understanding the
ways in which populations change with
time and for facilitating better wildlife
management and conservation.
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W
hen driving your car to work on
two alternate but familiar routes,
different combinations of neu-

rons in the hippocampal region of the brain
assist you in the navigation process. This is
because ensembles of hippocampal “place
cells” form a map-like representation of the
environment (1). In addition to spatial cues
such as shopping malls and other salient
landmarks, hippocampal neurons respond
to other features during the drive, including
speed changes and local information (such
as the type of transmission and the shape
and size of the car’s interior). So how will
the hippocampal map representation be
affected if you are driving your spouse’s
Jaguar instead of your two-seater Lotus on
the same routes? According to Leutgeb et

al. on page 619 of this issue (2), local infor-
mation regarding each car as well as either
route you may choose to take will be faith-
fully encoded in the hippocampus and there
will be no interference between the two
types of representations.

Instead of cars, routes, and human driv-
ers, Leutgeb et al. studied rats under two
sets of conditions and monitored the firing

patterns, or activity, of their hippocampal
neurons. In one condition, the rats were
tested in each of two different recording
chambers (differing in shape) but the cham-
bers were always in the same part of the
same room. In the second condition, record-
ings were made from rats that were placed
in each of two different rooms but in the
same recording chamber located in the
same part of each room. Collection of data
began after the rats had at least 1 week of
experience in either scenario. In the second
condition, both the spatial positions of acti-
vated place cells (representing “place
fields” in the chambers) and their discharge
rates were statistically independent (a phe-
nomenon known as “remapping”), as
expected from previous studies. However,
in the first condition, virtually all the acti-
vated hippocampal neurons remained
anchored to the same Cartesian coordinates,
even though the firing rate of the individual
neurons varied more than an order of mag-
nitude in the different chambers. This find-
ing led the authors to conclude that local
information is coded by rate, independently
of the ensemble-coded place.

The most basic functions attributed to neu-
ronal networks are the segregation and inte-
gration of patterns of activity. Such function is
most pertinent in the hippocampus, often con-
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sidered a single giant cortical
module with rich recursive
excitatory connections.
However, in networks con-
sisting of excitatory neurons
only, separation of neuronal
assemblies representing dif-
ferent environments is not
possible. Inhibitory neuronal
connections can provide a
high degree of autonomy for
individual pyramidal neu-
rons, the principal cell type
in the hippocampal cortex
(“place cells” are active
pyramidal cells). With the
help of the inhibitory neu-
rons, excitatory signals can
be rerouted within the entire
hippocampal network (3).
Thus, by properly managing
the inhibitory networks,
minor changes in input exci-
tatory activity can cause
instantaneous and large
shifts in the assembly behav-
ior of hippocampal neurons.
Using the dichotomy of
“local” versus “distant”
information that is suggested
by the authors, a relatively
simple circuit can be con-
structed that can account for
their observations (see the
figure). The conclusion is
that a given environmental
context can select the neu-
ronal assembly, whereas gain
control (provided by local
cues, locomotor speed of the
animal, and other factors) can adjust the firing
rate of the assembly members. 

The observations by Leutgeb et al. are
backed up by large numbers of neurons and
impressive quantitative analysis. However,
the hypothesized dual coding scheme of
local versus distant inputs is harder to
accept. This dichotomy brings to mind our
frequent desire to identify the neuronal
mechanisms that distinguish numerous
qualities: figure and background, context
and content, segregated and integrated, sep-
arated and completed, aggregated and dif-
ferentiated, autonomous and dependent,
stochastic and deterministic, homogeneous
and inhomogeneous, or (in general) the
similar and the different. The problem is
that nothing in the physical world indicates
whether something is near or far. The judg-
ment of local versus distant cues depends
solely on the observer, determined largely
by the history between those cues and the
individual. Past experience may determine
which cues will have priority access to the
hypothetical assembly-selecting interneu-

rons so that either local or distant cues may
cause global remapping in hippocampal
representation. In general, one person’s
judgment of “similar” may be judged as
markedly “different” by someone else with
more experience, and this may not be so dif-
ferent with rats. 

Against this background, it may not be
surprising that two recent studies with aims
similar to those of the Leutgeb et al. study
generated different outcomes. In one report,
ensembles of place cells abruptly and simul-
taneously switched as rats experienced
either square or cylindrical chambers in the
same part of the same room (4). In another
study, changing the position of objects in the
testing apparatus altered most place fields
near the objects and caused remapping or
cessation of neuronal activity (5). Perhaps
the most exciting aspect of these and related
studies (6, 7) is the consistency of findings
within the same laboratories and differences
across laboratories. In light of the nonlinear
response properties of hippocampal net-
works, large differences in network behavior

are expected even with
minor variation of the ini-
tial conditions, such as the
extent of training and
familiarity with the testing
conditions. 

Leutgeb et al. also
found remarkable differ-
ences between two popula-
tions of hippocampal neu-
rons: the CA3 pyramidal
cells and CA1 neurons that
receive CA3 signals. The
f iring rate differences
observed between cham-
bers in the same room
were greater by a factor of
4 in CA3 cells relative to
CA1 cells. The differences
in the two-room compari-
son were even greater. This
implies a very distinct com-
putation by the CA3 and
CA1 neurons. Simultaneous
recordings from ensembles
of neurons in different stages
of information processing,
as done by Leutgeb et al.,
will be required to answer
questions regarding the
separation and integration
of information processing.
Such data might explain
the inconsistencies be-
tween laboratories.

Another important is-
sue is the link between
the present f indings and
episodic memory that is
established in the hip-

pocampus. A key feature of episodic
memories is their temporal context.  In
contrast, the representation of a place is
assumed to be a temporally independent
process (1). A fundamental organiza-
tional aspect of the hippocampal system
is the periodic renewal process of neuron
activity by oscillations in their excitation
(8). Understanding how these oscillations
assist in sequential selection of assem-
blies may pave the way to building a
bridge between spatial navigation and
episodic memories.
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Distant

Local

Neural assembly outputs

Interneurons allow for pattern separation in cortical networks of the hippocampus.
Information from distant cues of one environment (e.g.,a city or a given room in the Leutgeb
et al. study) activates a set of principal neurons (purple). The same input information also
activates a single set of interneurons (light red) that prevents the activity of neuronal
assemblies that represent other distant environments.Variations in local cues (from a car or
the recording chamber in the Leutgeb et al. study) selectively adjust the activity level of the
chosen assembly members.This results in distinct patterns of neuronal activity associated
with the distant and local cues (shown as line plot patterns).
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