
sequence alignment program PILEUP27 and manual adjustment. Phylogenetic analyses
were performed using the PHYLIP phylogeny inference package version 3.572. Distance
matrices were generated using the DNADIST program with the Jukes±Cantor distance
measure. Using S. castellii as the outgroup, rooted phylogenetic trees, based on the ITS1
and the COX2 sequences, were constructed by using the neighbour-joining method28 and
the NEIGHBOR program. We assessed the stability of the individual branches using the
bootstrap method29 with the SEQBOOT, DNADIST, NEIGHBOR and CONSENSE
programs.
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Synaptic activity at calcium-
permeable AMPA receptors
induces a switch in receptor subtype
Si-Qiong June Liu & Stuart G. Cull-Candy
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London WC1E 6BT, UK
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Activity-dependent change in the ef®cacy of transmission is a
basic feature of many excitatory synapses in the central nervous
system. The best understood postsynaptic modi®cation involves a
change in responsiveness of AMPAR (a-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid receptor)-mediated currents
following activation of NMDA (N-methyl-D-aspartate)
receptors1,2 or Ca2+-permeable AMPARs3±6. This process is
thought to involve alteration in the number and phosphorylation
state of postsynaptic AMPARs2. Here we describe a new form of
synaptic plasticityÐa rapid and lasting change in the subunit
composition and Ca2+ permeability of AMPARs at cerebellar
stellate cell synapses following synaptic activity. AMPARs lacking
the edited GluR2 subunit not only exhibit high Ca2+ permeability7

but also are blocked by intracellular polyamines8±11. These proper-
ties have allowed us to follow directly the involvement of GluR2
subunits in synaptic transmission. Repetitive synaptic activation

5 ms10
 p

A

–40 mV

+40 mV

a

d Control

500 nM JST

e

Control 100 µM PB

f

Control

GYKI53655

c

b
pA

mV
–60 –20 20 60 

–60 

–20 

20 

60 

10 ms10
 p

A

5 ms 20
 p

A
 

5 ms 5 
p

A
 

GYKI-
53655

 JST PB
0 

40 

80 

In
hi

b
iti

on
 (%

)

Figure 1 Synaptic currents in stellate cells exhibit properties of GluR2-lacking AMPARs.

a, Mean sEPSC at +40 and -40mV, showing reduced current at positive potentials

(recti®cation occurred only when spermine was included in pipette). b, Rectifying I±V

relationship of sEPSCs (n = 5). Solid line follows the data points; dashed line at positive

potentials represents extrapolated ®t for EPSCs behaving ohmically. c, Evoked EPSCs

(averaged traces) were blocked by the selective AMPAR antagonist GYKI53655 (25 mM).

d, Joro spider toxin (JST, 500 nM) blocked EPSCs (averaged traces) evoked by threshold

stimulation of parallel ®bres. e, Mean sEPSCs were slightly reduced but not blocked by

pentobarbital (PB, 100 mM). f, Percentage inhibition of EPSCs by GYKI53655 (n = 5), JST

(n = 5) and PB (n = 5; -60 mV). Effect of GYKI53655 and JST was signi®cant (P , 0.01).
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of Ca2+-permeable AMPARs causes a rapid reduction in Ca2+

permeability and a change in the amplitude of excitatory post-
synaptic currents, owing to the incorporation of GluR2-contain-
ing AMPARs. Our experiments show that activity-induced Ca2+

in¯ux through GluR2-lacking AMPARs controls the targeting of
GluR2-containing AMPARs, implying the presence of a self-regu-
lating mechanism.

Minimally evoked parallel ®bre input to cerebellar stellate cells is
mediated solely by non-NMDA receptors12. We found that the
selective antagonist GYKI53655 (10±25 mM) reduced the ampli-
tude of evoked excitatory postsynaptic currents (eEPSCs) by 98 6
3% (n = 5; Fig. 1c, f), indicating that these currents are mediated by
AMPARs. We have used a number of approaches to determine
whether EPSCs and agonist-evoked currents are mediated by the
Ca2+-permeable variety of AMPARs in these cells. Inclusion of
spermine in the pipette solution is known to confer voltage-
dependent block on AMPARs lacking GluR2 subunits, which
differ from other subunits in being edited in their pore-lining
region. This produces a characteristic inwardly rectifying I±V
relationship8±11. The amplitude of spontaneous EPSCs (sEPSCs)
(Fig. 1a, b) at the parallel ®bre input was reduced at positive
membrane potentials. This rectifying I±V relationship implies
that the EPSCs are mediated mainly by Ca2+-permeable AMPARs.
We have used various other pharmacological approaches to deter-
mine that most synaptic receptors do indeed lack GluR2 subunits.

Thus, Joro spider toxin (JST), a subunit-speci®c blocker of the GluR2-
lacking AMPARs13, reduced the EPSC amplitude by 80 6 4% (n = 5)
at -60 mV (Fig. 1d). On the other hand, pentobarbital, which at the
concentration used selectively inhibits the GluR2-containing
AMPARs14, reduced the EPSC size by only ,18% (n = 5; Fig. 1e, f).

In contrast to the synaptic currents, agonist-evoked currents in
somatic outside-out patches exhibited linear or outwardly rectifying
I±V relationships (Fig. 2a, b) that were blocked by GYKI53655
(90 6 15%, n = 5). This suggests the presence of the Ca2+-
impermeable variety of AMPARs in the extrasynaptic membrane.
Furthermore, pentobarbital reversibly inhibited these currents
by 82 6 13% (at -60 mV; n = 5; Fig. 2a), while JST gave
only a ,10 6 15% reduction (n = 6; Fig. 2b). These ®ndings
indicate that stellate cells express a population of GluR2-containing
receptors, but that these occur predominantly extrasynaptically.

To investigate the factors responsible for the selective targeting of
GluR2 in these cells, we tested whether synaptic activity could
regulate the Ca2+ permeability of synaptic AMPARs. After high-
frequency synaptic stimulation (300 stimuli at 50 Hz at -60 mV),
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rectifying I±V plot after treatment with 500 nM TTX for more than 2 h before recording

(thick line); compare this at positive potentials with an averaged control I±V plot (thin line).

TTX absent during recording. d, Inwardly rectifying I±V plot in a patch from a cell that did

not ®re spontaneously action potentials. e, Inwardly rectifying I±V plot after treatment with

500 nM v-conotoxin (CTX) GVIA for more than 2 h before recording. f, Recti®cation index

was signi®cantly reduced in patches from non-spiking cells (n = 5), and cells treated with

TTX (n = 6) or CTX GVIA (n = 7), when compared with control cells (n = 13) (P , 0.03).
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the I±V relationship of eEPSCs was changed from predominantly
inwardly rectifying (recti®cation index (RI) = 0.43 6 0.04, n = 6) to
a linear form (RI = 1.04 6 0.14, n = 6) (see Figs 3a, b and 4f) within
,15±30 min (Fig. 3c). The EPSC amplitude was signi®cantly
decreased at negative potentials (from -93 6 7 to -65 6 5 pA at
-60 mV; n = 8, P , 0.005, paired t-test) but increased at positive
potentials (from 23 6 2 to 32 6 4 pA at +40 mV, n = 6, P , 0.02,
paired t-test). The decay time constant was little changed (from 0.76
6 0.04 ms to 0.89 6 0.08 ms; n = 11, P , 0.05). The ratio of EPSC
amplitudes at +40 mV versus -60 mV increased in all cells examined
(without a change in the percentage of failures), regardless of
whether cells were held at -60 or -90 mV during stimulation
(Fig. 3d). Together, these data indicate an increased expression of
the GluR2 subunit at the synapse, which produces a loss of
polyamine block and removal of recti®cation. The reduced EPSC
amplitude at -60 mV could re¯ect changed elementary channel
properties as occurs with GluR2-containing recombinant hetero-
oligomers15. In contrast, stimulation at a low frequency, with the
same number of stimuli (300 stimuli at 0.33 Hz), did not change the
EPSC amplitude or the recti®cation (Fig. 3e, f). Thus, high-
frequency stimulation triggers the expression of Ca2+-impermeable
AMPARs at these synapses. Furthermore, the change was not
inhibited by the presence of 120 mM D-AP5 or 10 mM 7-chloro-

kynurenic acid (Fig. 3d), indicating that NMDARs were not
required for this process. If this activity-dependent change in
AMPAR expression is a physiological mechanism then it is expected
to be continuously occurring in vivo. Hence different amounts of
recti®cation would be seen at different synapses. In keeping with
this idea, we found that the ratio of EPSC amplitudes at +40 to those
at -60mV ranged from 0.116 to 0.394 in control cells (n = 42).

We then examined whether the effect of high-frequency synaptic
activity could be reproduced by bath application of 1 mM gluta-
mate. After glutamate application, the I±V relationship of the EPSC
became near linear (for at least 2±3 h) (Fig. 4d). We also found that
bath application of 100 mM kainate, which activates non-NMDA
receptors but not metabotropic receptors16, gave rise to EPSCs with
linear I±V relationships and an RI of 0.92 6 0.15 (n = 5; Fig. 4f).
Thus, direct activation of AMPARs can produce an increase in
GluR2-containing receptors at this synapse.

To determine whether Ca2+ entry was the trigger necessary
for activity-dependent targeting of GluR2, we used three
different experimental approaches. First, we recorded EPSCs with
BAPTA (1,2-bis(o-Aminophenoxy)ethane-N,N,N9,N9-tetra-acetic
acid) (20 mM) included in the pipette to inhibit Ca2+ increase in
the postsynaptic cell. The high-frequency stimulation no longer
altered EPSC amplitude at any of the potentials tested (Fig. 4a,b).
Second, cells were held at +40 mV during the period of stimulation,
to reduce Ca2+ in¯ux through synaptic channels. Again, no change
in the EPSC amplitude was observed (Fig. 4c). Third, glutamate was
applied in the absence of external Ca2+. In these conditions,
glutamate failed to produce any change in the inwardly rectifying
I±V relationship (Fig. 4e), consistent with a requirement for Ca2+

entry. Our experiments using high-frequency synaptic stimulation
(see above) in cells clamped at -90 mV indicate that a change in
GluR2-containing receptors occurs in the absence of activation of
voltage-gated Ca2+ channels. These data are consistent with the idea
that Ca2+ in¯ux through the AMPARs is suf®cient to produce an
intracellular Ca2+ rise that causes a rapid change in subunit
composition of synaptic receptors.

Does Ca2+ entry through voltage-gated Ca2+ channels in¯uence
the expression of GluR2? Stellate cells ®re spontaneous action
potentials in the absence of synaptic inputs (mean ®ring rate
,12 Hz)17. We blocked action potential ®ring (with 500 nM tetro-
dotoxin (TTX)) for at least two hours, and then examined the
agonist-evoked currents in outside-out patches from the soma. The
I±V relationship was changed from its usual linear or outwardly
rectifying form (Fig. 2a, b) to one that showed strong inward
recti®cation (Fig. 2c), consistent with induction of Ca2+-permeable
extrasynaptic receptors. The recti®cation index of the patches from
TTX-treated cells was reduced to 0.5 (from control levels of ,1.2;
see Fig. 2f). Most of the stellate cells ®red spontaneous action
potentials in the absence of TTX, but some cells in the molecular
layer did not (although excitatory and inhibitory synaptic currents
were present). Outside-out patches from these cells also exhibited
inwardly rectifying I±V plots (Fig. 2d), indicative of Ca2+-
permeable receptors. Furthermore, patches from cells treated with
v-conotoxin GVIA exhibited inwardly rectifying I±V relationships
(Fig. 2e). These results indicate that local Ca2+ in¯ux through N-
type Ca2+-channel activity during action potentials can in¯uence
the normal synthesis or targeting of GluR2 subunits, accounting for
the absence of Ca2+-permeable extrasynaptic receptors.

Earlier work has shown that Ca2+-permeable AMPARs can be
differentially localized at some inputs onto hippocampal neurons18,
although the mechanism underlying this differential distribution is
unclear. Our experiments indicate that the level of GluR2-containing
receptors at the parallel ®bre stellate cell synapse, and the soma in
these cells, undergoes dynamic changes driven by activity-induced
local Ca2+in¯ux. The synaptic AMPARs are mostly Ca2+ permeable
and therefore lack the edited GluR2 subunit. During high-frequency
stimulation, increased Ca2+ entry through synaptic AMPARs triggers
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the insertion of GluR2-containing receptors to the synapse and the
removal of GluR2-lacking receptors. This results in a reduced EPSC
amplitude at -60 mV, as well as a change in Ca2+permeability. This
molecular modi®cation of the receptor would provide self-regulating
feedback that further reduces Ca2+ entry, and hence limits the level
of GluR2-containing receptors. Our ®nding that GluR2-containing
receptors are present in the soma is in keeping with such a
mechanism, as local Ca2+ in¯ux during action potentials in¯uences
GluR2 expression. The presence of GluR2-lacking receptors at
synapses, however, may result from attenuation of dendritic
invasion by action potentials19, or from regional differences in
Ca2+-channel subtype density20 or Ca2+ buffering21. Recent studies
on CA1 cells have provided evidence for insertion of AMPARs by
exocytosis into synaptic regions during long-term potentiation22,23.
Furthermore, a speci®c interaction between NSF (N-ethylmaleimide-
sensitive factor), a protein involved in membrane fusion events, and
the carboxy terminus of GluR2 subunits has been described24±26. It is
therefore feasible that insertion of GluR2-containing receptors, and
removal of GluR2-lacking receptors at the synapse, could be
mediated by exocytosis and endocytosis, respectively, although
redistribution through lateral diffusion cannot be excluded.

Previous observations have shown that neuronal activity can act
to regulate EPSC amplitude by changing AMPAR number23,27±29 and
channel properties30. Our experiments suggest that synaptic activity
can directly determine the subunit composition of a synaptic
AMPAR by controlling the expression or targeting of edited sub-
units. This produces a change not only in amplitude of synaptic
currents, but also in their calcium permeability, voltage dependence
and facilitation properties8. Such a mechanism provides a form of
plasticity that is self-regulating, and would represent a signi®cant
role for edited non-NMDAR subunits in certain postsynaptic
modi®cations. M

Methods
Electrophysiology

Sagittal or coronal cerebellar slices (200±250 mm) were cut with a vibrating microslicer
(DTK-1000) from the vermis of 18±20-day-old Sprague±Dawley rats in ice-cold solution
(in mM: 125 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 26 NaHCO3, 1.25 NaH2PO4, and 25 glucose,
saturated with 95% O2 /5% CO2, pH 7.4). Whole-cell patch-clamp and outside-out patch
recordings were made with an Axopatch 200A ampli®er (Axon Instruments) in external
solution which contained GABAA and NMDA receptor blockers (20 mM bicuculline
methobromide, 100 mM picrotoxin and 20 mM D-AP5) at room temperature. A few
stimulation protocols, and all agonist application protocols were carried out in a higher
concentration of D-AP5 (120 mM) and 7-chlorokynurenic acid (10 mM).

Recordings were made from visually identi®ed neurons located in the outer two-thirds
of the molecular layer. Interneurons were usually identi®ed by their ability to ®re
spontaneous action potentials in the cell-attached con®guration and by the presence of
spontaneous EPSCs and inhibitory postsynaptic currents in the whole-cell con®guration.
Electrode resistances were 3±8 MQ when ®lled with internal solution (in mM: 95 CsF,
45 CsCl (or 140 CsMeSO4), 10 CsHEPES, 10 CsEGTA, 2 NaCl, 2 ATP-Mg, 1 QX314, 5 TEA,
1 CaCl2, 0.1 spermine, pH 7.3). Series resistance, whole-cell capacitance and input resis-
tance were 12.6 6 0.7 MQ, 4.0 6 0.3 pF (n = 33) and 1.28 6 0.28 GQ (n = 16), respectively.
If series resistance was changed by more than 20%, the experiment was discarded. EPSCs
were evoked with a patch-electrode containing external solution, by stimulating in the
molecular layer (20±100 ms pulses of 5±30 V at 0.33 Hz) and ®ltered at 10 kHz. Currents
from outside-out patches, in response to voltage ramps (42 mV s-1), were measured before
and during the application of 100 mM kainate or 1 mM glutamate + 100 mM cyclothiazide.

Synaptic stimulation protocol and application of agonists

Parallel ®bres were stimulated at 50 Hz or 0.33 Hz, while the postsynaptic cell was voltage-
clamped at -60 mV (unless otherwise indicated). Only when high-frequency stimulation
was successful at generating EPSCs, and there was no change in holding current of the
postsynaptic cell, was the data used for further analysis. Stimulation strength and duration
were kept constant throughout the experiment. Glutamate and kainate were bath applied
for ,1±2 min. Synaptic currents were measured between 15 min and 2 h after synaptic
stimulation, or after bath application of agonist.

Analysis

EPSCs were ®ltered at 4 kHz and digitized at 20 kHz. For the I±V analysis, we rejected
events that did not have a smooth rise and decay phase. The average at each holding
potential was constructed by aligning each event on its point of fastest rise (typically
average of 20±40 EPSCs) using N version 4.0 (written by S. Traynelis, Emory University).
The mean EPSC amplitudes at negative potentials were ®tted by a linear regression. If

EPSC amplitude at positive potentials fell below the extrapolated line it was considered an
inwardly rectifying I±V relationship. The RI of the I±V relationship was de®ned as the
ratio of the current amplitude at +40 mV to the predicted linear value at +40 mV
(extrapolated from linear ®tting of the currents at the negative potentials). The inhibition
of the EPSC by GYKI53655 and JST was calculated by integrating the average EPSC before
and after drug addition and the average was obtained by aligning all the traces to their
stimulus artefact.

The I±V plots of agonist-evoked currents in outside-out patches were obtained by
subtracting leak current from the current in the presence of kainate or glutamate plus
cyclothiazide. The recti®cation index was de®ned as the ratio of current amplitude at +40
mV to the predicted linear value at +40 mV (extrapolated from linear ®t of the current
between -20 mV and +10 mV, as some patches had outwardly rectifying currents). All
values are expressed as mean 6 s.e.m., except when they are smaller than the size of the
symbol. Statistical signi®cance was assessed by the two-tailed Student's t-test.
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Vertebrates achieve internal homeostasis during infection or
injury by balancing the activities of proin¯ammatory and anti-
in¯ammatory pathways. Endotoxin (lipopolysaccharide), pro-
duced by all gram-negative bacteria, activates macrophages to
release cytokines that are potentially lethal1±4. The central nervous
system regulates systemic in¯ammatory responses to endotoxin
through humoral mechanisms5±8. Activation of afferent vagus
nerve ®bres by endotoxin or cytokines stimulates hypothalamic±

pituitary±adrenal anti-in¯ammatory responses9±11. However,
comparatively little is known about the role of efferent vagus
nerve signalling in modulating in¯ammation. Here, we describe a
previously unrecognized, parasympathetic anti-in¯ammatory
pathway by which the brain modulates systemic in¯ammatory
responses to endotoxin. Acetylcholine, the principle vagal neuro-
transmitter, signi®cantly attenuated the release of cytokines
(tumour necrosis factor (TNF), interleukin (IL)-1b, IL-6 and IL-
18), but not the anti-in¯ammatory cytokine IL-10, in lipopoly-
saccharide-stimulated human macrophage cultures. Direct elec-
trical stimulation of the peripheral vagus nerve in vivo during
lethal endotoxaemia in rats inhibited TNF synthesis in liver,
attenuated peak serum TNF amounts, and prevented the devel-
opment of shock.

Vagus nerve signalling is a critical component of the afferent loop
that modulates the adrenocorticotropin and fever responses to
systemic endotoxaemia and cytokinaemia12±15. Efferent vagus
nerve signalling may facilitate lymphocyte release from thymus
through a nicotinic acetylcholine receptor response16. Clinical
studies indicate that nicotine administration can be effective for
treating some cases of in¯ammatory bowel disease17,18, and
that proin¯ammatory cytokines are signi®cantly decreased in the
colonic mucosa of smokers with in¯ammatory bowel disease19.
Accordingly, we reasoned that the cholinergic parasympathetic
nervous system may modulate the systemic in¯ammatory response.

We established primary human macrophage cultures by incubat-
ing human peripheral blood mononuclear cells in the presence of
macrophage colony stimulating factor (MCSF). Acetylcholine
(ACh) inhibited TNF release dose-dependently in macrophage
cultures conditioned by exposure to lipopolysaccharide (LPS) for
4 h (Fig. 1a). We observed a comparable inhibition of TNF release by
ACh from macrophages exposed to LPS for 20 h (data not shown),
indicating that ACh did not merely delay the onset of the TNF
response. We also treated macrophage cultures with carbachol, a
cholinergic agonist chemically distinct from ACh, and observed
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Figure 1 Cholinergic agonists inhibit LPS-induced TNF synthesis in human macrophage

cultures through a post-transcriptional mechanism. a, Dose-dependent inhibition of TNF

release by ACh (squares), muscarine (triangles) and nicotine (circles) after stimulation with

LPS for 4 h. Data are mean 6 s.e.m; n = 9. b, ACh (100 mM), muscarine (100 mM, Mus)

and nicotine (100 mM, Nic) do not reduce amount of LPS-stimulated (2 h)TNF mRNA in

macrophages. c, Immunostaining with anti-TNF antibodies reveals a substantial decrease

in LPS-induced (2 h) TNF immunoreactivity in ACh-treated (100 mM) human

macrophages. d, a-Conotoxin (a-CTX), but not atropine (ATR), restores the LPS-

stimulated release of TNF in cultures treated with ACh (10 mM). Neither atropine nor

a-conotoxin altered TNF production in vehicle-treated cultures (not shown). Data shown

are mean 6 s.e.m. of three separate experiments. Asterisk, P , 0.05 versus ACh; double

asterisk, P , 0.005 versus ACh.
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