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Throughout the neocortex, groups of neurons have been found
to fire synchronously on the time scale of several milliseconds.
This near coincident firing of neurons could coordinate the
multifaceted information of different features of a stimulus. The
mechanisms of generating such synchrony are not clear. We
simulated the activity of a population of excitatory and inhibi-
tory neurons randomly interconnected into a recurrent network
via synapses that display temporal dynamics in their transmis-
sion; surprisingly, we found a behavior of the network where
action potential activity spontaneously self-organized to pro-
duce highly synchronous bursts involving virtually the entire
network. These population bursts were also triggered by stimuli
to the network in an all-or-none manner. We found that the

particular intensities of the external stimulus to specific neurons
were crucial to evoke population bursts. This topographic sen-
sitivity therefore depends on the spectrum of basal discharge
rates across the population and not on the anatomical individ-
uality of the neurons, because this was random. These results
suggest that networks in which neurons are even randomly
interconnected via frequency-dependent synapses could ex-
hibit a novel form of reflex response that is sensitive to the
nature of the stimulus as well as the background spontaneous
activity.
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Although increased firing rate of a single neuron is the clearest
signature of its participation in a particular processing, growing
evidence indicates that temporal coherence in the activity of
groups of neurons may be an important component of the neu-
ronal code. Indeed, throughout the neocortex, the spiking activity
of groups of cells has been found to exhibit various patterns of
synchrony, during both spontaneous activity and under sensory
stimulation (Murphy et al., 1985; Gray et al., 1989; Vaadia and
Aersten 1992; Sillito et al., 1994; Riehle et al., 1997; Steriade and
Contreras, 1998). Synchrony could allow the information about
external stimuli to be coded in the temporal relation between the
spiking of different neurons (Abeles, 1991; Hopfield, 1995) or
provide the basis for binding different features belonging to the
same object (Singer and Gray, 1995).

The mechanisms of inducing synchronous firing in groups of
cells are not yet directly accessible to experimental study. A pair
of neurons could either synchronize via direct synaptic connec-
tion between them or as a result of a common input. Anatomical
evidence indicates that most of the synaptic contacts a cortical cell
receives are in fact originating from the cells that are located in
the same cortical area (Ahmed et al., 1994). It is therefore
reasonable to assume that much of the observed synchronization
is generated locally as a consequence of the population dynamics.

Synchrony generation by networks of interconnected neurons
is a subject of many theoretical and numerical studies. For exam-
ple, it is easy to construct a network in which firing of individual
neurons is perfectly locked to each other (Mirollo and Strogatz,
1990). On the other extreme, the network could be in the regimen

of asynchronous activity with uncorrelated firing of individual
neurons (Abbott and van Vreeswijk, 1993). In this state, the
precise timing of individual spikes is not important, and the
activity of the neuron can be adequately described by its firing
rate. An intermediate regimen of synchronized chaotic activity
was obtained in the network of Hansel and Sompolinsky (1996),
where only a fraction, albeit a large one, of spikes in pairs of
neurons was synchronized on the time scale of few milliseconds.

Sharp synchronization between the spiking activity of pairs of
neurons was also reported in several experimental studies (Mur-
phy et al., 1985; Vaadia and Aersten, 1992; Riehle et al., 1997). In
these studies, however, the spikes were tightly locked for short
epochs lasting some milliseconds, and the rest of the spikes were
at most loosely correlated. This suggests that cortical networks
can operate in a regimen in which asynchronous activity is inter-
mittent with sharp synchronization on the time scale of single
spikes.

Previous modeling studies have not considered potential effects
of nonlinear (frequency-dependent) synapses on synchronization
of neuronal activity in recurrent networks. In the neocortex,
diversity of depressing and facilitating synapses has been reported
(Thomson and Deuchars, 1994; Markram et al., 1998). Nonlinear
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synaptic transmission was implicated in shaping the signaling
between neocortical neurons (Grossberg, 1969; Thomson and
Deuchars, 1994; Abbott et al., 1997; Tsodyks and Markram, 1997;
Markram et al., 1998). In particular, synaptic depression, which is
ubiquitous in connections between pyramidal neurons, enables
transmission of signals reflecting the synchrony in presynaptic
ensembles (Senn et al., 1998). In the current study, we demon-
strate that when nonlinear synaptic transmission is incorporated
into recurrent networks, intermittent activity with short-time
synchrony naturally emerges. This comes about as a result of
occasional upswings in the network population activity, during
which most of the neurons fire an action potential within a period
of several milliseconds. Moreover, during these periods, the neu-
rons tend to fire in a specific temporal order, which depends on
the distribution of the average firing rates of the neurons.

MODEL
We simulated a recurrent network of 400 excitatory and 100 inhibitory
neurons. The neurons were connected at random with a probability of a
contact between a pair of neurons taken to be 10% in accordance with
anatomical data (Abeles, 1991). Neurons were modeled as leaky
integrate-and-fire units widely used in these kinds of simulations (Tuck-
well, 1988). Each unit was described by its voltage membrane potential,
which evolved according to the circuit equation:

t
dV
dt

5 2V 1 Rin~Isyn 1 Ib!, (1)

where t denotes the membrane time constant of a neuron, Isyn represents
the synaptic current mediated by internal connections, and Ib stands for
the nonspecific background current provided by the distant brain areas.
In the following, we incorporated the input resistance of the neuron, Rin,
into the currents, which were therefore measured in units of voltage
(millivolts). The membrane potential V was calculated relative to a
resting level for a given neuron. Each time the membrane potential of a
neuron reached threshold, a spike was emitted, and the voltage was put
to a reset value after an absolute refractory period. In our simulations
t 5 30 msec, and the membrane threshold and reset values were 15 and
13.5 mV, respectively. Excitatory neurons had a refractory period of 3
msec, and inhibitory neurons had a refractory period of 2 msec. The
background current, Ib, had a constant value for each neuron, randomly
distributed across the network. We chose a uniform distribution centered
at the threshold level with a range of 0.05 mV; this resulted in the basal
firing rates of the excitatory neurons being between 1 and 20 Hz, with an
average of 7 Hz. The synaptic current, Isyn, was modeled as a sum of
postsynaptic currents (PSCs) from all of the other neurons in the net-
work which have connections targeting the given neuron (i):

Isyn~i! 5 O
j

Aij yij~t!. (2)

We used the phenomenological description of nonlinear synapses
developed by Markram et al. (1998) and Tsodyks et al. (1998), which was
shown to capture well the experimentally observed properties of neocor-
tical connections. In this model, Aij is a parameter describing the absolute
strength of the synaptic connection between neurons j (presynaptic
neuron) and i (postsynaptic neuron). The effective synaptic strength is
determined by the factor yij, which describes the contribution to a
synaptic current of neuron i because of PSCs from a neuron j. It evolves
according to the system of kinetic equations:

dx
dt

5
z
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dt
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dz
dt

5
y
tI

2
z

trec
, (3)

where x, y, and z are the fractions of synaptic resources in the recovered,
active, and inactive states, respectively, tsp denotes the timing of presyn-

aptic spikes, tI is the decay constant of PSCs, and trec is the recovery time
from synaptic depression. These equations describe the use of synaptic
resources by each presynaptic spike (a fraction u of the available re-
sources x is used by each presynaptic spike). A running variable, uij,
describes the effective use of the synaptic resources of the synapses,
which is analogous to the probability of release in the quantal model
(Markram et al., 1998). In facilitating synapses, it is increased with each
presynaptic spike and returns to the baseline value with a time constant
of tfacil:

du
dt

5 2
u

tfacil
1 U~1 2 u!d~t 2 tsp!, (4)

where the parameter U determines the increase in the value of u with
each spike. If tfacil 3 0, facilitation is not exhibited, and u is identical to
U for each spike, as is the case with depressing synapses between
excitatory pyramidal neurons (Tsodyks and Markram, 1997). The values
of the synaptic parameters were assigned as follows. First, average values
were specified for the parameters for each type of the connections; then
for each connection the actual value was chosen from a Gaussian distri-
bution with a corresponding mean and with a SD that equals half that
mean. The average values of the parameters used in the simulations were
A(ee) 5 1.8 mV; A(ei) 5 5.4 mV; A(ie) 5 7.2 mV; A(ii) 5 7.2 mV;
U(ee) 5 U(ei) 50.5; U(ie) 5 U(ii) 5 0.04; trec(ee) 5 trec(ei) 5 800 msec;
trec(ie) 5 trec(ii) 5 100 msec; tfacil(ie) 5 tfacil(ii) 5 1000 msec; and tI 5
3 msec. In control simulations we verified that the qualitative behavior of
the network is robust against independently changing the average values
by 50%.

RESULTS
Network dynamics
An epoch of network simulations is illustrated in Figure 1. The
raster plot of neuronal activity (Fig. 1A) and the average network
activity (Fig. 1B) indicate that the network dynamics exhibit short
intervals of highly synchronous activity in which large groups of
neurons fire successively—population bursts (PB). With the
choice of the parameters values given in Model, the duration of
the PB was ,15 msec. On average, in each burst 95% excitatory
and 98% inhibitory neurons participated, and the spikes were
distributed such that 63% of them were emitted within 5 msec
around the peak of the burst, and 15% were emitted within 1 msec
(Fig. 1B). During the PBs, 95% of the neurons fired once, and the
rest of the neurons emitted one or two additional spikes at the end
of the burst. The rate of the bursts was 0.97 6 0.4 Hz.

Mechanisms of population burst
Once a population burst occurs, it is easy to understand why it
terminates. Because the synapses between excitatory neurons are
depressing, the average effective strength of these connections
quickly declines during the PB (Fig. 1C), and the neuron dis-
charge times become independent of each other. After the burst
the strength of the connections slowly recovers, because the
subsequent asynchronous activity is characterized by low firing
rates. This recovery of strength augments the probability that the
firing of an excitatory cell will drive other cells to fire, and
eventually, after the network has reached a certain threshold
state, an excitatory cell can recruit other cells to generate a
fast-developing synchronous activity.

To confirm the crucial role of synaptic depression between
excitatory neurons in governing the population bursts, we elimi-
nated nonlinearity from all other connections. Indeed, we ob-
served the same qualitative behavior of the network activity (data
not shown). In fact, PBs could even be observed in a network
without inhibitory interneurons, provided the strength of recur-
rent excitation is adjusted appropriately (data not shown). We
found, however, that inhibition allowed the PBs to occur for a
wider range of parameters. Because synaptic depression is re-
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sponsible for PBs, it is reasonable to assume that the neurons with
the lower firing rates are important in their generation. This is
because the effective strength of a depressing synapse is decreas-
ing with the firing rate of the presynaptic neuron. To clarify this
issue, we ordered the excitatory neurons according to their aver-
age basal firing rates (Fig. 2A) over the interval of 20 sec. We then
selectively eliminated groups of 30 excitatory neurons, ranked
according to their firing rates, and counted the number of re-
maining bursts in an interval of 20 sec after the start of the
simulations. As shown in Figure 2B, the bursts disappear com-
pletely if the group of neurons with the firing rates from 1.3 to 2.5
Hz is eliminated. We explain this result by the fact that these
neurons not only have low firing rates, and therefore effectively
strong excitatory synapses, but also are close enough to threshold
to trigger the avalanche of the firing activity leading to the
crescendo PB.

Population response to external stimulation
Spontaneous PBs resulted only when the connections between
excitatory neurons were strong enough. External stimuli, how-
ever, could evoke population bursts even when connections were
weak. To demonstrate this possibility, we uniformly reduced the
absolute strength of all the synapses in the network until the PBs
disappeared. We then studied the response of the network to

sharp (5 msec) input pulses of various amplitudes with a fre-
quency of 1 Hz, targeting groups of 30 neurons. In Figure 2C the
minimal amplitude of the pulse needed to evoke a PB in the
network is plotted against different choices of the targeted neu-
rons. As the firing rate of targeted neurons increased, the inten-
sity of the pulse required for PB decreased gradually, reaching the
minimum for about the same group of neurons, which are mostly
responsible for spontaneous burst generation (Fig. 2, compare B,
C). For groups of targeted neurons with higher firing rates, the
input intensity required to generate the bursts increased sharply.
Eventually, no bursts could be evoked at any input intensity when
the targeted neurons had rates of .5 Hz. The network is there-
fore sensitive to the precise topography of the input stimulus; i.e.,
the ability of inputs with the identical amplitude to evoke a
network response depends on the basal firing rates of the targeted
neurons. To illustrate this sensitivity, we show the response of the
network to inputs with the amplitude of 0.5 mV. When applied to
a group of neurons with low basal rates, the input evoked a
full-fledged PB, whereas only minor response was observed when
neurons with higher basal rates were targeted (Fig. 3A,B).

Figure 1. Network dynamics. A, Spike trains of every fifth neuron in a
time window of 4.3 sec. For each neuron, a dot is put at each time the
neuron emitted an action potential. B, Network activity, computed as the
relative number of neurons that fire an action potential during consecu-
tive bins of 1 msec. Inset, Network activity during the time window of 40
msec around the population burst. C, Fraction of synaptic resources in the
recovered state, describing the effective strength of depressing synapses
(see Model), averaged over all connections between excitatory neurons.

Figure 2. Mechanism of population bursts. A, Average firing rates of the
excitatory neurons in the network, in an ascending order, computed over
the interval of 20 sec. B, Number of population bursts over the same
interval, which are observed in simulations in which a group of 30 neurons
is taken out of the network, starting from the neuron indicated on the
horizontal axis. C, Network with the absolute strength (A) of all connec-
tions reduced by one-third of their original values, resulting in the
disappearance of spontaneous population bursts. For each group of neu-
rons, an input pulse lasting 5 msec is applied with a frequency of 1 Hz.
The minimal amplitude of the input (in millivolts) that is required to
reliably evoke a population burst is plotted for each group of 30 targeted
neurons.

Tsodyks et al. • Synchrony in Recurrent Networks J. Neurosci., 2000, Vol. 20 3 of 5



Temporal relationship between neuronal firing
The simulation results indicate that the network exhibits qualita-
tively different activity patterns during and between the PBs. To
illustrate this difference, we computed the cross-correlation func-
tion (CCF) between the firing of different pairs of neurons, over
the period of 1000 sec. In Figure 4A we show an example of CCF
for two neurons having the firing rates close to 10 Hz. A sharp
peak at zero time difference for the CCF is a direct result of the
PBs during which both of the neurons fire within a short time
interval. If one excludes the spikes emitted during the PBs, the
resulting CCF does not exhibit any substantial peaks, indicating
that between the bursts the firing of neurons remains essentially
asynchronous. The area under the central peak in the CCF equals
10% of the overall number of spikes emitted by each of the
neurons, which corresponds to the relative number of spikes
emitted during the PBs. In Figure 4B, we show another pair, this
time with one of the neurons having a low firing rate of ;2 Hz.
A small negative bias of 4 msec in the CCF can be detected,
indicating that the neuron with the lower firing rate systematically
fired before the neuron with the higher firing rate. This is con-
sistent with the previous observation that the neurons with low
firing rates play a crucial role in generating the PBs. Finally,
Figure 4C illustrates a pair of neurons with low rates, which
exhibit a CCF with two sharp peaks at both positive and negative
time difference. The shape of CCFs indicates that there exists a
statistically reproducible timing relation between the firing of
different neurons during a PB. To illustrate this relation, we
computed, for each neuron in the network, the CCF between the

spike train of the neuron and the peaks of the population bursts
and marked the time at which CCF was at its maximum (Fig. 4D).
As seen by comparison between Figures 2B and 4D, the neurons
that are responsible for PB generation systematically fire in the
advanced phase of the PB.

Conditions for the occurrence of population bursts
In the current study, we concentrated on the novel form of
network activity, characterized by (spontaneous or evoked) sharp
population bursts. As follows from the analysis, the necessary
condition for this regimen is a broad distribution of the neuronal
basal firing rates, which must include a substantial fraction of
low-rate neurons. Indeed, if the rate distribution is shifted toward
higher rates, e.g., because of increased tonic input, the bursts
eventually disappear. Another condition concerns the strength of
recurrent excitatory connections. We found that increasing the
strength of the connections beyond a certain range [A(ee) . 2.45
mV for our network] led to broadening of the bursts such that
single neurons were firing multiple spikes within each PB. We
believe that this happens because several spikes are now needed

Figure 3. Sensitivity of the network to the precise topography of the
stimulus. Network activity in response to input pulses of an amplitude of
0.5 mV and a duration of 5 msec is shown, targeting 30 neurons with rates
of 3.5–5.9 Hz (A) and 1.1–2.9 Hz (B).

Figure 4. Temporal relationship between neuronal firing. A, Cross-
correlation function between the activities of two neurons with similar
rates in the middle of the rate distribution (10 and 12 Hz). Solid line,
Cross-correlation function computed over the period of 1000 sec of
activity; dashed line cross-correlation function computed over the same
period but subtracting the spikes emitted during the population bursts of
the network. B, Same for a pair of neurons with rates of 1.7 and 12 Hz. C,
Pair of neurons with low rates of 2.6 and 1 Hz. D, For each neuron in the
network, the cross-correlation function between its spike train and the
times of the maximums of population bursts was computed, and the time
difference at which the cross-correlation function is at its maximum is
plotted.
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before synaptic depression weakens the recurrent excitation suf-
ficiently. In this regimen, bursts are also more regularly spaced in
time, which might therefore correspond to slow cortical oscilla-
tions observed during natural sleep in cats and humans (Steriade,
1997). We emphasize, however, that also in this regimen, the
neurons that trigger the PBs have very little activity between the
bursts. Finally, because of computational constraints, most of
the simulations were performed with small networks consisting of
500 neurons. We checked that PBs also occurred in larger net-
works with the same pattern of connectivity. The frequency and
temporal regularity of PBs are complex functions of the network
size and synaptic parameters. In particular, networks of increas-
ing size with fixed synaptic strength tend to exhibit more rhythmic
activity.

DISCUSSION
The simulations presented here demonstrate that networks of
neurons interconnected with nonlinear synapses have a striking
tendency to generate a special regimen of activity with population
bursts intermittent with long periods of asynchronous activity. As
a result of the PBs, the neurons exhibit synchronous firing char-
acterized by a large fraction of neurons firing action potentials
within a time window of a few milliseconds. Within this short
window, the neurons fire with a particular temporal relationship,
determined by their basal firing rates during the preceding activ-
ity. The network can also produce a PB in response to an external
excitatory input. In this case, the strength of excitation, required
to evoke the response, strongly depends on the basal firing rates
of the targeted neurons. Thus, the network is characterized by a
high sensitivity to the topography of the input stimulus.

We emphasize that synaptic depression between excitatory
neurons plays a crucial role in generating this network behavior.
We also emphasize that synchronization between neurons on the
time scale of few milliseconds can be achieved in randomly
connected networks, without any specific structures such as syn-
fire chains (Abeles, 1991). The network simulated in this study
has a random pattern of intrinsic synaptic connections. For ex-
ample, it could represent a cortical minicolumn consisting of
neurons with similar receptive field properties. We expect that in
larger networks, such as a cortical hypercolumn, where connec-
tions between neurons reflect their receptive field properties,
other regimens of activity, with PBs propagating between differ-
ent minicolumns in a quasirandom manner, could exist. These
possibilities are subjects of a further study. The conclusion of the
analysis could be tested experimentally by recordings from mul-
tiple neurons in the same cortical area. The results of the simu-
lations predict that groups of cells can generate tightly synchro-
nous spikes on the scale of few milliseconds, intermittent with the
long periods with no synchronization on this scale. This effect
could be observed during either spontaneous firing or during the
response to sensory stimulation. There should also exist a system-
atic temporal relation between the timing of spikes in pairs of
neurons in relation to their average firing rate. In particular, the
spikes of neurons with low firing rates should precede the spikes
of neurons with higher rates.

We would like to speculate that PBs that seem to be a natural
tendency in recurrent networks with nonlinear synapses could
have a functional significance for cortical networks. Because
long-term regulation of synaptic transmission was shown to be
sensitive to relative timing of spikes between presynaptic and
postsynaptic neurons (Markram et al., 1997), spontaneous PBs

could influence the shaping of local functional connectivity in
the cortex. The PBs evoked by the external input could provide
the cortex with the ability for a fast and reliable processing of the
sensory stimuli, in accordance with recent psychophysical and
electrophysiological observations (Bair and Koch, 1996; Thorpe
et al., 1996; Eggermont, 1999).

REFERENCES
Abbott LF, van Vreeswijk C (1993) Asynchronous states in networks of

pulse-coupled oscillators. Phys Rev E 48:1483–1490.
Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression

and cortical gain control. Science 275:220–224.
Abeles M (1991) Corticonics. New York: Cambridge UP.
Ahmed B, Anderson J, Douglas R, Martin K, Nelson J (1994) Polyneu-

ral innervation of spiny stellate neurons in cat visual cortex. J Comp
Neurol 341:39–49.

Bair W, Koch C (1996) Temporal precision of spike trains in extrastriate
cortex of the behaving macaque monkey. Neural Comput 8:1185–202.

Eggermont JJ (1999) The magnitude and phase of temporal modulation
transfer functions in cat auditory cortex. J Neurosci 19:2780–2788.

Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in
visual cortex exhibit intercolumnar synchronization which reflects
global stimulus properties. Nature 338:334–337.

Grossberg S (1969) On the production and release of chemical transmit-
ters and related topics in cellular control. J Theor Biol 22:325–364.

Hansel D, Sompolinsky H (1996) Chaos and synchrony in a model of a
hypercolumn in visual cortex. J Comp Neurosci 3:7–34.

Hopfield JJ (1995) Pattern recognition computation using action poten-
tial timing for stimulus representation. Nature 376:33–36.

Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of
synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Sci-
ence 275:213–215.

Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the
same axon from neocortical layer 5 pyramidal neurons. Proc Natl Acad
Sci USA 95:5323–5328.

Mirollo RE, Strogatz SH (1990) Synchronization of pulse-coupled bio-
logical oscillators. SIAM J Appl Math 6:1645–1657.

Murphy JT, Kwan HC, Wong YC (1985) Cross-correlation studies in
primate motor cortex: synaptic interaction and shared input. Can
J Neurol Sci 12:11–23.

Riehle A, Grun S, Diesman M, Aertsen A (1997) Spike synchronization
and rate modulation differentially involved in motor cortical function.
Science 278:1950–1953.

Senn W, Segev I, Tsodyks M (1998) Reading neuronal synchrony with
depressing synapses. Neural Comput 10:815–819.

Sillito AM, Jones HE, Gerstein GL, West DC (1994) Feature-linked
synchronization of thalamic relay cell firing induced by feedback from
the visual cortex. Nature 369:479–482.

Singer W, Gray CM (1995) Visual feature integration and the temporal
correlation hypothesis. Annu Rev Neurosci 18:555–586.

Steriade M (1997) Synchronized activities of coupled oscillators in the
cerebral cortex and thalamus at different levels of vigilance. Cereb
Cortex 7:583–604.

Steriade M, Contreras D (1998) Spike-wave complexes and fast compo-
nents of cortically generated seizures. i. Role of neocortex and thala-
mus. J Neurophysiol 80:1439–1455.

Thomson AM, Deuchars J (1994) Temporal and spatial properties of
local circuits in neocortex. Trends Neurosci 17:119–126.

Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human
visual system. Nature 381:520–522.

Tsodyks M, Markram H (1997) The neural code between neocortical
pyramidal neurons depends on neurotransmitter release probability.
Proc Natl Acad Sci USA 94:719–723.

Tsodyks M, Pawelzik K, Markram H (1998) Neural networks with dy-
namic synapses. Neural Comput 10:821–835.

Tuckwell HC (1988) Introduction to theoretical neurobiology. New
York: Cambridge UP.

Vaadia E, Aersten A (1992) Coding and computation in the cortex:
single-neuron activity and cooperative phenomena. In: Information
processing in the cortex (Aertsen A, Braitenberg V, eds), pp 81–121.
Berlin: Springer.

Tsodyks et al. • Synchrony in Recurrent Networks J. Neurosci., 2000, Vol. 20 5 of 5


