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The CA3 region of the hippocampus is a recurrent neural network that is essential for
the storage and replay of sequences of patterns that represent behavioral events. Here we
present a theoretical framework to calculate a sparsely connected network’s capacity to store
such sequences. As in CA3, only a limited subset of neurons in the network is active at any
one time, pattern retrieval is subject to error, and the resources for plasticity are limited.
Our analysis combines an analytical mean-field approach, stochastic dynamics, and cellular
simulations of a time-discrete McCulloch-Pitts network with binary synapses. To maximize
the number of sequences that can be stored in the network, we concurrently optimize the
number of active neurons, i.e. pattern size, and the firing threshold. We find that for one-step
associations, i.e. minimal sequences, the optimal pattern size is inversely proportional to the
mean connectivity c, whereas the optimal firing threshold is independent of the connectivity.
If the number of synapses per neuron is fixed, the maximum number P of stored sequences
in a sufficiently large, non-modular network is independent of its number N of cells. On the
other hand, if the number of synapses scales as the network size to the power of 3/2, the
number of sequences P is proportional to N . In other words, sequential memory is scalable.
Furthermore, we find that there is an optimal ratio r between silent and non-silent synapses
of at which the storage capacity α = P/[c(1+r)N ] assumes a maximum. For long sequences,
the capacity of sequential memory is about one order of magnitude below the capacity for
minimal sequences, but otherwise behaves similar to the case of minimal sequences. In a
biologically inspired scenario the information content per synapse is far below theoretical
optimality, suggesting that the brain trades off error tolerance against information content
in encoding sequential memories.
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I. INTRODUCTION

Recurrent neuronal networks are thought to serve as a physical basis for learning and memory.
A fundamental strategy of memory organization in animals and man is the storage of sequences
of behavioral events. One of the brain regions of special importance for sequence learning is the
hippocampus (Brun et al., 2002; Fortin et al., 2002; Kesner et al., 2002). The recurrent network
in the CA3 region of hippocampus, in particular, is critically involved in the rapid acquisition of
single-trial or one-shot, episodic-like memory (Nakazawa et al., 2004), i.e., memory of the sequential
ordering of events.

It is generally assumed that the hippocampus can operate in at least two states (Lörincz &
Buzsàki, 2000). One state, called theta, is dedicated to fast, or one-shot, learning; the other state,
referred to as sharp-wave ripple, is dedicated to the replay of stored sequences. Experiments by
Wilson & McNaughton (1994), Nadasdy et al. (1999) and Lee & Wilson (2002) strongly corroborate
the hypothesis that the hippocampus can replay sequences of previously experienced events. The
sequences are assumed to be stored within the highly plastic synapses that recurrently connect the
pyramidal cells of the CA3 region (Csicsvari et al., 2000).

In this paper we tackle the problem of how many sequences can be stored in a recurrent neuronal
network such that their replay can be triggered by an activation of adequate cue patterns. This
question is fundamental to neural computation, and many classical papers calculate the storage
capacity of pattern memories. There, one can roughly distinguish between two major classes of
network models: perceptron-like feed-forward networks in which associations occur within one
time-step (Brunel et al., 1992; Gardner, 1987; Nadal & Toulouse, 1990; Willshaw et al., 1969)
and recurrent networks that describe memories as attractors of a time-discrete dynamics (Amit
et al., 1987; Golomb et al., 1990; Hopfield, 1982; Little, 1974). Also for networks that act as
memory for sequences, capacities have been calculated in both the perceptron (Nadal, 1991) and
the attractor case (Herz et al., 1991). An important result is that the capacity of sequence memory
in Hopfield-type networks is about twice as large as that of a static attractor network (Düring et
al., 1998).

The present paper describes sequence replay in a sparsely connected network by means of
time-discrete dynamics, binary neurons and binary synapses. Our model for sequential replay of
activity patterns is different from attractor-type models (Amit, 1988; Buhmann & Schulten, 1987;
Sompolinsky & Kanter, 1986). In fact we completely dispense with fixed points of the network
dynamics. Instead, we discuss transients that are far from equilibrium (August & Levy, 1999;
Jensen & Lisman, 2005; Levy, 1996). In the case of a sequence consisting of a single transition
between two patterns (a minimal sequence) the mathematical structure we choose is similar to the
one of Nadal (1991) for an auto-associative Willshaw network (Willshaw et al., 1969). For longer
sequences, our analysis resembles that of synfire networks (Diesmann et al., 1999), although we
take expectation values as late as possible (Nowotny & Huerta, 2003).

Some of the previous approaches to memory capacity explicitly focus on questions of biological
applicability. Golomb et al. (1990), for example, address the problem of low firing rates. Herrmann
et al. (1995) explore the biological plausibility of synfire chains. Other approaches assess the
dependence of storage capacity on restrictions to connectivity (Deshpande & Dasgupta, 1991;
Gutfreund & Mezard, 1988; Maravall, 1999) and on the distribution of synaptic states (Brunel et
al., 2004).

In this paper we propose a framework that allows for discussing how a combination of several
biological constraints affects the performance of neuronal networks that are operational in the brain.
An important constraint that supports dynamical stability at a low level of activity is a low mean
connectivity. Another one is imposed by limited resources for synaptic plasticity, i.e., not every
synapse that may combinatorially be possible can really be established. This constraint sets an
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upper bound to the maximum connectivity between two groups of neurons that are to be associated.
Moreover, the number of synapses per neuron may be limited. Another important constraint for
sequential memories is the length of replayed sequences, which interferes with dynamical properties
of the network. Finally, the capacity of sequential memory is also influenced by the specific nature
of a neuronal structure that reads out replayed patterns. This influence is often neglected by
assuming a perfect detector for the network states.

In our approach we explicitly take into account that synapses are usually classified into activated
and silent ones (Montgomery et al., 2001; Nusser et al., 1998). Activated synapses have a non-zero
efficacy or weight and are essential for the network dynamics. Silent synapses, which do not contain
postsynaptic AMPA receptors (Isaac et al., 1995), are assumed to not contribute to the network
dynamics. Changing the state of synapses from the silent to the non-silent state and vice versa
acts as a for plasticity resource for the storage of sequences. Synaptic learning rules can set a fixed
ratio between silent and non-silent synapses, which gives rise to an additional constraint.

We calculate the capacity of sequential memory in a constrained recurrent network by means
of a probabilistic theory as well as a mean-field approach. Both theoretical models are compared
to cellular simulations of networks of spiking units. We thereby describe the memory capacity for
sequences in dependence upon five free parameters. The network size N , the mean connectivity c,
and the ratio r between silent and non-silent synapses are three network parameters. In addition
there are two replay parameters: the sequence length Q, and the threshold γ of pattern detection.

In this article, the number M of active neurons per pattern and the neuronal firing threshold
θ are largely considered as dependent variables. It is shown how M and θ are to be optimized to
allow for replaying a maximum number of sequences. Scaling laws are then derived by using the
optimal values for M and θ, both being functions of the five free parameters.

II. MODEL OF A RECURRENT NETWORK FOR THE REPLAY OF SEQUENCES

In this section we specify notations to describe the dynamics and morphology of a recurrent
network that allows for a replay of sequences of predefined activity patterns. A list of symbols that
are used throughout this manuscript can be found in Appendix A.

A. Binary Synapses Connect Binary Neurons

Let us consider a network of N McCulloch-Pitts (McCulloch & Pitts, 1943) neurons that are
described by binary variables xk, 1 ≤ k ≤ N . At each discrete point in time t neuron k can either
be active, xk(t) = 1, or inactive, xk(t) = 0. The state of the network is then denoted by a binary
N -vector x(t) = [x1(t), . . . , xN (t)]T . A neuron k that is active at time t provides input to a neuron
k′ at time t + 1 if there is an activated synaptic connection from k to k′. Neuron k′ fires at time
t + 1 if its synaptic input crosses some firing threshold θ > 0.

In order to specify a neuron’s input, we classify synapses into activated and silent ones. All
activated connections contribute equally to the synaptic input. Silent synapses have no influence
on the dynamics. Therefore, the synaptic input of neuron k′ at time t + 1 equals the number of
active neurons at time t that have an activated synapse to neuron k′. Silent synapses are assumed
to act as a resource for plastic changes, although this paper does not directly incorporate plasticity
rules.

The total number cN 2 of activated synapses in the network defines a mean connectivity c > 0,
which later on will be interpreted as the probability of having an activated synapse connecting a
particular neuron to another one. The connectivity through activated synapses in the network is
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described by the N × N binary matrix C where Ckk′ = 1 if there is an activated synapse from
neuron k to neuron k′, and Ckk′ = 0 if there is a silent synapse or no synapse at all.

Similarly, the connectivity through silent synapses is denoted by cs, and the total number of
silent synapses in the network is csN

2. Then, each neuron then has on average (c + cs)N morpho-
logical synapses, which in turn defines the morphological connectivity cm = c + cs. Experimental
literature (Montgomery et al., 2001; Nusser et al., 1998) usually assesses the ratio cs/c between
the silent and non-silent connectivities. For the sake of convenience, we introduce the abbreviation
r = cs/c. We note that the four connectivity parameters c, cm, cs and r have two independent

degrees of freedom.

B. Patterns and Sequences

A pattern or event is defined as a binary N -vector ξ where M elements of ξ are 1 and N − M
elements are 0. The network is in the state ξ at time t if x(t) = ξ. An ordered series of events
is called a sequence. A minimal sequence is defined as a series of two events, say a cue pattern
ξA preceding a target pattern ξB. The minimal sequence ξA → ξB is said to be stored in the
network if initialization with the cue x(t) ≈ ξA at time t leads to the target x(t+1) ≈ ξB one time
step later. Typically, the network only approximately recalls or replays the events of a sequence;
see section IV. Sequences of arbitrary length, denoted by Q ≥ 1, are obtained by concatenating
minimal sequences of length Q = 1.

In the next section we specify how to set up the connectivity such that a recurrent network can
act as a memory for sequences.

III. EMBEDDING SEQUENCES AND STORAGE CAPACITY

For a minimal sequence ξA → ξB to be stored in the network, one requires an above-average
connectivity through activated synapses from the cells that are active in the cue ξA to those that
are supposed to be active during the recall of the target ξB. In what follows, we assume that all
morphological synapses from neurons active in the cue pattern to cells active in the target pattern
are switched on and none of them is silent. Such a network can be constructed similar to the one in
Willshaw et al. (1969); see also Nadal & Toulouse (1990) and Buckingham & Willshaw (1993). Let
us therefore consider a randomly connected network, i.e., the probability of having a morphological
synapse from one neuron to another one is cm. Beginning with all synapses being in the silent state,
one randomly defines pairs of patterns that are to be connected into minimal sequences. Then one
converts those silent synapses into active ones that connect the M active neurons in a cue pattern
to the M active neurons in the corresponding target pattern. Imprinting of sequences stops, when
the overall connectivity through activated synapses reaches the value c, i.e., the total number of
activated synapses in the network attains a value of cN 2.

Capacity of Sequential Memory

Let us now address the question of how many sequences can be concurrently stored using the
above algorithm for a given mean connectivity c and morphological connectivity cm > c. In so
doing, we define the capacity α of sequential memory as the maximum number P of minimal
sequences that can be stored, normalized by the number cmN = (1 + r)cN of morphological
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synapses per neuron,

α :=
P

cm N
. (1)

The number P of minimal sequences that can be stored is assessed by extending the classical
derivation of Willshaw et al. (1969): suppose that we have two groups of M cells that should be
linked into a minimal sequence. For each morphological synapse in the network the probability
that the presynaptic neuron is active in the cue pattern is M/N , and the probability that the
postsynaptic neuron is active in the target pattern is also M/N . Then the probability that a synapse
is not involved in this specific minimal sequence is 1−M 2/N2. Given P stored minimal sequences,
the probability that a synapse does not contribute to any of those sequences is [1 − M 2/N2]P ,
and therefore the probability of a synapse being in a non-silent state is C = 1 − [1 − M 2/N2]P .
For a mean connectivity c, on the other hand, the probability C also equals the ratio between the
number cN2 of activated synapses and the total number cmN2 of synapses in the network, i.e.,
C = c/cm. Combining the two approaches we can derive P for any given pair of connectivities c
and cm = c (1 + r) and find

α =
log(1 − c/cm)

cmN log (1 − M2/N2)
. (2)

Equation 2 is valid for all biologically reasonable choices of M , c and cm and also can account for
non-orthogonal patterns, as in Willshaw et al. (1969). A somewhat simpler expression for α can
be obtained in the case M/N � 1. Independent of specific values of c and cm we can expand
[1 − M2/N2]P ≈ 1 − P M2/N2 to end up with

α =
c N

c2
m M2

for 1 � M � N . (3)

Equation 3 can also be interpreted through a different way of estimating the number P of minimal
sequences that can be stored: P roughly equals the ratio between the total number cN 2 of activated
synapses in the network and the number cmM2 of activated synapses that link two patterns, i.e.,
P = cN2/(cmM2). This estimate, however, requires that different patterns are represented by
different groups of neurons, i.e., that there is no overlap between the patterns, which is an excellent
approximation for sparsely-coded patterns, M/N � 1.

Equations 2 and 3 for the capacity α of sequential memory, however, do not tell us whether
embedded sequences can actually be replayed. In the next section we therefore introduce a method
to quantify sequence replay.

IV. REPLAYING SEQUENCES

We consider a sequence as being stored in the network if and only if it can be replayed at a given
quality. In order to be able to efficiently simulate replay in large networks, this section introduces
a probabilistic ‘Markovian’ dynamics that approximates the deterministic cellular simulations well.
Finally, we define a measure to quantify the quality of sequence replay.

A. Capacity and Dynamical Stability

Let us design a network and patterns such that the number of sequences that can be concurrently
stored is as large as possible. From equations 2 and 3 we see that the capacity α is maximized if
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the pattern size M is as small as possible. However, M cannot be arbitrarily small, which will be
illustrated below and explained in detail in section V.

Examples of how sequence replay depends on network parameters are illustrated by simulations
of a network of N = 100 000 McCulloch-Pitts units at low connectivities c = cs = 0.05. The choice
r = cs/c = 1 roughly resembles values experimentally obtained by Nusser et al. (1998), Montgomery
et al. (2001), and Isope & Barbour (2002). Minimal sequences have been concatenated so that non-
minimal sequences [ξ0 → ξ1 → . . . → ξQ] of length Q = 20 are obtained. In the simulations, the
network is always initialized with the cue pattern ξ0 at time step 0. The replay of non-minimal
sequences at times t > 0 is then indicated through two order parameters: the number of correctly
activated neurons (hits), mt := x(t) · ξt, and the number of incorrectly activated neurons (false
alarms), nt := x(t) · (1 − ξt), where 1 = [1, . . . , 1]T and the symbol ‘·’ denotes the standard dot
product.

Figure 1 shows sequence replay in cellular simulations for two different pattern sizes (M = 800
and M = 1600). Sequence replay crucially depends on the value of the firing threshold θ. In
general, if the threshold is too high, the network becomes silent after a few iterations. If the
threshold is too low, the whole network becomes activated within few time steps. Whether there
exist values of θ at which a sequence can be fully replayed, however, also critically depends on the
pattern size M . At a small pattern size of M = 800 there is no such firing threshold whereas for a
pattern size M = 1600 there is a whole range of thresholds that allow replaying the full sequence.
So there is a conflict between the maximization of the capacity of the network, which requires M
to be small, and the dynamical stability of replay, which becomes more robust for larger values of
M ; cf. section VII

In section V we will derive a lower bound for the pattern size below which replay is impossible,
and we also determine the respective firing threshold. In connection with equation 2 these results
enable us to calculate the maximum number of sequences that can be simultaneously stored in
a recurrent network such that all stored sequences can be replayed. These calculations require a
simultaneous optimization of pattern size M and threshold θ. A numerical treatment as shown in
Figure 1, however, is infeasible for much larger networks. Therefore, we introduce a numerically
less costly approach.

B. Markovian Dynamics

Assessing the dynamics of large networks of neurons by means of computer simulations is mainly
constrained by the amount of accessible memory. Simulations of a network of N = 105 cells with
a connectivity of about c = 5%, as the ones shown in Figure 1, require about 2 GB of computer
memory. A doubling of neurons would therefore result in 8 GB and is thus already close to the
limit of nowadays conventional computing facilities. Networks with more than 106 cells that need
at least 200 GB are very inconvenient. It is therefore reasonable to follow a different approach for
investigating scaling laws of sequential memory.

To be able to simulate pattern replay in large networks, we reduce the dynamical degrees of
freedom of the network to the two order parameters defined in the previous section: the number
mt of correctly activated neurons (hits) and the number nt of incorrectly activated neurons (false
alarms) at time t; see also Figure 2A. Furthermore, we take advantage of the fact that the network
dynamics has only a one-step memory and, thus, reduce the full network dynamics to a discrete
probabilistic dynamics governed by a transition matrix T (Gutfreund & Mezard, 1988; Nowotny &
Huerta, 2003). The transition matrix is defined as the conditional probability T (mt+1, nt+1|mt, nt)
that a network state (mt+1, nt+1) follows the state (mt, nt). We note that, due to this probabilistic
interpretation the dynamics of (mt, nt) is stochastic, although single units behave deterministically.
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FIG. 1: Stability-capacity conflict. Sequence replay critically depends on both the firing threshold θ and the
pattern size M . In all graphs we show the fraction mt/M of hits (disks) representing sequence replay at time
step t and the fraction nt/(N − M) (crosses) of false alarms in the rest of the network during the replay of
a non-minimal sequence of length Q = 20. The network consists of N = 105 McCulloch-Pitts neurons with
a mean connectivity of activated synapses of c = 5%. The ratio of silent and activated synapses is r = 1.
(A) For a pattern size M = 800, full replay is impossible. For high thresholds θ ≥ 64 the sequence dies
out, whereas for low thresholds θ ≤ 63 the network activity explodes. (B) For a pattern size of M = 1600,
sequence replay is possible for a broad range of thresholds θ between 114 and 133.

More precisely, we derive a dynamics for the probability distribution of (mt, nt). How to interpret
expectation values with respect to this distribution is specified next.

1. Reduced Connectivity Matrix

In the limit of a large pattern size M , the connectivities c and cm can be interpreted as prob-
abilities of having synaptic connections. In other words, the probability that in the embedded
sequence ξA → ξB there is an activated synapse from a cell active in ξA to a cell active in ξB is
cm.

This probabilistic interpretation can be formalized by means of a reduction of the binary connec-
tivity matrix C to four mean connectivities ( c11 c10

c01 c00 ), which are average values over all P minimal
sequences stored; see also Figure 2B. First, we define the mean connectivity c11 between neurons
that are supposed to be active in cue patterns and those that are supposed to be active in their
corresponding targets,

c11 =
1

P

P
∑

{A,B}

1

N2

N
∑

k,k′=1

ξA
k Ckk′ ξB

k′ . (4)
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FIG. 2: Pattern size and connectivity matrix. (A) At some time t, the network is assumed to be associated
with a specific event ξt = ξA of size M . We therefore divide the network of N neurons into two parts. The
first part consists of the M neurons that are supposed to be active if an event ξt is perfectly represented.
The second part contains the N −M neurons that are supposed to be inactive. The quantities mt (hits) and
nt (false alarms) denote the number of active neurons in the two groups at time t. (B) The number mt+1

of hits and the number nt+1 of false alarms with respect to pattern ξt+1 = ξB at time t + 1 are determined
by the state of the network at time t, x(t) = ξA, and the connectivity matrix C. The average number
of synaptic connections between the four groups of cells is described by the reduced connectivity matrix
( c11 c10

c01 c00
), which is defined in section IV B1.

Here the sum over {A, B} is meant to be taken over the cue-target pairs of P different minimal
sequences. By construction (see section III) c11 is at its maximum cm. Second, the connectivity c10

describes activated synapses between cells that are active in cue patterns to cells that are supposed
to be inactive in target patterns. Similarly, the mean connectivity c01 describes activated synapses
from neurons that are supposed to be inactive in the cue to those that should be active in the target
pattern. Finally, c00 denotes the mean connectivity between cells that are to be silent in both the
cue and the target. The four mean connectivities are summarized in the reduced connectivity
matrix ( c11 c10

c01 c00 ); see also Figure 2B. The interpretation of the mean connectivities as probabilities
of having activated synaptic connections between two neurons can be considered as the assumption
of binomial statistics. This assumption is a good approximation for Willshaw-type networks in the
limit N � M � 1 (Buckingham & Willshaw, 1992).

Cues and targets of minimal sequences were assumed to be linked as tight as possible, which
results in c11 = cm = c (1+r). The remaining three entries of the reduced connectivity matrix follow
from normalization conditions: since every active neuron in a target pattern, e.g. ξB, receives, on
average, cN activated synapses and those synapses originate from two different groups of neurons
in a cue pattern, e.g. ξA, we have cN = c11M +c01(N −M). Similarly, every inactive neuron in the
target pattern receives, on average, cN = c10M +c00(N−M) activated synapses. As a consequence
of recurrence, every neuron of a cue pattern projects, on average, to cN postsynaptic neurons. From
that we obtain two similar conditions with c10 and c01 interchanged and thus c10 = c01 .

All entries of the reduced connectivity matrix ( c11 c10
c01 c00 ) can therefore be expressed in terms of

the mean connectivity c, the ratio r of silent and non-silent connectivities, the pattern size M , and
the network size N ,

(

c11 c10

c01 c00

)

= c

(

1 + r 1 − r M
N−M

1 − r M
N−M 1 + r M2

(N−M)2

)

. (5)

The assumption of binary statistics together with the reduced connectivity matrix enables us to
specify the transition matrix T as it has been defined at the beginning of section IV B
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Calculation of the capacity α for an arbitrary connectivity c11, i.e., c < c11 < cm, between cue
and target patterns is somewhat more involved than in the case of section III where patterns were
connected with the maximum morphological connectivity c11 = cm. The scenario c < c11 < cm is
outlined in Appendix B. For 1 � M � N , however, equation 3 with cm replaced by c11 turns out
to be an excellent approximation.

2. Transition Matrix

Due to statistical independence of the activation of different postsynaptic neurons, the transition
matrix can be separated,

T (mt+1, nt+1|mt, nt) = p(mt+1|mt, nt) q(nt+1|mt, nt) , (6)

where p(mt+1|mt, nt) is the probability that, at time t + 1, a number of mt+1 cells are correctly
activated, and q(nt+1|mt, nt) is the probability of having nt+1 cells incorrectly active, given mt and
nt. Defining the binomial probability

bj,l(x) =

(

l

j

)

xj (1 − x)l−j , (7)

with 0 ≤ x ≤ 1 and 0 ≤ j ≤ l we obtain

p(mt+1|mt, nt) = bmt+1,M (ρmtnt
) and q(nt+1|mt, nt) = bnt+1,N−M (λmtnt

) (8)

with ρmtnt
and λmtnt

denoting the probabilities of correct (ρ) and incorrect (λ) activation of a
single cell, respectively. Both are specified by the reduced connectivity matrix ( c11 c10

c01 c00 ) and the
firing threshold θ,

ρmtnt
=

∑

j,k;j+k≥θ

bj,M

(mt

M
c11

)

bk,N−M

(

nt

N − M
c01

)

, (9)

λmtnt
=

∑

j,k;j+k≥θ

bj,M

(mt

M
c10

)

bk,N−M

(

nt

N − M
c00

)

. (10)

Equations 9 & 10 can be understood as adding up the probabilities of all combinations of the
number j of hits and the number k of false alarms that together cross the firing threshold θ.

The transition matrix T gives rise to probability distributions Λt for the number mt of hits and
the number nt of false alarms. To be able to compare the Markovian dynamics with the network
dynamics obtained from cellular simulations (see Figure 1) we calculate the expectation values
〈mt〉 and 〈nt〉 of hits and false alarms with respect to the probability distribution Λt for t ≥ 1:

〈mt〉 =
M
∑

µ=1

N−M
∑

ν=1

µ Λt(µ, ν|m0, n0) (11)

〈nt〉 =
M
∑

µ=1

N−M
∑

ν=1

ν Λt(µ, ν|m0, n0) , (12)

where

Λt(mt, nt|m0, n0) =
∑

{(m1,n1)}

· · ·
∑

{(mt−1,nt−1)}

t
∏

τ=1

T (mτ , nτ |mτ−1, nτ−1) (13)
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FIG. 3: Stability-capacity conflict for Markovian network dynamics. The expected fraction of hits 〈mt〉/M
(disks) and false alarms 〈nt〉/(N−M) (crosses) are plotted as a function of time t after the network has been
initialized with the cue pattern at t = 0. The parameters N = 105, c = 5%, r = 1, and Q = 20 are the same
as in Figure 1. (A) For a pattern size M = 800, full replay is impossible. For high firing thresholds θ ≥ 64
the sequence dies out, whereas for low thresholds θ ≤ 63 the network activity explodes, which is identical
to Figure 1 although the time courses of hits and false alarms slightly differ. (B) For M = 1600, sequence
replay is possible for thresholds 112 ≤ θ ≤ 133, whereas in Figure 1 we have obtained 114 ≤ θ ≤ 133.

is the probability of having mt hits and nt false alarms at some time t, given that the network
has been initialized with m0 = M hits and n0 = 0 false alarms at time zero. Equation 13 can be
derived from the recursive formula Λt(.|.) =

∑

{(.)} T (.|.) Λt−1(.|.), and the sums in equation 13 are
meant to be over all pairs (mτ , nτ ) ∈ {0, . . . , M} ⊗ {0, . . . , N − M}, for 1 ≤ τ ≤ t − 1.

An increase in numerical efficiency is gained from the fact that sums over binomial probabilities
can be evaluated by means of the incomplete Beta function (Press et al., 1992). Moreover, numerical
treatment of the Markovian dynamics can take advantage of the separability of T = p q (see
equation 6). But still, for large numbers of N , computing and multiplying p and q in full is costly.
We therefore reduced p and q to at most 5000 interpolation points where each of them is assigned
to the same portion of probability. The reduced vectors are then used to calculate an iteration
step t → t + 1. Numerical results provided are thus estimates in the above sense and serve as
approximations to the full Markov dynamics.

Figure 3 shows a numerical evaluation of the Markovian dynamics for the same parameter regime
as used for the cellular simulations in Figure 1. We observe a qualitative agreement between the
two approaches but also small differences regarding the upper and lower bounds for the set of firing
thresholds allowing stable sequence replay. A further comparison is postponed to section V.
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C. Quality of Replay and Detection Criterion

In the examples shown in Figures 1 and 3 the quality of sequence replay at a certain time step
is obvious because we typically have to distinguish among only three scenarios: (1) all neurons
are silent, (2) all neurons are active, and (3) a pattern is properly represented. If, however, the
network exhibits intermediate states one needs a quantitative measure of whether a particular
sequence is actually replayed. For this purpose we specify the quality Γ at which single patterns
ξt are represented by the actual network state xt. We consider Γ to be a function of the numbers
mt and nt of hits and false alarms, respectively (see section IV B). The quality function

Γ(mt, nt) := mt/M − nt/(N − M). (14)

is chosen such that a perfect representation of a pattern is indicated by Γ = 1. Random activation
of the network, on the other hand, yields |Γ| � 1 in the generic scenario 1 � M � N . The quality
function weighs hits much stronger than false alarms, similar to the so-called “normalized winner-
take-all recall” as introduced by Graham & Willshaw (1997) or Maravall (1999). Equation 14 is
physiologically inspired by a downstream neuron receiving excitation from hits and inhibition from
false alarms.

We say a pattern to be replayed correctly at time t if the detection criterion

Γ(mt, nt) ≥ γ′ (15)

is satisfied where γ′ denotes the threshold of detection.
A sequence of Q patterns is said to be replayed if the final target pattern in the Qth time step

is correctly represented, i.e., Γ(mQ, nQ) ≥ γ′. Here, we implicitly assume that all the patterns of
a sequence are represented at least as proper as the last one.

Similarly to equation 15, we specify a detection criterion for sequence replay approximated by
the Markovian dynamics,

〈Γ(mQ, nQ)〉 = Γ(〈mQ〉, 〈nQ〉) ≥ γ , (16)

where the expectation values 〈mQ〉 and 〈nQ〉 are obtained from the Q-times iterated transition
matrix TQ for the initial condition (m0, n0) = (M, 0).

The criteria 15 and 16 are obviously different. For 1 � M � N , however, they are almost
equivalent with γ ≈ γ′ because the distribution of the quality measure Γ is typically unimodal and
sharply peaked with variance below 1/(4 M) + 1/[4(N − M)]. Moreover, we will see in the next
section that the specific value of the detection threshold does not affect scaling laws for sequential
memory.

V. SCALING LAWS FOR MINIMAL SEQUENCES

The capacity α of sequential memory is proportional to M−2; see equation 3. In order to
maximize α one therefore seeks a minimal pattern size M at which the replay of sequences serves
a given detection threshold γ. In this section we assess this minimal pattern size for minimal
sequences (Q = 1) and sparse patterns (1 � M � N). In particular, we explain why the minimal
pattern size is independent of the network size N .

In the case 1 � M � N , the reduced connectivity matrix in equation 5 can be approximated
through ( c11 c10

c01 c00 ) ≈ c
(

1+r 1
1 1

)

; neurons that are active in cue patterns are connected to neurons that
should be active in target patterns with probability cm = c(1 + r). Otherwise, the connectivity is
about c; see Figure 2.
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FIG. 4: Mean quality 〈Γ〉 of replay and threshold parameters κ+ and κ−. (A) Probability density of the
number of synaptic inputs for ‘off’ units, which are supposed to be inactive during the recall of a target
pattern. The vertical dashed line indicates the firing threshold θ. The gray area represents the probability
〈n〉/(N −M) of having a false alarm. (B) Same as in A but for ‘on’ units, which are supposed to be active.
The gray area represents the probability 〈m〉/(N −M) of having a hit. (C) For 1 � M � N , the binomial
distributions in A and B can be approximated by normal distributions. The probability of hits minus that
of false alarms equals the gray area under the normal distribution between −κ− and κ+. From equation 19
we see that this area can also be interpreted as the mean quality 〈Γ〉 of replay. (D) Pattern size M as a
function of κ+ for different replay qualities 〈Γ〉 at constant r = 1 and c = 0.01; see equations 17 and 20.
The dashed line connects the minima of M .

A. Hits and False Alarms in Pattern Recall

At some time t only those M neurons are supposed to be active that belong to the cue pattern
ξA. We then require a particular minimal sequence ξA → ξB to be imprinted such that, at time
t + 1, event ξB is recalled. We have assumed that the number j of inputs to each of the M ‘on’
neurons that should be active at time t + 1 is binomially distributed with probability distribution
bj,M (c + cs) (equation 7). In the same way the input distribution for the N − M ‘off’ cells that
should be inactive at time t + 1 is bj,M (c). As a result, a neuron that is supposed to be inactive
receives, on average, input through cM activated synapses with a standard deviation

√

c (1 − c)M .
To avoid unintended firing we require a firing threshold θ that is somewhat larger than cM . The
larger the threshold the more noise-induced firing due to fluctuations in the number of synapses is
suppressed. Let us take a threshold θ = cM + κ+

√

c (1 − c) M where κ+ is a threshold parameter
that determines the number of incorrectly activated neurons (Brunel et al., 2004), called false
alarms. For κ+ = 1, for example, we have nt+1 ≈ 0.16 (N − M) false alarms; see Figure 4A. On
the other hand, the threshold θ has to be small enough so that a neuron that is supposed to be
active during event ξB is indeed activated. Each of these neurons receives, on average, cmM inputs
with standard deviation

√

cm(1 − cm)M . A recall of ξB is therefore achieved by a threshold that
is somewhat smaller than cmM , i.e., θ = cmM −κ−

√

cm(1 − cm) M where κ− is another threshold
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parameter that determines the number of correctly activated neurons, called hits. For κ− = 2, for
example, we have mt+1 ≈ 0.98 M hits; see Figure 4B.

The firing threshold θ is assumed to be the same for all neurons. Hence, combining the above
two conditions we find

cM + κ+

√

c M (1 − c) = cm M − κ−

√

cm M (1 − cm) ,

which then leads to expressions for the pattern size

M =
1

c

(

κ+

√
1 − c + κ−

√

[r + 1][1 − c (1 + r)]

r

)2

(17)

and the firing threshold

θ = cM + κ+

√

c (1 − c) M . (18)

The pattern size M in equation 17 is independent of the network size N and scales like c−1 for
small values of c. Moreover, the firing threshold θ in equation 18 is independent of the network size
N . For small mean connectivities c, the firing threshold θ is also independent of c. We emphasize
that the validity of these scaling laws requires an almost perfect initialization of the cue pattern.

B. Optimal Pattern Size and Optimal Firing Threshold

We now argue that the firing threshold parameters κ+ and κ− in equation 17 can be chosen such
that M is minimal and, hence, the storage capacity is maximal. As indicated by the gray areas of the
binomial distributions in Figures 4A and 4B, κ+ and κ− determine the mean numbers of false alarms
〈n〉 and hits 〈m〉, respectively. For 1 � M � N , these binomial distributions are well approximated
by Gaussians, and we have 〈n〉/(N − M) = [1 − erf(κ+/

√
2)]/2 and 〈m〉/M = [erf(κ−/

√
2) + 1]/2

where the error function erf(x) := 2/
√

π
∫ x
0 dt exp(−t2) is the cumulative distribution of a Gaussian.

These approximations yield

〈Γ(m, n)〉 =
[

erf(κ−/
√

2) + erf(κ+/
√

2)
]

/2 , (19)

which can be interpreted as the area under a normal distribution between −κ− and +κ+; see
Figure 4C.

From equation 19 we see that, for a given mean quality 〈Γ〉 of replay, the threshold parameters
κ+ and κ− are not independent. More precisely, for some given detection criterion γ = 〈Γ〉 and
κ+ >

√
2 erf−1(2γ − 1), equation 19 yields

κ− =
√

2 erf−1[2γ − erf(κ+/
√

2)] . (20)

For fixed 〈Γ〉 = γ one therefore can choose κ+ in equation 17 such that the pattern size M
becomes minimal. At this minimal pattern size the capacity α in equation 3 reaches its maximum,
and encoding of events is as sparse as possible. Let us therefore call this minimum value of M
the optimal pattern size Mopt for sequential memory. The dashed line in Figure 4D indicates that
Mopt := minκ+

M is located at values κ+
>∼ 1. We also observe that the larger the detection

threshold γ the larger is Mopt.
From equation 17 we find that for small connectivities c � 1, as they occur in biological

networks, the minimum pattern size Mopt can be phrased as

Mopt =
1

c
[M(r, γ) + O(c)] (21)
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FIG. 5: Optimal pattern size Mopt and optimal firing threshold θopt. Lines depict results from the mean-
field theory (equations 21 and 22). We also show numerical simulations (c.s.) of the network introduced
in section IVA (empty circles, γ = 0.5) and Markovian dynamics defined in section IV B (filled symbols,
γ = 0.5, 0.7, 0.8, 0.9). (A) For small connectivities c, the optimal pattern size Mopt scales like c−1 and
increases with increasing γ. (B) The optimal threshold θopt is almost independent of the connectivity c for
c <∼ 10%, and θopt increases with increasing γ. Further parameters: sequence length Q = 1, network size
N = 250 000, plasticity resources r = 1. For the Markovian dynamics, we used Brent’s method (Press et al.,
1992) to numerically find a firing threshold θ as a root of the implicit equation 〈mQ〉/M−〈nQ〉/(N−M) = γ,
which is the detection criterion. By subsequently reducing M we end up with a minimal value Mopt for
which the detection criterion 〈Γ〉 = γ can be fulfilled. The threshold root that is obtained at Mopt is called
θopt.

where M(r, γ) is a function of r and γ that has to be obtained by numerical minimization. Here,
the order function O(ck) is defined through limc→0 c−k O(ck) = const. for k > 0. At values r = 1
and γ = 0.7, for example, we have M = 6.1 � c corroborating the scaling law Mopt ∝ c−1.

For an optimal pattern size Mopt we can find the optimal firing threshold θopt from equation 18.
In first approximation, θopt is independent of the connectivity c and the network size N , but
depends on r and γ,

θopt = T (r, γ) + O(c) . (22)

For example, r = 1 and γ = 0.7 account for θopt ≈ 9.1 � c.
The dependencies of Mopt and θopt on the connectivity c are indicated in Figure 5 through solid

lines. Both Mopt and θopt increase with increasing detection threshold γ. These mean-field results
match numerical simulations well: in cellular network simulations (open circles in Figure 5), Mopt

and θopt were determined as the minimal M and the corresponding θ that account for replay at a
fixed detection threshold γ = 0.5. The numerical evaluation of the Markovian network dynamics
as defined in section IV B (filled symbols in Figure 5) confirms the analytical results for a wider
range of c and γ.

The lower bound Mopt for the pattern size in equation 21 enables us to determine an upper
bound for the capacity α of sequential memory. Combining equations 3 and 21 we find

α = cN
1

(1 + r)2 M(r, γ)2
+ O(c2) . (23)

We note that α is linear in the connectivity c and the network size N , decreases with increasing γ,
and has a non-trivial dependency on the plasticity resources r that will be evaluated below. This
scaling law for minimal sequences can now be used to study the storage of sequences in biologically
feasible networks that face certain constraints.
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VI. CONSTRAINED SEQUENCE CAPACITY

Biological and computational networks generally face certain constraints. Those constraints
can lead to limiting values and interdependencies of the network parameters c, N and r. Some
constraints and their implications on the optimization of the capacity α of sequential memory in
equation 23 are discussed in this section.

A. Limited Number of Synapses per Neuron

A biological neuron may have a limited number cN of synapses. If cN is constant we find from
equation 23 (for constant r and γ)

α = const. and P = const.

Increasing the capacity α therefore cannot be achieved by increasing N . Numerical results in
Figure 6A (symbols) confirm this behavior for c � 1. For r = 1, the capacity α reaches its
maximum at c ≈ 0.5 where we have cm = c (1 + r) = 1, and the network can be considered an
undiluted Willshaw one. For c → 0.5, the scaling law α = const. (solid line) underestimates the
storage capacity because the O(c2) term in the mean-field equation 23 has been neglected.

In biologically relevant networks we typically have c � 1, and thus, for cN = const., we face the
scaling law P = α (1 + r) cN = const. Therefore, the number cN of synapses a single neuron can
support fully determines the network’s computational power for replaying sequences in the sense
that adding more neurons to the network does not increase α or P .

In the CA3 region of the rat hippocampus, for example, we have cmN ≈ 12 000 recurrent
synapses at each pyramidal cell; see Urban et al. (2001) for a review. The network size of CA3 is
N ≈ 2.4 · 105 (Rapp & Gallagher, 1996). From theses numbers, r = 1 and cN = const. we derive
the connectivity c ≈ 0.025. A comparison of these numbers with Figure 6A leads to estimates
for the minimal pattern size being in the order of Mopt ≈ 200 cells, a storage capacity of α ≈ 15
minimal sequences per synapse at a neuron and P ≈ 1.8 · 105 minimal sequences per CA3 network.
The saturation of α and P at about N = 105 for cN = 6 000 (see Figure 6A) may explain why
the CA3 region has relatively few neurons (N <∼ 106 in humans) despite its seminal importance for
episodic memory.

B. Limited Number of Synapses in the Network

Numerical simulations of artificial networks are constrained by the available computer memory,
which limits the number cN 2 of activated synapses in the network. For cN 2 = const. we find from
equation 23 (for constant r and γ)

α ∝ N−1 and P ∝ N−2.

Therefore an increase in both α and P can be achieved only by reducing the network size N at
the expense of increasing the connectivity c. Numerical results in Figure 6B confirm this behavior
for c � 1. The capacity α increases with increasing c and, for r = 1, assumes its maximum
at the upper bound c = 0.5 when cm = 1. For c → 0.5, the scaling law α ∝ N−1 (solid line)
underestimates the storage capacity, similar to Figure 6A.

We conclude that computer simulations of neural networks with constant cN 2 perform worse
in storing sequences the more the connectivity resembles the biologically realistic scenario c � 1.



16

10
-4

10
-3

10
-2

O
pt

im
al

 p
at

te
rn

 s
iz

e 
M

op
t/N Nc=2500

   5000
   7500
  10000

Synapses-per-neuron constraint

10
-4

10
-3

10
-2

N
2
c=18x10

6

    36x10
6

    54x10
6

    71x10
6

Synapses-per-network constraint

10
4

10
5

10
6

Network size N

10
0

10
1

10
2

10
3

C
ap

ac
ity

 α

α = Const.

10
4

10
5

Network size N

10
0

10
1

10
2

10
3 α ~ N

-1
c=0.5

c=0.25

c=0.1 c=0.01

c=0.5

c=0.26

c=0.1

c=0.01

A B

FIG. 6: Influence of constraints on the optimal pattern size Mopt and the capacity α of sequential memory.
(A) Synapses-per-neuron constraint. For a fixed number cN of synapses per neuron we find Mopt ∝ N and
α = const. as N → ∞. The capacity α increases with increasing cN . Tilted solid lines connect symbols
that refer to constant connectivities, e.g. c = 0.01, 0.1, 0.25, 0.5. (B) Synapses-per-network constraint. For a
fixed number cN2 of synapses in the network we find Mopt ∝ N2 and α ∝ N−1 as N → ∞. The capacity
α increases with increasing cN 2. For both constraints, cN = const. and cN 2 = const., there is an optimal
network size at which the capacity α reaches its maximum. For r = 1 this maximum occurs at c ≈ 0.5.
A further increase in c is impossible since the morphological connectivity cm = c (1 + r) cannot exceed 1.
Other parameters are Q = 1 and γ = 0.7. Dotted lines link symbols and are not obtained by mean-field
theory.

C. On the Ratio of Silent and Activated Synapses

In the previous two sections we have assumed a constant ratio r between the connectivity cs

through silent synapses and the connectivity c through non-silent synapses. The specific choice
r = 1 was motivated by neurophysiological estimates from Nusser et al. (1998), Montgomery et al.
(2001). We now focus on how the storage capacity α depends on this ratio r assuming that the
total number cmN of morphological synapses per neuron is constant. Because of cm = c(1 + r),
an increase in r increases cs but reduces c. We note that this constraint is equivalent to a fixed
number cN of activated synapses per neuron for constant r, a scenario evaluated in section VI A.

For constant (c + cs)N , numerical results in Figure 7A (symbols) show that the capacity α
exhibits a maximum as a function of r. The maximum capacity occurs at a pattern size at which
(c + cs)Mopt = c11Mopt = 1, i.e., the association from a cue pattern to an ‘on’ neuron of a target
pattern is supported by a single spike, on average. For larger r, the optimal firing threshold θopt

remains at its minimum value of one; see Figure 7B. An increase of r beyond its optimum reduces
c but leaves Mopt constant and, thus, leads to a decrease of α; see equations 2 and 3.

Values of r larger than 1 are thus beneficial for good memory performance, in our case the storage
capacities α. Similarly, Brunel et al. (2004) find a high ratio r to be necessary for increasing the
signal-to-noise ratio of read-out from a perceptron-like structure. These findings raise the question
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FIG. 7: Dependence of sequence replay on the resources r of synaptic plasticity for a constant total number
(c + cs)N of synapses per neuron. Mean-field theory (solid lines) explains numerical results obtained from
the Markovian dynamics (symbols) well as long as r < 10 and θopt

>∼ 4 . Below θopt
<∼ 4 the discreteness

of θopt limits the validity of the mean-field theory. (A) The optimal pattern size Mopt (top) decreases with
increasing r and saturates at values (c + cs)Mopt = 1 (symbols). As a result, the capacity α (bottom)
increases with r until Mopt has reached its lower bound, and α exhibits a maximum. A further increase in r
reduces c but leaves Mopt constant and, thus, leads to a decrease of α; see equations 2 and 3. (B) The optimal
firing threshold θopt decreases with increasing r to its lower bound 1 (symbols). The weak dependence of
θopt on cm = c + cs is indicated by the gray lines. Further parameters for A and B: N = 250 000, γ = 0.7,
Q = 1.

why values of r found in some experiments (Montgomery et al., 2001; Nusser et al., 1998) are in the
range r <∼ 1. We suppose that the specific value of r is due to the interplay between the recurrence
in the hippocampus and the locality of synaptic learning rule; see Discussion. In contrast, Isope
& Barbour (2002) report r ≈ 4 at the cerebellar parallel fibers, which is a locally feed-forward
system.

D. Scale-Invariance of Sequential Memory

Given the scaling laws α ∝ cN of the storage capacity in equation 23, we can ask how the
connectivity in a brain region should be set up in order to have scale-invariant sequential memory,
which means

P ∝ N .

From P = αcmN ∝ c2N2 (equation 23) we then find c ∝ N−1/2 or, equivalently, that the total
number cN2 of synapses in the network is proportional to N 3/2. Surprisingly, the latter result is in
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agreement with findings from Stevens (2001; 2005) in visual cortex and other brain areas. Thus, a
N3/2-law for the number of synapses can generate a scalable architecture for associative memory.

To summarize this section, constraints have seminal influence on the scaling laws of the capac-
ity of sequential memory, and different constraints lead to fundamentally different strategies for
optimizing the performance of networks for replaying sequences.

VII. NON-MINIMAL SEQUENCES

In addition to constraints on intrinsic features of the network like a small connectivity or a
limited number of synapses there are also constraints that may be imposed on a sequence memory
device from outside, for example a fixed detection threshold γ and a non-minimal sequence length
Q.

A. Finite Sequences (Q > 1)

To determine the capacity α for non-minimal sequences Q > 1 in dependence on the network
size N , we apply the Markovian approximation as introduced in section IV B. As in the case Q = 1,
replay of sequences is initialized with an ideal representation of the cue pattern, (mt, nt) = (M, 0)
for t = 0. Patterns that occur later in the sequence at t ≥ 1, however, are not represented in
an ideal way; typically, there is a finite number of false alarms nt, and the number of hits mt is
generally below M ; see also Figure 3. The recall of patterns amid a sequence therefore depends
on noisy cues. As a consequence, for Q > 1 we expect that the dependence of the optimal pattern
size Mopt and the optimal threshold θopt on the network size N are different as compared to the
case Q = 1.

Assuming a constrained number of synapses per neuron (cN = const.), we nevertheless find
that for Q > 1 the dependence of the optimal pattern size Mopt on N is almost linear for large N ;
see Figure 8A. Accordingly, the capacity α is nearly independent of N ; see Figure 8B. Moreover,
also the optimal firing threshold θopt is almost constant for large N ; see Figure 8C. These results
for Q > 1 resemble the ones for Q = 1 shown in Figure 6, some of which are also indicated by disks
in Figure 8. One reason for this correspondence is that patterns within a sequence are typically
replayed at a high quality; see Figures 1 and 3.

Figure 8B also shows that α is a decreasing function of Q. We note that α still refers to the
number of minimal sequences. Then, the maximum number of stored sequences of length Q is the
Q-th fraction of P = α (1 + r) cN . Compared to Q = 1, the storage capacity α drops about an
order of magnitude for Q = 2, 4 and soon, at Q >∼ 8, arrives at a baseline value for Q → ∞ (solid
line) that was obtained from a mean-field approximation to be explained below.

We thus conclude that non-minimal sequences impose no fundamental limit to the memory ca-
pacity for sequences. However, due to discrete time, our model cannot comprise temporal dispersion
of synchronous firing, which may limit the replay of long sequences in biological networks (Dies-
mann et al., 1999).

B. Infinite Sequences (Q → ∞)

A beneficial consequence of the weak dependence of the capacity α on the sequence length
for Q >∼ 8 is that sequential memory for large Q can be more easily discussed in the framework
Q → ∞. Such a discussion requires finding the fixed-point distributions of the transition matrix T
defined in equation 6. Assuming that the fixed-point distributions for hits m and false alarms n are
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FIG. 8: Optimal event size Mopt, capacity α and optimal firing threshold θopt for non-minimal sequences in
networks with a constrained number cmN = 10 000 of synapses per neuron. (A) The optimal pattern size
Mopt increases half a magnitude between Q = 1 and Q = 4 (three bottom lines) and saturates for Q ≥ 8
(three topmost lines). (B) The capacity α is almost constant for large N and decreases with increasing Q.
(C) The optimal firing threshold θopt reflects the dependencies of the optimal pattern size Mopt. Numerical
results (symbols) are obtained for γ = 0.7 and r = 1. Graphs for Q → ∞ (lines) are obtained from the
mean-field equation 24.

unimodal and given the case N � 1 we can reduce the problem of finding fixed-point distributions
of m and n to the much simpler problem of finding fixed points of the mean values 〈m〉 and 〈n〉.
Let us therefore introduce the iterated map

(〈mt+1〉
〈nt+1〉

)

= T〈·〉

(〈mt〉
〈nt〉

)

(24)

for the mean values of the order parameters. To specify the map T〈·〉 in accordance with the
Markovian dynamics introduced in section IV B we define the mean synaptic inputs to on- and off
units,

µon = c11〈m〉 + c01 〈n〉 and µoff = c10〈m〉 + c00 〈n〉 ,

respectively, as well as the variances,

σ2
on = c11〈m〉(1 − c11〈m〉/M) + c01〈n〉 [1 − c01〈n〉/(N − M)]

σ2
off = c10〈m〉 (1 − c10〈m〉/M) + c00〈n〉 [1 − c00〈n〉/(N − M)]

,

which are determined by the reduced connectivity matrix ( c11 c10
c01 c00 ) from equation 5. A Gaussian

approximation to binomial statistics then yields

T〈·〉

(〈m〉
〈n〉

)

=
1

2





M
{

1 + erf
[

(µon − θ)/
√

2 σ2
on

]}

(N − M)
{

1 + erf
[

(µoff − θ)/
√

2 σ2
off

]}



 . (25)
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Numerical iteration of equation 24 results in the fixed-points (〈m〉∗, 〈n〉∗) of the mean-field dynamics
and their basins of attraction; see Figure 9A. The iterated map has two trivial fixed-points that
are largely independent of the choice of firing threshold θ and pattern size M . These trivial fixed
points represent complete activation of the network, on the one hand, and no activity at all, on
the other hand. Shape and size of their basins of attraction (black and white areas in Figure 9A),
however, are modulated by the specific values of M and θ. We also observe a third type of fixed
point comprising a large number of hits and a small number of false alarms; numerics shows that
we always find 〈Γ〉 <∼ 1 at this fixed point of infinite sequence replay. Its basin of attraction is
plotted in gray and extends over a small interval of false alarm rates; note the logarithmic scale on
the ordinates in Figure 9A.

In Figure 9A we see that the smaller the pattern size the narrower is the range of thresholds
allowing an infinite sequence replay. For a large enough pattern size, the range of possible thresholds
is broad; see also Figures 1 and 3. The region in the (M, θ) space where infinite sequence replay
can occur is summarized in Figure 9B. The wedge-shaped stability regions are not much affected
by N but strongly depend on c.

The borders of such a stability region in Figure 9B can be described by upper and lower bounds
for the thresholds, θupper and θlower, that can be approximated through linear functions of the
pattern size M . The upper bound θupper is interpreted as an iso-〈Γ〉 line that separates the region
of a completely deactivated state with fixed point 〈m〉∗ = 〈n〉∗ = 0 from the region of stable
sequence replay where 〈m〉∗ = M 〈Γ〉 and 〈n〉∗ � M . From the first line of equation 24 we then
obtain

θupper ≈ c11 M 〈Γ〉 − erf−1(2〈Γ〉 − 1)O(
√

θupper) .

Thus, for large M , the bound θupper is an almost linear function of the pattern size with a slope
c11〈Γ〉 ≈ c11. Similarly, from the second line of equation 24 we obtain the boundary θlower between
the region where 〈m〉∗ = M and 〈n〉∗ � N and the region of a completely activated state 〈m〉∗/M =
〈n〉∗/(N − M) = 1,

θlower ≈ c10 M + c10 N (1 − 〈Γ〉) + erf−1(2〈Γ〉 − 1)O(
√

θlower)

The slope of θlower is about c10, which for r = 1 is about half the slope of θupper. These predicted
slopes agree with numerical results in Figure 9B. The size of the region of infinite sequence replay
is therefore proportional to c11 − c10 ∝ r. The larger the ratio r between silent and non-silent
synapses, the larger are the stability regions and, hence, the more robust is sequence replay.

We emphasize that the above expressions for θupper and θlower are rough estimates that corre-
spond to large pattern sizes M at which the distributions of synaptic inputs to ‘off’ and ‘on’ units
do not overlap too much; see Figures 4A & B. Moreover, the optimal parameters Mopt and θopt

at the tip of a stability region cannot be determined explicitly because we cannot assess the exact
value of 〈Γ〉 analytically.

The mean field results in Figure 9A are largely consistent with the cellular simulations in
Figure 1, but there are also important differences. Although cellular simulations have been obtained
for finite sequences Q = 20 whereas mean-field results are valid for Q → ∞, discrepancies at the
edges of the stability regions also occur because random fluctuations in cellular simulations can
kick the network into complete activation or deactivation. The edges of the wedge-shaped regions
in Figure 9B therefore describe the behavior of cellular networks only approximately.

To summarize, the higher the capacity, the less robust is sequence replay against variations of
the parameters M and θ. The wedge-shaped structures of the stability regions in Figure 9B indicate
that the maximal sequence capacity and, hence, minimal M go along with a critical dependence
of stability on the firing threshold. In the limit of M → Mopt the network lives on the edge of
dynamical (in)stability.
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FIG. 9: Fixed points of infinite sequence replay. (A) Basins of attraction of the mean-field dynamics
in equation 24 depend on pattern size M and firing threshold θ. The discrete dynamics of mean hit rates
〈m〉/M and mean false alarm rates 〈n〉/(N−M) exhibits two trivial fixed points: the first one is a completely
deactivated state, 〈m〉∗ = 〈n〉∗ = 0, with basins of attraction represented by a white area. The second fixed
point represents maximal activation, 〈m〉∗/M = 〈n〉∗/(N −M) = 1, with basins of attraction painted black.
For few pairs of (M, θ), we also observe non-trivial fixed points (black dots) corresponding to sequence
replay. Their basins of attraction are depicted by gray areas. Parameters (N = 105, c = 0.05, r = 1) are
the same as in Figures 1 and 3. (B) Regions of stable sequence replay in the (M, θ) space are plotted in
gray; connectivities are c = 0.05, 0.1, 0.2 and network sizes are N = 105, 106, 107 for r = 1. The slopes of
the upper and lower borders of these stability regions approximately equal the connectivities c11 and c10,
respectively.



22

VIII. INFORMATION CONTENT FOR N → ∞

The detection criterion we have proposed in section IV C permits a limited amount of errors.
It is intuitively clear that these retrieval errors allow for an increase of the storage capacity α
as compared to an error-less case. However, the more errors occur the more deteriorated is the
representation of each of the patterns during replay. The common way of measuring the balance of
these two opposing effects of retrieval errors is to calculate the information content I. The latter
can be understood as the logarithm of the number of all possible ways of concurrently storing a
number of P of associations or, more precisely (Nadal & Toulouse, 1990),

I = lg2

{(

N

m + n

)

/

[(

M

m

)(

N − M

n

)]}P

. (26)

Here,
(

N
m+n

)

/
[

(

M
m

)(

N−M
n

)

]

is the number of patterns of size M that can be represented in a network

of size N , given the hits m and false alarms n. We note that the number P of associations between
patterns depends on the performance of the read-out device, and so does the information content.

The information content is often calculated as a function of the so-called coding ratio f = M/N ,
which is interpreted as a firing rate. In biological relevant networks the firing rate is low (f → 0)
while they are required to be operable in the limit N → ∞. This asymptotic behavior of networks
is extensively discussed in literature (e.g. Gardner 1987; Golomb et al. 1990; Willshaw et al. 1969).
In what follows we will show that also in our framework we have limN→∞ f = 0. In this limit we
will assess the information content I for Q = 1 and Q → ∞.

From equation 26, we derive an approximation of I for f → 0 given that the number n of false
alarms is considerably smaller than the pattern size M , as it is motivated in section 7.2. For a fixed
fraction η := m/M <∼ 1 of hits we can approximate I by evaluating equation 26 with n = 0. Then,
applying Stirling’s formula and introducing the mixing entropy s(x) = −x lg2x− (1−x)lg2(1−x),
we obtain

I/(cmN2) = α f [η |lg2η f | − s(η)] . (8.2) (27)

From equation 3 we know that the storage capacity α scales like N/M 2 and, thus, I/N2 ∝
| ln M/N |/M . As a corollary, this shows that minimizing M not only maximizes α but also I.

In case Q = 1, a combined optimization of θ and M leads to Mopt being independent of network
size N ; see section V. As a result we obtain f ∝ 1/N . Accordingly, the information content per
synapse I/(cmN2) ∝ ln N increases with network size N .

In order to also obtain the asymptotic behavior of I in the case of large sequence length we
have assessed the optimal pattern size Mopt for Q → ∞ as a function of network size N for a fixed
connectivity c, i.e., without any constraint; see Figure 10. Numerics reveals a sub-logarithmic
behavior, Mopt(N) ∝ (ln N)0.82; the coding ratio f ∝ (ln N)0.82/N also falls below every bound
as N → ∞, i.e., coding becomes arbitrarily sparse. Together with equation 3 the unconstrained
storage capacity diverges like

α ∝ N/(ln N)1.64 .

From equation 27 we thus find for N → ∞ the information content per synapse to increase sub-
logarithmically

I/N2 ∝ (ln N)0.18 .

The information content per synapse diverges for N → ∞, though very slowly. In fact, I/N 2 grows
so slow that in the range of biologically reasonable network sizes 103 < N < 107 the information
content per synapse only varies by a factor of (7/3)0.18 ≈ 1.2.
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FIG. 10: The dependency of the optimal pattern size Mopt on the network size N is weak in the case
of sequence length Q → ∞; note the logarithmic scale on the abscissa. The connectivity c is fixed, i.e.
no constraint is imposed (crosses: c = 0.1, circles: c = 0.2). The symbols represent optimal pattern sizes
obtained from numerical solution of the fixed-point equation (〈m〉∗, 〈n〉∗) = T〈·〉(〈m〉∗, 〈n〉∗); see equation 24.
The solid line illustrates the asymptotic behavior Mopt ∝ (ln N)0.82 found from linear regression.

To summarize, combined optimization of M and θ provides an efficient algorithm to set up a
sequential memory network for a broad range of network sizes. However, combining the results from
sections VI and VII for biologically relevant parameter regimes, one obtains information contents
I < αf |lg2f | cm N2 that are far below the theoretical maximum cmN2 of one bit per synapse.

IX. DISCUSSION

The present paper combines analytical and numerical methods to assess the capacity for storing
sequences of activity patterns in a recurrent network of McCulloch-Pitts units. Results from mean-
field theory are validated through simulations of cellular networks and a probabilistic dynamical
description. Our approach is new in that we concurrently optimize the pattern size M and the
firing threshold θ in order to maximize the storage capacity α. Within this framework we derive
the capacity α in dependence on five system parameters: network size N , mean connectivity c,
synaptic plasticity resources r, sequence length Q, and detection threshold γ.

The storage capacity of a network crucially depends on the criterion for pattern detection.
One typically requires that the quality of replay of patterns exceeds some detection threshold γ
(equations 15 and 16). Our retrieval criterion with γ < 1, which allows errors in the replay of
patterns, is fundamentally different from the error-free criterion γ → 1 in the classical Willshaw
et al. (1969) network where the storage capacity is subject to Gardner’s bound (Gardner, 1987).
In the original Willshaw model as well as in our approach for minimal sequences (Q = 1) the
network is initialized with a perfect representation of the cue pattern, m0 = M and n0 = 0.
The Willshaw model, however, requires a perfect retrieval of a target pattern in that the number
of hits is maximal, m1 = M , and that there is less than one false alarm on average, 〈n1〉 < 1;
furthermore, the firing threshold θ is set to the pattern size M . Then, binomial statistics yields the
well-known logarithmic scaling laws for the optimal pattern size Mopt ∝ log N and the capacity
αWillshaw ∝ N/ log2 N (Gardner, 1987; Willshaw et al., 1969); see also equation 3. In terms of
the coding ratio f = Mopt/N , they find αWillshaw ∝ 1/(f | ln f |) for N → ∞. In contrast, in the
present manuscript we optimize both the firing threshold θ and the pattern size M , and we use a
read-out criterion that permits errors. Thus, the storage capacity diverges faster than αWillshaw,
viz. α ∝ 1/f ; see equation 23.



24

An error-full representation of patterns is in agreement with the situation in the brain, for
example in the hippocampal CA3 network. There, the recurrently connected pyramidal cells also
have feed-forward connections to the pyramidal cells in CA1 via highly plastic synapses. It is
generally assumed (Hasselmo, 1999) that these synapses are to be adjusted by CA3 activity and
local learning rules, i.e., CA1 can learn replayed patterns. Read out in CA1 may therefore be
successful even if the absolute number of false alarms in CA3 exceeds the number of hits. The
detection criterion in equation 16 can be motivated by such downstream neurons that receive
excitation from the correctly activated neurons and inhibition from the incorrectly activated ones,
e.g. via a globally coupled network of interneurons.

For sequence length Q = 1, the concurrent optimization of M and θ leads to scaling laws
for the replay of minimal sequences for biologically relevant connectivities c � 1: the optimal
pattern size is inversely proportional to the mean connectivity, Mopt ∝ c−1, and the optimal firing
threshold θopt is independent of c. Both θopt and Mopt are independent of the network size N .
The above dependencies finally lead to the capacity of sequential memory that scales like α ∝ cN
(equation 23). Moreover, the number of associations that can be stored scales like P ∝ c2N2.

A main conclusion from the scaling laws α ∝ cN and P ∝ c2N2 is that for a constrained number
of synapses per cell (synapses-per-neuron constraint, cN = const.) the capacity α and the number
P are constant, i.e., independent of the network size N ; see Figures 6 and 8. This means that
it is impossible to increase the computational power of the network by increasing N . One could
argue, however, that taking two independent networks doubles P and therefore would account for
a performance increase that is linear in N . The drawback of this strategy is that then each pattern
can be connected to only half of the other patterns, which are those located in the same network
module.

A technically relevant constraint, e.g. in a computer simulation, is a constant total number of
synapses in the network (synapses-per-network constraint, cN 2 = const.). From above scaling laws
we conclude that α and P necessarily decrease with increasing network size; see Figure 6B.

One can also ask whether there is a scaling law for the connectivity that accounts for scale-
invariant storage, i.e., P ∝ N ; see section VIC. In so doing, we find scale invariance for c ∝ 1/

√
N .

As a result the total number of synapses then is proportional to N 3/2, which is in line with results
by Stevens (2001; 2005).

For the synapses-per-neuron constraint, there is an optimal value for the ratio r between silent
and non-silent synapses. For generic parameter regimes this optimal value is rather large (r ≈ 10;
see Figure 7). However, α exhibits a broad maximum as a function of r, and therefore the exact
value of r is not critical for sequential memory. If one considers the network connectivity to be
determined by local Hebbian or STDP-like learning rules ratios r that strongly deviate from 1 are
implausible, since synaptic LTP at a specific pair of pre- and postsynaptic neuron can only be
compensated for locally by LTD of another synapse at the very same pair of neurons (Bi & Poo,
1998; Gerstner et al., 1996; Kempter et al., 1999). One thus can argue that the functional benefit
of a very high amount of plastic resources may no longer justify the expenses of non-local signaling
in synaptic plasticity. In short, ratios r ≈ 1 may be sufficient for an excellent performance of
sequential memory.

This paper also shows that for long sequences, e.g. Q > 8, memory capacity becomes virtually
independent of Q; see Figure 8. For large Q, however, the optimal pattern size is necessarily
such that the network is close to dynamical instability; see Figure 9. Yet from the point of view
of maximizing storage capacity α, the strategy of avoiding dynamical instabilities by increasing
pattern size M is problematic, since α is proportional to M−2; see equation 3. In order to approach
the maximal storage capacity without the danger of complete activation or silencing of the network,
one rather might introduce an activity-dependent stabilization mechanism that provides a negative
feedback after a certain number of time steps. A biological realization that is at hand is a network



25

of inhibitory interneurons (Battaglia & Treves, 1998; Bragin et al., 1995; Csicsvari et al., 2003;
Traub et al., 2000). This of course may come at the cost of limiting sequence length Q and/or
reducing the detection threshold γ.

Our results for large sequence lengths Q are not immediately applicable to synfire chains (Abeles,
1991; Diesmann et al., 1999; Herrmann et al., 1995). The chief difficulty for translating our model
into a more realistic network with continuous dynamics is to preserve the temporal separation
between distinct patterns. The functional constraint of minimal sequence lengths is thus more likely
a constraint on the temporal precision of network dynamics rather than on counting statistics. We
speculate that, for biological networks, spike desynchronization restricts the applicability of our
results to small values of Q.

The framework here is limited to orthogonal sequences, i.e., a particular pattern is not allowed to
occur presynaptically in more than one minimal sequence. Non-orthogonal, or loop-like sequential
memories can be taken into account by, e.g. generalizing the framework to neurons with more than
one-step memory (Dehaene et al., 1987; Guyon et al., 1988) or adding “internal patterns” that
represent repetitions (Amit, 1988) or context (Levy, 1996).

A possible neurophysiological application of our theory can be found in the hippocampus.
During slow-wave sleep, low levels of the neuromodulator acetylcholine boost the impact of the
excitatory feedback connections within CA3; see Hasselmo (1999) for a review. Slow-wave sleep
goes along with a phenomenon called sharp-wave ripples, which is speculated to be a result of the
replay of short sequences (Csicsvari et al., 2000; Draguhn et al., 2000). A sharp-wave ripple burst is
a pulse-like incident of the local field potential in CA3 that is accompanied by 200 Hz oscillations.
The latter are supposed to be generated by CA3 pyramidal cells (Behrens et al., 2005) and may
reflect sequence replay (Lee & Wilson, 2002; Nadasdy et al., 1999; Wilson & McNaughton, 1994)
occurring in time-slices of about 5 ms. The total duration of ripples of about 40 ms limits the
number of putative events in a sequence to fewer than about eight. The temporal extent of a
sharp wave may be controlled by inhibition (Maier et al., 2003), which would hint at dynamical
stabilization of the network activity at a high level of storage capacity; see above.

In Figure 8 we have plotted the coding ratio f = Mopt/N and storage capacity α as a function
of network size for various sequence lengths. If we apply these results to the situation in the
hippocampal CA3 region of rats and a sequence length of Q = 8, we find for a network size of
N = 240 000, a synapses-per-neuron constraint of cmN = 10 000 synapses per cell and plasticity
resources r = 1, the optimal pattern size to be about 1 500 cells. As a consequence, the storage
capacity is about α = 1.2 minimal sequence per synapse at a cell, which corresponds to about 1 600
full sequences of length 8 stored in the network. Interestingly the firing threshold we obtain is 55,
which is approximately the same as that assumed by Diesmann et al. (1999) for cortical synfire
networks.

To summarize, the present paper provides a simple rule of how to choose pattern size and
threshold in order to optimize storage capacity under biologically realistic constraints such as low
connectivity and similar amounts of silent and non-silent synapses. From that, one can conclude
that sequence completion in the recurrent network operates far below maximal information content.
To put it more positively, information seems to be redundantly distributed over a large number of
synapses, which seems consistent with the picture that memories are stored in a way that is robust
against synaptic noise and some variability of morphological plasticity.
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Appendix A: List of Symbols

Symbol meaning (location of first use)

t discrete time (section IIA)

x binary network state vector (section IIA)

θ firing threshold (section IIA)

c mean connectivity of activated synapses (section IIA)

cs mean connectivity of silent synapses (section II A)

cm mean morphological connectivity (section IIA)

r = cs/c ratio between silent and active connectivity (section IIA)

C = (Cnn′) connectivity matrix of active synapses (section IIA)

N network size (section IIA)

M pattern size (section II B)

ξ binary pattern vector (section II B)

Q sequence length (section II B)

P number of minimal sequences stored (section III)

α = P/(cmN) capacity of sequential memory (section III)

m number of hits (section IV A)

n number of false alarms (section IV A)

( c11 c10
c01 c00 ) reduced connectivity matrix (equation 4)

T transition matrix (equation 6)

b binomial probability (equation 7)

p conditional probability of hits (equation 8)

q conditional probability of false alarms (equation 8)

ρ conditional probability of one hit (equation 9)

λ conditional probability of one false alarm (equation 10)

Γ quality of replay (equation 14)

γ′, γ detection thresholds (equations 15 and 16)

T〈·〉 mean transition function (equation 25)

f = M/N coding ratio (section VIII)

I information content (section VIII)
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Appendix B: Memory Capacity Revisited

Let us consider a naive network of size N that, initially, has no synapses at all. To imprint the
first minimal sequence ξA → ξB in the network we need M 2c11 functional synapses in order to link
two groups of M neurons at connectivity c11; see Figure 11. Let us first discuss the simpler case
c11 = cm. For the second sequence ξC → ξD fewer synapses are needed because we have to take
into account that there are cells in pattern ξC that are already connected to cells in ξD because of
some overlap with the first sequence. For random patterns, the probability that a neuron is active
in a specific pattern is f = M/N , which is also called the coding ratio. As a result, the mean
number of cells that are active in both of a given pair of patterns is Mf . Consequently, the Mf
presynaptic cells that belong to both cue patterns ξA and ξC only have to be connected to the
M (1 − f) postsynaptic neurons of ξD that do not overlap with ξB. The number of new synapses
needed is Mf · c11 ·M(1− f). In order to complete the second minimal sequence, we are left with
connecting the remaining M(1 − f) presynaptic cells of ξC to all M postsynaptic cells of ξD. In
summary, the second sequence consumes Mf c11 M(1 − f) + M(1 − f) c11 M = M2 c11 (1 − f2)
synapses. Similarly, the kth minimal sequence consumes M 2 c11(1− f2)k−1 synapses that have not
yet been accounted for. Summing up all contributions until we reach the limit N 2 c of available
non-silent synapses yields a condition on the maximal number P of minimal sequences,

N2 c
!
= M2 c11

P
∑

k=1

(1 − f2)k−1 = M2 c11 f−2
[

1 − (1 − f2)P
]

. (28)

In case c11 < cm we need to take into account the probability c11/cm of having a morphological
synapse from cue to target in the non-silent state. The transformation f 2 → f2c11/cm is sufficient
to generalize the result in equation 28; solving the generalized version of equation 28 for P and
normalizing the result by N we find the capacity to be

α =
log(1 − c/cm)

cmN log(1 − f2c11/cm)
, (29)
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FIG. 11: Consumption of synapses by subsequently storing minimal sequences. The first minimal sequence
ξA → ξB consumes c11M

2 synapses. The patterns of a second minimal sequence ξC → ξD have some
overlap f with ξA and ξB ; there are Mf cells (gray) both pre- and postsynaptically that contribute to both
the first and the second minimal sequences. The number of synapses that are consumed by ξC → ξD is
reduced by a factor of (1 − f2); see text.
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which can be approximated for f � 1 by

α =
c N

cm c11 M2
.

Equation 29 is an extension to the results for the case c11 = cm = 1, originally obtained by Willshaw
et al. (1969), Nadal & Toulouse (1990) and Nadal (1991). In the main part of this paper, we discuss
the scenario c11 = cm < 1; see equations 2 and 3.
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