

Computer Praktikum 4 SS 2003, 12.05.2003

Computational Neuroscience II: Foundations of Neural Coding

Prof. Dr. A.V.M. Herz, M. Stemmler PhD

! General advice

Remember to not directly invoke the commands at the matlab prompt. Use scripts instead.

9. Calculating Correlations

 \bullet Produce two vectors v1 and v2 that contain the values of the discretized function

 $v(t) = t \, \exp(-t/\tau) \, \sin(2\pi \, f \, t)$

for $(\tau_1, f_1) = (1, 0.25)$ and $(\tau_2, f_2) = (1.5, 0.33)$ in the interval [0, 20]. Take dt = 0.05 as bin size.

- The correlation between two vectors v1 and v2 of equal length N for a given lag n can be understood as the dot product of the two vectors, where the entries of one of them are shifted by n positions. Write the Matlab function correlate that takes as arguments two vectors of equal length N and returns the correlation for all possible shifts n. Hint: a vector of length 2 N − 1. Plot the correlation between v1 and v2 for all time lags s = n dt.
- Explore the documentation of the Matlab command xcorr and plot the correlation between v1 and v2 with xcorr.
- Calculate the correlation between the vectors you will find in the files "/home/tutor/CompNeuroII/Assignment4/noiseX.dat", where X=1,2. Plot the correlation in the interval [-100, 100].

10. Correlations of spike trains

Use xcorr to plot all correlations between the spikestrains from Assignment 2 into one figure with >> subplot. *Hint: Produce histograms of the spiketrains first* (histc) using a binsize of 5 ms! The Histogram of the spike trains should look like

 $\dots, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, \dots$ Plot the autocorrelations of the spiketrains and the crosscorrelation in the intervals

 $[-500\ \mathrm{ms}, 500\ \mathrm{ms}], \, [-3000\ \mathrm{ms}, 3000\ \mathrm{ms}]$ and $[-2000\ \mathrm{ms}, 2000\ \mathrm{ms}],$ respectively.

11. For specialists.

You will have experienced that your function correlate performs much worse than the built-in Matlab function xcorr. Find and implement a numerically cheap correlation routine using Fast Fourier transformation. *Hint: In your Math lectures you may have heard about the Fourier-convolution theorem. If not, see what you can find on the internet. Try to apply the fourier convolution theorem to the correlation formula*

$$Q_{v_1v_2} = \int_{-\infty}^{\infty} v_1(t) \, v_2(t+s) \, \mathrm{d}s$$

and implement it using fft, ifft, ifftshift.

DR. R. KEMPTER, Tel. 8924, Raum 2315 r.kempter@biologie.hu-berlin.de DR. C. LEIBOLD, Tel. 8925, Raum 2315 c.leibold@biologie.hu-berlin.de Besprechung der Aufgaben am 15.05.2003 um 8¹⁵