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Stochastic nature of precisely timed spike patterns in visual system
neuronal responses.J. Neurophysiol.81: 3021–3033, 1999. It is not
clear how information related to cognitive or psychological processes
is carried by or represented in the responses of single neurons. One
provocative proposal is that precisely timed spike patterns play a role
in carrying such information. This would require that these spike
patterns have the potential for carrying information that would not be
available from other measures such as spike count or latency. We
examined exactly timed (1-ms precision) triplets and quadruplets of
spikes in the stimulus-elicited responses of lateral geniculate nucleus
(LGN) and primary visual cortex (V1) neurons of the awake fixating
rhesus monkey. Large numbers of these precisely timed spike patterns
were found. Information theoretical analysis showed that the precisely
timed spike patterns carried only information already available from
spike count, suggesting that the number of precisely timed spike
patterns was related to firing rate. We therefore examined statistical
models relating precisely timed spike patterns to response strength.
Previous statistical models use observed properties of neuronal re-
sponses such as the peristimulus time histogram, interspike interval,
and/or spike count distributions to constrain the parameters of the
model. We examined a new stochastic model, which unlike previous
models included all three of these constraints and unlike previous
models predicted the numbers and types of observed precisely timed
spike patterns. This shows that the precise temporal structures of
stimulus-elicited responses in LGN and V1 can occur by chance. We
show that any deviation of the spike count distribution, no matter how
small, from a Poisson distribution necessarily changes the number of
precisely timed spike patterns expected in neural responses. Overall
the results indicate that the fine temporal structure of responses can
only be interpreted once all the coarse temporal statistics of neural
responses have been taken into account.

I N T R O D U C T I O N

To relate neuronal responses to higher functions such as
perception and memory it is critical to know what aspects of
neuronal responses can carry information. Because extracellu-
larly recorded neuronal responses can be regarded as a series of
impulses or spikes it is natural to wonder whether temporal
characteristics as well as firing rate of spike trains vary in a
systematic way across experimental conditions. It has been
shown that information is coded in the temporal characteristics
of responses when the times of the spikes are represented at
relatively low temporal precision (;20 ms) (Eskandar et al.

1992a,b; Heller et al. 1995; McClurkin et al. 1991a–c; Rich-
mond and Optican 1990; Richmond et al. 1987). It has been
proposed that precisely (;1 ms) timed spike patterns carry
information unavailable from spike count and play a central
role in important psychological processes such as linking or
binding of parts of objects falling on different retinal receptors
(Abeles 1991; Engel et al. 1992; Singer and Gray 1995; von
der Malsburg 1995; von der Malsburg and Schneider 1986).
Several experiments have suggested that an independent pro-
cess might exist that controls the times of some of the spikes
within responses of neurons in frontal and visual cortices and
thalamic areas (Abeles et al. 1993; Aertsen et al. 1989; Lesti-
enne and Strehler 1987; Lestienne and Tuckwell 1998; Prut et
al. 1998; Riehle et al. 1997). Such an independent process
could encode the information needed for these psychological
processes.

Precisely timed spike patterns can carry information beyond
that carried by spike count only if the precise spike patterns are
controlled rather than occurring by chance. We examined
responses of single neurons from the lateral geniculate nucleus
(LGN) and primary visual cortex (V1) for three classes of
precisely timed patterns of spikes previously studied in frontal
and primary visual cortices and thalamic areas of rat, cat, and
monkey (Abeles et al. 1993; Lestienne and Strehler 1987;
Lestienne and Tuckwell 1998; Prut et al. 1998). The precisely
timed patterns were found to carry some stimulus-related in-
formation, but the same information was available from spike
count. This suggested that the precisely timed patterns were
predictable from a model using the spike count and slow
variation in firing rate, leading us to search for such models.

The variation in the number and timing of spikes occurring
across trials is large, giving ample possibility for different
stimuli to elicit different numbers and types of spike patterns.
The large number of possible spike patterns makes it a complex
statistical problem to determine whether the spikes occurred
precisely when they did by chance or whether it is necessary to
postulate some process controlling the spike times. Statistical
models with simple response measures, e.g., spike count, peri-
stimulus time histograms (PSTHs), and interspike intervals
(ISIs), have been developed to reduce the complexity of this
problem. These models are used to determine the number and
type of internal temporal structures that can be expected by
chance (Abeles 1991; Abeles and Gerstein 1988; Abeles et al.
1993; Aertsen et al. 1989; Dayhoff and Gerstein 1983a,b;
Lestienne and Strehler 1987; Lestienne and Tuckwell 1998;
Vaadia et al. 1995). The simplest of these, the uniform Poisson
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model, assumes a Poisson process with a uniform firing rate.
Another class of model shuffles the ISIs. These shuffled ISI
models directly examine the tendency for interval lengthb to
follow interval lengtha. Finally, time-varying or nonhomog-
enous Poisson process (NHPP) models are based on the
changes of the observed stimulus-elicited firing rate over time
(Abeles and Gerstein 1988; Aertsen et al. 1989; Lestienne and
Strehler 1987; Lestienne and Tuckwell 1998; Victor and Pur-
pura 1996). None of these models matched the precise tempo-
ral structures observed in the neural data in past studies nor, as
we show subsequently, do they match the data from our ex-
periments in the LGN and V1.

Previous stochastic models, which assume that the spike
counts follow a Poisson distribution (Abeles and Gerstein
1988; Abeles et al. 1993; Aertsen et al. 1989; Lestienne and
Strehler 1987; Lestienne and Tuckwell 1998), predicted fewer
precisely timed spike patterns than seen in our V1 and LGN
data. A new stochastic model, which extends an earlier model
(NHPP) only in that it replaced the assumed Poisson distribu-
tion with the observed distribution of spike counts, predicted
almost exactly the observed numbers and types of precisely
timed patterns. We show that any deviation, no matter how
small, from a Poisson distribution of spike counts necessarily
induces changes in the numbers and types of spike patterns in
and between neuronal responses of both single and, by simple
extension, multiple neurons. The results demonstrate that the
precise temporal patterns observed in our data can arise by
chance. The match between the observed and predicted tem-
poral patterns makes this model a potentially valuable tool for
understanding the mechanisms underlying the temporal prop-
erties of neuronal responses.

M E T H O D S

Using standard techniques, we recorded activity from LGN and V1
neurons from a rhesus monkey performing a fixation task. Spike data
from single neurons were collected with 1-ms resolution. Up to 64
different images were used as stimuli for LGN recordings: bars at four
orientations and dots at four sizes, each at up to eight different contrast
levels. Up to 274 stimuli were used when recording V1 neurons: bars
at 8 orientations at 5 contrast levels, gratings at 8 orientations and 5
spatial frequencies at up to 5 contrast levels, Walsh patterns at up to
5 contrasts, and 32 digitized photographs.

Each stimulus was presented for 300 ms centered on the recep-
tive field. The stimuli covered the excitatory receptive field and
extended into the near surround. Reward was delivered after every
one to four stimulus presentations if the monkey maintained fixa-
tion within 0.5°. LGN parvocellular neurons were recorded with
receptive field centers varying between 3 and 20° eccentricities in
the lower contralateral hemifield. Striate cortical neurons in the
calcerine sulcus had receptive fields between 5 and 10° from the
fovea in the upper contralateral hemifield. The animal procedures
followed USPHS guidelines and were approved by the NIMH
Animal Care and Use Committee.

Data analysis

Analysis was performed on the period2200 to 1200 ms peri-
stimulus onset, with spikes times measured with 1-ms precision. This
interval was chosen because it provided equal pre- and poststimulus
onset sample periods while capturing the majority of the available
information in the responses. We identified and counted all triplets
and quadruplets with intervals of#25 ms in each response. A repli-
cating triplet (Lestienne and Strehler 1987; Lestienne and Tuckwell

1998) occurs when any spike triplet with intervalsa andb (0 , a, b #
25 ms) appears at least twice in a single stimulus-elicited spike train
(see Fig. 1). Note that “extra” spikes could appear both within triplets
and between the repeats of triplets. Each spike can participate in any
number of repeating triplets, making it possible for the number of
repeating triplets to be greater than the number of spikes. To inves-
tigate the general applicability of models, we also identified the
number of each of the 15,625 possible replicating quadruplets with
intervalsa, b, andc (0 , a, b, c # 25 ms) provided that the quadruplet
type appeared at least twice in a single stimulus-elicited spike train.
We also counted the number of triplets across responses regardless of
whether the triplet repeated within an individual trial. To enable the
use of standard parametric statistical tests, the number of patterns
found was transformed with natural logarithms to remove the strong
dependency of the variance on the mean and establish homogeneity of
variance (Snedecor and Cochran 1980).

Spike count-matched model

The model we propose generates random spike times while
preserving both the spike count distribution assessed over a long
(400 ms) time period and the observed stimulus-elicited firing rate
profile for each stimulus. The spike count distribution is preserved
by stepping through the experimental data trial by trial and forcing
each simulated trial to have the same spike count as the corre-
sponding experimental trial. We refer to this model as the spike
count-matched model because of the forced matching of the spike
count distribution.

The responses from each cell to each stimulus are used to generate
a spike density function by convolution of the PSTH with a Gaussian
(Fig. 2, top). The results used a Gaussian ofs 5 5 ms (Richmond et
al. 1987). Results with Gaussians ofs 5 2 or 10 ms were indistin-
guishable from the results withs 5 5 ms. Smoothing the stimulus-
elicited spike trains with Gaussians ofs $ 20 ms reduced the
predicted number of repeating triplets.

We used a standard method to generate random numbers (spike
times) with a known probability distribution (spike density function)
(Press et al. 1992). The spike times are generated randomly by taking
uniform random numbers in the interval (0–1) and applying the
inverse of the cumulative probability distribution (Fig. 2,bottom).
Specifically, the spike density function is transformed into a cumula-
tive spike density function (CSDF) for each stimulus at each time
point t

CSDF(t) 5 [ ¥i51

t

SDF(i )] .

FIG. 1. Detection of repeating triplets. Pairs of interspike intervals (ISIs)
were examined to see if they repeated within individual spike trains (horizontal
bar). Two sets of repeating triplets are illustrated, one identified by red arrows
and the other (repeating 3 times) by green arrows.
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Normalization by the value of the CSDF at the end of the sample
period (t 5 T) gives the cumulative spike probability function

CSPF(t) 5
CSDF(t)

CSDF(T)

(Fig. 2,bottom). The CSPF gives the probability with which any given
spike in a train will have occurred withint ms of stimulus onset. The
time bin (width dt, here 1 ms) in which a spike occurs,tspike, in a
simulated train is determined from a uniform random distribution
R[0,1] such thattspikesatisfiesCSPF(k) # (R[0,1] , CSPF(k 1 1), the
time of thekth bin being betweenkdt and (k 1 1)dt (arrows in Fig.
2, bottom). As with the NHPP model, only one spike is allowed in
each time bin; when a spike was assigned to an already occupied
bin, a new random number was drawn and the spike was reas-
signed.

Correction of ISIs

The number and type of patterns seen in modeled responses are
known to depend on the ISI distribution, which in turn is influenced

by the refractory period (Berry and Meister 1998; Berry et al. 1997).
We adjusted the spike count-matched model to account for this effect.
An overall frequency ISI histogram for each cell was compared with
the frequency histogram of the simulated spike trains when no cor-
rection for refractory period was used. The probability of allowing a
1-ms ISI was then set to be the ratio of the number of 1-ms intervals
in the data to the number in simulated data (p). Then a new set of
simulated spike trains was generated allowing spikes to be 1 ms apart
only if a uniform random number (0–1) fell belowp, and a new ISI
histogram was generated. Then the same procedure was used to
correct the probability for the 2-ms ISI. An example of the ISIs
obtained from the spike count-matched model and the corresponding
ISI from a striate neuron are shown in Fig. 3. After correcting for the
1- and 2-ms ISIs the simulated data for both LGN and V1 neurons
had ISI frequency histograms that were indistinguishable from the
neuronal data (nonsignificant deviations, Kolmogorov-Smirnov test,
P . 0.05).

Information measures

To assess the potential role of precisely timed spike patterns for
cognitive or psychological processing we used an information theo-
retical approach. Transmitted information is a statistical measure
quantifying how well a set of inputs (here visual stimuli) can be
distinguished from each other using the corresponding outputs (here
the responses of the neurons). The amount of information calculated
to be in a neuron’s response depends on the code used to interpret the
response (e.g., spike count). We measured the information carried
when the number of spikes (spike count) in a trial was used as the
response code, when the number of precisely timed spike patterns was
used as the response code, and when the two measures together were
used as the response code. If, as has been suggested (Abeles 1991;
Engel et al. 1992; Lestienne and Strehler 1987; von der Malsburg and
Schneider 1986), precisely timed spikes play a special role in pro-
cessing, then some of the information they carry should be unavailable
from considering the spike count alone. We were therefore interested
in whether there was stimulus-related information carried by the
triplet code and whether the dual code of precisely timed spike
patterns and spike count carried more information than that carried by
spike count alone.

Details of information theory can be found elsewhere (Cover and

FIG. 2. Spike count-matched model.Top: spike density function calculated
from the responses of 1 lateral geniculate nucleus (LGN) neuron to a single,
effective stimulus.Bottom: summation of the spike density function from the
top panelgives the cumulative spike function over the sample period. Nor-
malization so that the total probability5 1 gives the cumulative spike prob-
ability function. Cumulative spike probability function allows random num-
bers drawn from a uniform distribution to be transformed into the distribution
of spike arrival times given by the spike density function (top section). To
generate a trial with, say, 3 spikes, 3 uniformly distributed random numbers
between 0 and 1 are drawn. These random numbers are then transformed with
the cumulative spike probability function to obtain the times at which the
spikes will occur in the simulated spike train. The arrows show an example of
the transformation of 3 evenly spaced random numbers (y-axis) into the spike
times (x-axis) appropriate for the spike density function shown. Spikes in the
resulting train are not evenly spaced.

FIG. 3. Matching ISIs of the spike count-matched model and the neuronal
data. ISI histograms from a primary visual cortical (V1) neuron (●) and the
corresponding spike count-matched model (E) are shown. The ISI distributions
of all neurons obtained from the spike count-matched model were statistically
indistinguishable (Kolmogorov-Smirnov test,P . 0.05) from those of the
corresponding neurons.
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Thomas 1991; Shannon 1948). In brief, we asked how well the
neuronal responses could, in principle, tell us which stimulus elicited
a response. Information is defined as

I (S;R) 5 (
S

(
R

[p(r )p(sur ) log2 (p(sur )

p(s) )] (1)

where I(S;R) is the information transmitted about the set of input
stimuli S. The outer sum ranges over all the stimuliS. The inner sum
ranges over the set of all observed responsesR. For the terms of the
inner product,p(r) is the probability of observing responser indepen-
dent of the input stimulus.p(sur) is the probability of responses being
the input stimulus having observed responser, i.e., the conditional
probability of stimuluss being present based on observing responser
in a particular trial.p(s) is the a priori probability of the stimuluss,
which is determined by the frequency with which the stimulus was
presented in the experiment.

Although p(s) is controlled by the experimenter,p(r) and p(sur)
must be estimated from the neuronal data. Because of limited sample
size p(r) and especiallyp(sur) are subject to misestimation (Carlton
1969; Kjaer et al. 1994; Miller 1955; Optican and Richmond 1987;
Panzeri and Treves 1996). Several methods have been developed to
correct for limited sample size and calculate an accurate estimate of
I(S;R) (e.g., Kjaer et al. 1994; Panzeri and Treves 1996; Victor and
Purpura 1996; see Golomb et al. 1997). We used the method of Kjaer
et al. (1994).

R E S U L T S

Number of precisely timed spike patterns depends on
response strength

We searched spike trains for three classes of precisely timed
(1-ms precision) patterns that have been studied by others
(Abeles 1991; Lestienne and Strehler 1987; Lestienne and
Tuckwell 1998; Prut et al. 1998). The classes of precisely
timed spike patterns we examined were1) the triplets and2)
the quadruplets that repeat within single neuronal responses
(see Fig. 1) and3) the total number of triplets found across

different responses regardless of how many times the pattern
repeated within a single response. The data were collected
from 32 LGN neurons and 19 supragranular complex cells in
V1 of an awake fixating monkey.

We begin by examining the number of precisely timed
repeating triplets independent of stimulus and the particular
pattern type. At least 60% of the spikes in the excitatory
responses of both LGN and V1 (Fig. 4) neurons are associated
with repeating triplets. Previous work (Abeles and Gerstein
1988) suggests there will be a strong, nonlinear relationship
between the mean number of repeating triplets within individ-
ual responses and the spike count, as we find in both LGN and
V1 neuronal responses (Fig. 5).

Information carried by precisely timed spike patterns

The strong dependency of the number of repeating triplets
on the number of spikes within a response does not, of course,
preclude the possibility that the precisely timed patterns carry
information that is unavailable from spike count because the
number of precisely timed patterns could also vary with stim-
ulus condition. We therefore directly measured the information
carried by 1) the spike count,2) the number of repeating
triplets, and3) the dual code of spike count and number of
repeating triplets together.

To calculate the stimulus-related information (Eq. 1) we
require a measure of the precisely timed spike patterns in each
trial. We used the number of spikes in each trial as one
response measure and the number of repeating triplets in each
trial as another response measure. The information carried by
spike count alone was on average.2.5 times the amount of
information carried by the number of precisely timed repeating
triplets [Fig. 6, left and middle bars, LGN: 0.366 0.047
(mean6 SE) vs. 0.146 0.03; V1: 0.416 0.023 vs. 0.156
0.013]. Inclusion of the number of repeating triplets with spike
count to form a dual code with two numbers (spike count and

FIG. 4. Rastergram displays of individual responses of cells.
Left rastergram: all spikes (black and red vertical ticks) in each
trial (horizontal trace).Middle rastergram: only those spikes
associated with repeating triplets (red ticks).Right rastergram:
same trials after removal of the spikes from repeating triplets.
Vertical bar in each indicates stimulus onset.Top: responses of
an LGN neuron to a bright square covering the excitatory
receptive field. Almost every spike associated with the excita-
tory response is also associated with a repeating triplet, yet very
few repeating triplets are present before response onset.Bot-
tom: responses of a V1 neuron. Note the high variability in the
number of spikes associated with repeating triplets for different
trials, ranging from none to all spikes in a trial.
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number of repeating triplets) associated with each trial pro-
vided no additional information about which stimulus was
present beyond that available from spike count (left and right
histogram bars of Fig. 6, LGN: 0.366 0.047 vs. 0.366 0.047;
V1: 0.41 6 0.023 vs. 0.416 0.022), indicating that the
stimulus-related information available from the number of
repeating triplets is completely redundant with the information
from spike count for both LGN and V1 neurons. We present
only the results from the analysis of repeating triplets but note
that qualitatively the same results were obtained with repeating
quadruplets; the information carried by repeating quadruplets
is much less than and completely redundant with the informa-
tion carried by spike count.

Models predicting repeating spike patterns

The redundancy of the information from the number of
repeating triplets with the information from spike count sug-
gests that the distribution of the numbers of precisely timed
(1-ms accuracy) spike patterns is directly related to slow vari-
ations (.20-ms accuracy) in firing rate as characterized by the
spike density function and spike count. To investigate whether
the stimulus-elicited repeating triplets are predictable from the
stimulus-elicited spike count we examined models of the rela-
tionship of the numbers and types of precisely timed spike

patterns with the spike count and slow variation in firing rate.
Table 1 shows the relevant properties of the models we used to
investigate the expected numbers of repeating triplets expected
by chance.

The uniform Poisson and NHPP models both assume that the
spike counts follow a Poisson distribution. A Poisson distribu-
tion of spike count has a variance numerically equal to the
mean. In our data the variance of the LGN and striate neuronal
responses was greater than the mean (Fig. 7). On average the
Fano factor (variance/mean) was 1.446 0.03 for the responses
of the LGN neurons and 2.906 0.03 for the V1 neurons,
indicating the spike count distributions were not Poisson (Sne-
decor and Cochran 1980). These values are similar to those
reported for the spike count distribution from recordings in
LGN, V1, TE, MT, parietal, and frontal areas (Bradley et al.
1987; Buracas et al. 1998; Gershon et al. 1998; Levine and
Troy 1986; Mechler et al. 1998; Reich et al. 1997; Tolhurst et
al. 1983; Victor and Purpura 1996; Vogels et al. 1989).

FIG. 5. Number of repeating triplets depends on spike count. Number of
repeating triplets (mean6 SE) in neuronal responses is plotted as a function
of the number of spikes within the responses. Note the nonlinear relationship
between mean number of repeating triplets and the response.Top: LGN data.
Bottom: V1 data.

FIG. 6. Information measures from the number of repeating triplets are
inherent in the total spike count. Three measures of the mean information are
shown. Information from total spike count (All Spikes) is higher than the
information from the number of repeating triplets (Number of Repeating
Triplets). If the presence of repeating triplets were independent of the first-
order statistics of the spike trains then the information from Spikes1 Triplets
would be the sum of the information from All Spikes and the information from
the Number of Repeating Triplets. The information from a joint code contain-
ing all spikes and the number of triplets (Spikes1 Triplets) is no different
from the information from the spike count (All Spikes).Top: LGN data,
ANOVA: effect of code F[2,42] 5 56.1, P , 0.0005. Bottom: V1 data,
ANOVA: effect of codeF[2,36] 5 78.5,P , 0.0005.
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Comparison of models with neuronal data

Figure 8 shows the mean number of all types of repeating
triplets (intervalsa, b # 25 ms) found in recorded spike trains
from the LGN (top) and V1 (bottom) and the spike trains
simulated using the four different models (uniform Poisson,
shuffled ISI, NHPP, and spike count-matched models; see
INTRODUCTION) (Abeles 1991; Abeles and Gerstein 1988; Abe-
les et al. 1993; Aertsen et al. 1989; Dayhoff and Gerstein
1983a,b; Lestienne and Strehler 1987; Lestienne and Tuckwell
1998; Vaadia et al. 1995). The numerical differences between
the observed and predicted numbers of repeating triplets from
the uniform, shuffled ISI, and NHPP models are small but
highly significant (P ,, 0.0005). In contrast, the spike count-
matched model predicted numbers of repeating triplets that
were indistinguishable from those observed in both LGN and
V1 data (P . 0.2 each comparison). The spike count-matched
model also predicted the number of triplets across responses
observed in the neural data. The spike count-matched model
differs in two ways from previous models in that we matched
both the spike count distribution and the influence of the
refractory period on the ISIs. The effect on the number of
repeating triplets of adjusting the spike count distribution from
Poisson (NHPP) to that observed was considerably larger than
the effect of adjusting the ISIs (9 times larger with the V1
data).

Previous reports have noted that the occurrence of precisely
timed spike patterns varies with stimulus (Abeles 1991; Abeles
et al. 1993; Engel et al. 1992; Prut et al. 1998; Riehle et al.
1997; Singer and Gray 1995; Vaadia et al. 1995). We also
examined the number of precisely timed spike patterns found
in the responses of LGN and V1 neurons to individual stimuli.
Each point in Fig. 9 shows the number of repeating triplets
measured (in the neuronal data) and predicted (by the spike
count-matched model) in the responses to one stimulus of one
neuron. The figure shows the data from all neurons. Figure 9
shows that the regression line of the number of repeating

triplets predicted by the spike count-matched model on the
observed number was statistically indistinguishable from
equality (the regression lines are hidden by the equality line).
To assess the accuracy of the NHPP model we calculated the
ratio of the number of repeating triplets from the model to that
observed in the neural data. For both LGN and V1 data sets the
spike count-matched model predicted the numbers of repeating
triplets more accurately than the NHPP model (Fig. 9,insets).
The spike count-matched model also accurately predicted the
number of repeating quadruplets (not shown) within the re-
sponses of LGN (intercept5 0.005, slope5 1.12,R2 5 0.94)
and V1 neurons (intercept5 20.002, slope5 0.998,
R2 5 0.95).

Finally, to investigate the possibility that particular patterns
in the responses to individual stimuli may occur more fre-
quently than expected by chance (Abeles 1991; Abeles et al.
1993; Prut et al. 1998; Riehle et al. 1997; Vaadia et al. 1995)
we examined the numbers of each repeating triplet type found
in the responses and compared the results to the numbers
predicted by the spike count-matched model. We counted the
number of times each of the 625 types of repeating triplet
occurred in the neuronal and simulated data for each stimulus.
Figure 10 shows a high ridge of repeating triplets with equal

FIG. 7. Responses of LGN and V1 neurons are not Poisson distributed.
Scatter plots of the response variance against the mean response to each
stimulus of each cell for the neural data. The thick line represents equality
(m 5 s2), a property of Poisson distributions. Most points lie above the
equality line for both the LGN (top) and V1 data (bottom).

TABLE 1. Comparison of models used to assess significance of
precisely timed spike patterns

Model Process PSTH ISIs
Spike Count
Distribution

Uniform Poisson Uniform rate Poisson
process

No No No (Poisson)

Shuffled ISI Shuffle ISI trial by
trial

No Yes Yes

NHPP Time-varying
Poisson process

Yes No No (Poisson)

Spike count
matched

As NHPP, but trials
selected to have
particular spike
counts

Yes Yes Yes

Three models commonly used to examine the statistical significance of
precisely timed spike patterns are listed along with the new spike count-
matched model described here. A brief description of the process used to
generate the artificial spike trains is given (see text and Fig. 2) along with
whether or not the model is constrained to match the peristimulus time
histogram (PSTH), the interspike interval (ISI) distribution, and the spike
count distribution. Of these models, only the spike count-matched model uses
all 3 constraints, and only the spike count-matched model predicts the observed
numbers and types of precisely timed spike patterns observed in LGN (lateral
geniculate nucleus) and primary visual neural responses. NHPP, nonhomog-
enous Poisson process.
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intervals (diagonal) and relatively few repeating triplets with a
short interval (,2 ms) in both the neuronal and simulated data
sets. The large proportion of triplets with equal intervals is
expected. Given a single triplet with equal intervals, for exam-
ple, 5 and 5 ms, only one additional spike with the same
interval (continuing the example, 5 ms) forms a second triplet
of the same type, that is, a repeating triplet. All other triplet
types require at least two spikes at particular times before
forming a repeating triplet (see Fig. 1). The refractory period
reduces the number of repeating spike patterns containing
intervals of ,2 ms. For the same reasons, the number of
repeating quadruplets with equal intervals was larger than that
of the other quadruplet types, and the number of repeating
quadruplets with very short (,2 ms) intervals was small in

both the modeled and the neuronal data. Not surprisingly, very
similar distributions of triplet types were observed for the total
numbers of triplets across all responses.

Estimating significance of particular spike patterns

To estimate the statistical significance of the numbers of
repeating triplets found in the neuronal data, a Monte Carlo
approach was used. For each cell and each stimulus we gen-
erated 10,000 “runs” of the spike count-matched and NHPP
models, with each run containing the same number of trials as
in the neuronal data set. Figure 11 shows that the spike count-
matched model predicts larger numbers and greater variability
in the numbers of each repeating triplet type found per trial
than is predicted from the NHPP process. The number of each
of the 625 repeating pattern types was noted in each of the
10,000 simulations, giving the predicted distributions of the
numbers of each of the individual triplet types. The number of
a particular repeating triplet type that could be accepted as
occurring by chance was taken to be any number that fell
within the 95% confidence limits of the predicted distribution
of that repeating triplet type (Fig. 12). The spike count-
matched model predicted the number of triplets across re-
sponses in addition to the number of repeating triplets within
responses (not shown).

The estimation of significant deviations from the expected
numbers of individual precisely timed patterns both within and
between responses is prone to problems associated with mul-
tiple comparisons. Figure 13 illustrates this point for repeating
triplets. The large peak found in the responses of one cell to
one stimulus indicates that this repeating triplet type (intervals
16;15 ms) occurred more frequently than any other (large peak
in Fig. 13, top graph). Individual runs of the spike count-
matched model also showed particular repeating triplet types
with the same high frequency of occurrence (Fig. 13,bottom
graphs). The peaks from the simulated data were found at a
variety of triplet types in different runs (e.g., 9;7, 16;15, 2;2,
and 3;6). The large variability of the triplet types arising from
the spike count-matched model illustrates the danger of assum-
ing that a single extreme peak in the neuronal data is signifi-
cant. By accepting the peak in the neuronal data as significant
one would be forced to assert that the large peaks in the
example simulations, which we know arise from a stochastic
process, were also significant. Thus the parsimonious conclu-
sion is that the large peaks in the neuronal data are consistent
with a stochastic process.

The average number of significant peaks across stimuli in
the neuronal data, as assessed by using the spike count-
matched model, was indistinguishable from that expected by
chance (31.2 of 625 at theP 5 0.05 significance level). In
contrast, with the NHPP model we would have concluded that
many of the neuronal responses contained individual repeating
triplet types that occurred more frequently than expected by
chance.

D I S C U S S I O N

Summary of results

We examined three forms of previously studied (Abeles
1991; Lestienne and Strehler 1987; Lestienne and Tuckwell
1998; Prut et al. 1998) precisely timed spike patterns in LGN

FIG. 8. Comparison of the number of repeating triplets found in neuronal
and modeled data. The mean number of repeating triplets per trial found in the
spike trains from the neuronal and modeled data sets is shown on a logarithmic
scale.Top: repeating triplets from LGN neuronal and modeled responses.
Modeled data sets contain 20 times more trials than the LGN data sets. Post
hoc testing revealed that the spike count-matched model gave results that were
statistically indistinguishable from the LGN data (P . 0.1). The other models
predicted fewer repeating triplets than seen in the LGN data (P , 0.01 each
comparison). ANOVA: overall effect of source of tripletsF[4,124] 5 13.8,P ,
0.00005. Effect of cell:F[31,124] 5 12,775.0,P , 0.00005. Interactions:
F[124,2069640]5 84.4, P , 0.00005.Bottom: repeating triplets from V1 neu-
ronal and modeled responses. Modeled data sets contain 20 times more trials
than the V1 data sets. Post hoc testing revealed that the spike count-matched
model gave results that were statistically indistinguishable from the V1 data
(P . 0.1). Other models predicted fewer repeating triplets than seen in the V1
data (P , 0.01 each comparison). ANOVA: overall effect of source of triplets
F[4,72] 5 32.2, P , 0.00005. Effect of cell:F[18,7785787]5 45,800.6,P ,
0.00005. Interactions:F[72,7785787]5 2,200,P , 0.00005.
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and V1 neuronal responses, triplets and quadruplets that repeat
within single neuronal responses and triplets that repeat across
different responses. We used static stimuli that evoked re-
sponses ranging from strongly inhibitory to strongly excitatory.
Our results were found to apply across all response strengths.
Given the large number of precisely timed spike patterns we
found, it is not surprising that we find that many (;60%) of the
individual spikes are associated with precisely timed spike
patterns.

Previous reports have emphasized only those spikes occur-
ring in patterns thought to have been above chance levels (e.g.,
Abeles 1991; Prut et al. 1998). Had we restricted our analysis
to using previous analysis methods we would also have con-
cluded that a small number of spikes was associated with those
precisely timed spike patterns occurring above chance levels.
However, we stress that the spike count-matched model indi-

cates that the patterns we observed were consistent with a
stochastic process.

The large number of stimuli used and the large numbers of
precisely timed triplets facilitated information theoretical anal-
ysis of the number of precisely timed spike patterns. The
analysis showed that the information carried by the total num-
ber of repeating precisely timed spike patterns was redundant
with that carried by the spike count (Fig. 6). The redundancy of
information implies a relationship between the spike count and
the distribution of the numbers and types of repeating patterns.

We first compared our data with the predictions from three
commonly used models. As found in earlier studies of many
brain areas (Abeles 1991; Abeles and Gerstein 1988; Dayhoff
and Gerstein 1983a,b; Lestienne and Strehler 1987; Lestienne
and Tuckwell 1998) these models predicted significantly fewer
repeating patterns than were observed in our data (Fig. 8). Had

FIG. 9. Spike count-matched model accu-
rately predicts the number of repeating trip-
lets in neuronal data. Scatter plots of the
number of repeating triplets from the spike
count-matched model against the number of
repeating triplets found in the neuronal data
on a logarithmic scale are shown. Each point
shows the data and prediction from 1 stimu-
lus from 1 neuron. One was added to the
number of repeating patterns to allow use of
trials where no repeating patterns were
present.Top: mean number of repeating trip-
lets per trial from the spike count-matched
model and LGN neuronal data for each stim-
ulus and each of the 32 cells on a logarithmic
scale (n 5 1,872). Points from the cumulative
spike probability function are scattered
around the equality line (diagonal), indicat-
ing excellent predictive value of the spike
count-matched model.Bottom: mean number
of repeating triplets per trial from the spike
count-matched model and V1 neuronal data
for each stimulus and each of the 19 cells on
a logarithmic scale (n 5 3,389). Points from
the cumulative spike probability function are
scattered around the equality line (diagonal),
indicating excellent predictive value of the
spike count-matched model.Insets: fre-
quency plot of the ratio of the number of
repeating spike patterns predicted by the
spike count–matched model to that seen in
the neuronal data. Note the tight distribution
of this ratio of;1.0 obtained with the spike
count-matched model compared with the flat-
ter distribution extending down to 0.0 from
the nonhomogenous Poisson process (NHPP)
model for both LGN and V1 data sets.
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we relied on these models we might have postulated a special
role for the repeating patterns. Adjusting a previous model
(NHPP) by forcing the spike counts and ISIs in the model to
match the experimental data (Figs. 2 and 3) demonstrates that
a stochastic process can give rise to the fine temporal structures
observed here (Figs. 8–13). Note that if the observed distribu-
tion of spike counts is truly Poisson, the spike count-matched
and NHPP models are identical.

We observed that the mismatching of the ISI distribution
had a small but still significant effect on the predicted
numbers of precisely timed spike patterns (;10% of the size
of mismatching the spike count distribution). Others have
also observed a significant effect of changes in the ISI
distribution on the precise temporal structure of responses
(Berry and Meister 1998; Berry et al. 1997). A previous
model that matches both the spike count distribution and the
time-varying firing rate but not the ISI distribution does not
match the fine temporal structures of V1 responses (Victor
and Purpura 1996). The performance of the spike count-

matched model with other types of data, e.g., from rhythmic
neurons, bursting neurons, or neurons with a long refractory
period and low firing rates, has not yet been assessed. Thus
the relative importance of the ISI distribution in these situ-
ations remains unknown.

The spike count-matched model, which matches the spike
count distribution, the ISIs, and the time-varying firing rate,
predicts the distribution of each particular triplet type found in
the data (Figs. 8–13). This leads to the conclusion that the
observed numbers of repeating triplets in the neuronal data are
consistent with chance; this is very different from the conclu-
sion that would be reached with Poisson-based models.

Firing rate profile, response variance, and precisely timed
spike patterns

The number of precisely timed triplets and quadruplets in-
creases in a roughly combinatorial fashion with the spike count
(Abeles and Gerstein 1988). Figure 5 shows that high firing
rates are also associated with very large numbers of repeating
triplets. The difference between the number of repeating spike
patterns associated with high and low response strengths im-
plies that slow variations in firing rate (spike density function)
must be incorporated into models used to predict the expected
numbers of such patterns (Lestienne and Strehler 1987).

The nonlinear relationship between the number of spikes
within a response and the number of repeating triplets (Fig. 5)
also offers an intuitive explanation of the differences between
the NHPP and spike count-matched model in situations, as
here, where the response variance is numerically greater than
the response mean (in the following section we give the more

FIG. 10. Comparison of repeating triplet type. Frequency of occurrence of
each of the 625 examined types of repeating triplet of the V1 neuronal data and
the associated spike count-matched model data.Top: probability of each
repeating triplet type is shown as a gray scale for the neuronal data (lighter5
higher probability).Bottom: probability of each repeating type estimated from
the simulated spike trains from the spike count-matched model. Note the
decreasing probability of triplets with increasing intervals, the relatively high
probabilities for triplets with equal intervals (diagonals), and the relatively low
probability of triplets with very short (,3 ms) intervals for both the neuronal
and modeled data. Modeled data appear smoother (less variable) than the
neuronal data because 20 times as many trials were simulated were present in
the neuronal data.

FIG. 11. Predicted mean and variance of repeating triplet types are higher
in spike count-matched model than in NHPP model. Mean and variance of the
number of each of the 625 examined repeating triplet types predicted by NHPP
and spike count-matched models in the responses of a single V1 cell to a single
stimulus are shown.Top left: mean number of repeating triplets by triplet type
predicted by NHPP model.Top right: mean number of repeating triplets by
triplet type predicted by spike count-matched model.Bottom left: SD of the
number of repeating triplets by triplet type predicted by NHPP model.Bottom
right: SD of the number of repeating triplets by triplet type predicted by spike
count-matched model.
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formal and general case). Changes in the number of simulated
trials with low spike counts will have little effect on the
expected number of precisely timed spike patterns because low
spike counts are associated with relatively few precisely timed
spike patterns. The nonlinearity means, however, that the pre-
dicted number of precisely timed patterns is underestimated
because high spike counts are associated with very large num-
bers of such patterns. Thus the expected number of precisely
timed spike patterns is very sensitive to the distribution of the
spike count.

Dependency of repeating patterns on spike count distribution

Here we show that, by necessity, the number of precisely
timed spike patterns is critically dependent on the distribution
of the trial-by-trial spike count. We stress at the outset that the
following argument applies no matter what the mean firing
rate; the dependency can be shown from consideration of the
spike count distribution, not the spike counts per se. Further-
more, the argument applies to spike count distributions with
small or large variability.

Precisely timed patterns of spikes reflect temporal relation-

ships or correlation within and between responses. At the
temporal resolution we used (1 ms), responses can be described
as binary events (spike or not) with a low probability of a spike
occurring. If the small time bins within a response are inde-
pendent, the mean and variance of spike count over extended
periods are simply the sum of the means and sum of variances
of the short interval bins. As small time bins have a Poisson
distribution of spike count, a response with independent bins
also has a Poisson distribution of spike count. Whenever the
observed spike count distribution over homogenous repeated
trials deviates from a Poisson distribution there must be co-
variation between periods of a response because the individual
small bins cannot be independent. Thus, because the spike
count-matched model used a different spike count distribution
than that used in the NHPP model, the numbers of precisely
timed spike patterns must be different between these two
models.

The dependency of the internal structures of responses ap-
plies to deviations from a Poisson distribution. It is insufficient
to show that the variance is numerically equal to the mean
because distributions that are not Poisson can have this prop-
erty. The NHPP model, by definition, gives rise to simulated
responses with numerically equal mean and variance of spike

FIG. 12. Determination of significance for 1 repeating triplet type. The
method used to determine the distribution of expected numbers of 1 triplet type
(intervals 5;5 ms) for the responses of a single V1 neuron to 1 stimulus is
shown.Top: Monte Carlo simulations of the spike count-matched (SCM) and
NHPP models produced a frequency histogram of the number of samples (of
10,000) in which the triplet type 5;5 was observed 0,1,2,. . . ,13,14 times.
Poisson distribution based on the mean from the NHPP model is also shown.
Bottom: cumulative plot of the data in thetop panel. Value after the cumulative
plot crossed the 95% level (9,500 samples) was taken as the upper limit (P ,
0.05) for the expected number of repeating triplets of type 5;5 to occur by
chance (Poisson distribution5 7; NHPP5 9; SCM 5 11).

FIG. 13. Spike count-matched model predicts large variability in the num-
ber of particular repeating triplet types. Distributions of each repeating triplet
type show that the spike count-matched model matches the neuronal data
including the occasional large numbers of particular triplet types.Top: number
of times each triplet type, defined by the first and second intervals, was found
in the responses of 1 striate cortical neuron to 1 stimulus.Bottom: distributions
of expected numbers of repeating triplets from 4 runs of the spike count-
matched model. Model shows large variability in the numbers of particular
repeating triplet types from run to run.
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count. We note that non-Poisson distributions of spike count
have been reported in responses of neurons in the retina, LGN,
V1, TE, and parietal and frontal lobes (Baddeley et al. 1997;
Berry and Meister 1998; Berry et al. 1997; Bradley et al. 1987;
Britten et al. 1997; Buracas et al. 1998; Gershon et al. 1998;
Lee et al. 1998; Levine and Troy 1986; Reich et al. 1997;
Snowden et al. 1992; Tolhurst et al. 1983; Victor and Purpura
1996; Vogels et al. 1989). Indeed all the reports of which we
are aware show that the spike count distribution is different
from a Poisson distribution, indicating that the NHPP model
will necessarily misestimate the expected numbers of precisely
timed spike patterns for all these brain areas.

Precision of temporal codes

Reports on other systems, most notably the auditory systems
of the owl and bat and the motion system of the fly, have
shown that the precise times of individual spikes are directly
related to the stimulus (de Ruyter van Steveninck and Bialek
1988; Ferragamo et al. 1998; Olsen and Suga 1991; Suga 1989;
Sullivan and Konishi 1984; Takahashi and Konishi 1986; Ta-
kahashi et al. 1989). We have examined the potential role of
precisely timed patterns of spikes in information coding of
static stimuli, not the role of the precise times of individual
spikes to rapidly changing or moving stimuli (Buracas et al.
1998; de Ruyter van Steveninck and Bialek 1988; Rieke et al.
1996).

In the past it has been shown that there is information in the
coarse (,30-Hz bandwidth) temporal variation of a response
that is unavailable from the spike count alone (Eskandar et al.
1992a,b; Heller et al. 1995; McClurkin et al. 1991a–c; Optican
and Richmond 1987; Richmond and Optican 1990; Richmond
et al. 1987, 1990; Tovee et al. 1993). These new results (;1
KHz bandwidth) do not affect those conclusions because of the
difference in the precision of the proposed codes. Although we
do not know the temporal precision of mechanisms used to
decode the information contained within responses, that the
precisely timed spike patterns are predictable from spike count
and firing rate profile shows that information unrelated to spike
count cannot be contained by the precisely timed spike patterns
we observed.

Precisely timed spike patterns in single and multiple
neuronal spike trains

We have considered the fine temporal structure of the re-
sponses of single neurons. Many reports of precisely timed
spike patterns have found that the numbers of precisely timed
repeating patterns of spikes found between the responses of
different neurons also exceed the number predicted by NHPP-
based models (Abeles and Gerstein 1998; Abeles et al. 1993;
Aertsen et al. 1989; Riehle et al. 1997; Vaadia et al. 1995). The
results presented here show that deviations of the spike count
distribution from a strict Poisson distribution will necessarily
introduce temporal correlation into the responses of the indi-
vidual neurons. These temporal correlation structures will ap-
pear as covariation between the probabilities of spikes occur-
ring between different time bins. The expected numbers of
precisely timed spikes between responses of different neurons
are generally estimated by cross-multiplication of probabilities
of a spike occurring in individual bins in the responses of the

different neurons (Abeles and Gerstein 1988; Aertsen et al.
1989; Vaadia et al. 1995). The estimated cross-product prob-
ability will therefore necessarily be influenced by covariation
between the bins of the responses of the individual neurons.
Thus it is critical to use the correct spike count distribution to
predict the expected numbers of precisely timed spike patterns
across neurons just as it is within single neuronal responses.

Information processing and information transmission

We are concerned here only with the information content of
the neuronal responses (information encoding), not the mech-
anisms by which the information may be transferred (informa-
tion transmission). Exquisite arrangements of synapses (Thom-
son and Deuchars 1994) and complex structures of feedforward
and feedback inputs (Carr and Konishi 1988, 1990) suggest
that precisely timed spikes, especially synchronous volleys of
spikes, could have enhanced effects on postsynaptic cells com-
pared with temporally disjoint spikes (Douglas et al. 1991;
Gochin et al. 1991; Softky 1994; Softky and Koch 1993).
Although it is possible that mechanisms exist that preferen-
tially utilize precisely timed patterns, we stress that such mech-
anisms can only provide an alternative for conveying the same
information (at a lower rate, Fig. 6) as that available from the
spike count if, as in LGN and V1 neuronal responses reported
here, the fine temporal structure is a consequence of coarse
temporal measures.

C O N C L U S I O N S

Although mechanisms may be identified that impose and
maintain exact relations among interspike intervals, it is critical
to identify the simplest models consistent with observed data.
In that vein, we have reported here that a simple stochastic
model predicts the numbers and types of repeating patterns in
our data without needing to invoke a specific mechanism to
establish the observed relationships among spike times. Previ-
ous studies have frequently assumed a Poisson distribution of
spike count (Abeles and Gerstein 1988; Abeles et al. 1993;
Aertsen et al. 1989; Lestienne and Strehler 1987; Lestienne and
Tuckwell 1998; Prut et al. 1998; Riehle et al. 1997; Vaadia et
al. 1995). This study has shown that changing the spike count
distribution (from Poisson to observed) affects the predicted
numbers and types and therefore the interpretation of precisely
timed patterns. We conclude that the exactly timed patterns
seen here are directly related to the coarse (,30-Hz band-
width) firing rate modulation and the spike count distribution.
The spike count-matched model requires only enough data to
estimate the firing rate profile to determine the numbers and
types of precisely timed spikes expected by chance. Thus it
potentially provides a straightforward method of testing, for
example, the consistency between precisely timed patterns
generated by a biophysical model and the distribution of pre-
cisely timed patterns that can be inferred with the matched
model from a small number of experimental trials.
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