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Understanding the guiding principles of sensory coding strategies is a
main goal in computational neuroscience. Among others, the principles
of predictive coding and slowness appear to capture aspects of sensory
processing. Predictive coding postulates that sensory systems are adapted
to the structure of their input signals such that information about future
inputs is encoded. Slow feature analysis (SFA) is a method for extracting
slowly varying components from quickly varying input signals, thereby
learning temporally invariant features. Here, we use the information bot-
tleneck method to state an information-theoretic objective function for
temporally local predictive coding. We then show that the linear case of
SFA can be interpreted as a variant of predictive coding that maximizes
the mutual information between the current output of the system and the
input signal in the next time step. This demonstrates that the slowness
principle and predictive coding are intimately related.

1 Introduction

One outstanding property of sensory systems is the identification of in-
variances. The visual system, for example, can reliably identify objects af-
ter changes in distance (Kingdom, Keeble, & Moulden, 1995), translation
(Hubel & Wiesel, 1962), and size and position (Ito, Tamura, Fujita, & Tanaka,
1995). Neuronal correlates of invariance detection range from phase-shift in-
variance in complex cells in primary visual cortex (Hubel & Wiesel, 1962) to
high-level invariances related to face recognition (Quiroga, Reddy, Kreiman,
Koch, & Fried, 2005). Hence, understanding the computational principles
behind the identification of invariances is of considerable interest.

One approach for the self-organized formation of invariant represen-
tations is based on the observation that objects are unlikely to change or
disappear completely from one moment to the next. Various paradigms
for invariance learning have been proposed that exploit this observation
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(Földiak, 1991; Wallis & Rolls, 1997; O’Reilly & Johnson, 1994; Stone & Bray,
1995; Einhäuser, Hipp, Eggert, Körner, & König, 2005). As these paradigms
extract the slowly varying components of sensory signals, we will refer
to this approach as the slowness principle (Wiskott & Sejnowski, 2002),
in related literature also called temporal coherence or temporal stability
principle (Einhäuser et al., 2005; Hurri & Hyvärinen, 2003; Wyss, König, &
Verschure, 2006). One formulation of this principle is slow feature analysis
(SFA; Wiskott & Sejnowski, 2002). SFA has been successfully applied to the
learning of various invariances in a model of the visual system (Wiskott &
Sejnowski, 2002) and reproduces a wide range of properties of complex cells
in primary visual cortex (Berkes & Wiskott, 2005). In combination with a
sparseness objective, SFA can also be used as a model for the self-organized
formation of place cells in the hippocampus (Franzius, Sprekeler, & Wiskott,
2007; for related work, see Wyss et al., 2006).

A different approach to sensory processing is based on temporal predic-
tion. For successful completion of many tasks, our brain has to predict fu-
ture states of the environment from current or previous knowledge (Bialek,
Nemenman, & Tishby, 2001). For example, when trying to catch a ball, it
is not the current position of the ball that is relevant but its position at
the moment of the catch. We will refer to processing strategies that aim at
performing this prediction as predictive coding. Predictive coding is the
precondition for certain forms of redundancy reduction that have been ap-
plied successfully to model receptive fields in primary visual cortex (Rao &
Ballard, 1999) and surround inhibition in the retina (Srinivasan, Laughlin,
& Dubs, 1982). Redundancy reduction has been proposed as the backbone
of efficient coding strategies and inherently relates to information-theoretic
concepts (Attneave, 1954; Barlow, 1961; Atick, 1992; Nadal & Parga, 1997).
However, to our knowledge, an information-theoretic framework for pre-
dictive coding has not yet been formulated.

In this work, we use the information bottleneck method (Tishby, Pereira,
& Bialek, 1999) to derive an information-theoretic objective function for
predictive coding. The information about previous input is compressed into
a variable such that this variable keeps information about the subsequent
input. We focus on gaussian input signals and linear mapping. In this case,
the optimization problem underlying the information bottleneck can be
reduced to an eigenvalue problem (Chechik, Globerson, Tishby, & Weiss,
2005). We show that the solution to this problem is similar to linear slow
feature analysis, thereby providing a link between the learning principles
of slowness and predictive coding.

2 Linear SFA

Slow feature analysis is based on the following learning task. Given
a multidimensional input signal, we want to find scalar input-output
functions that generate output signals that vary as slowly as possible but
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carry significant information. To ensure the latter, we require the output
signals to be uncorrelated and have unit variance. In mathematical terms,
this can be stated as follows:

Optimization problem 1. Given a function space F and an N-dimensional
input signal Xt = [X1(t), . . . , XN(t)]T with t indicating time, find a set of J
real-valued instantaneous functions g j (X) of the input such that the output
signals (Yj )t := g j (Xt) minimize

�(Yj ) ≡ 〈
Ẏ2

j

〉
t (2.1)

under the constraints

〈Yj 〉t = 0 (zero mean) (2.2)〈
Y2

j

〉
t = 1 (unit variance) (2.3)

∀i < j : 〈Yi Yj 〉t = 0 (decorrelation and order) (2.4)

with 〈·〉t and Ẏ indicating temporal averaging and the derivative of Y,
respectively.

Equation 2.1 introduces the �-value, which is a measure of the slowness
of the signal Yt. The constraints 2.2 and 2.3 avoid the trivial constant solution.
Constraint 2.4 ensures that different functions g j code for different aspects
of the input.

It is important to note that although the objective is the slowness of the
output signal, the functions g j are instantaneous functions of the input, so
slowness cannot be enforced by low-pass filtering. Slow output signals can
be achieved only if the input signal contains slowly varying features that
can be extracted by the functions g j .

If the function space F is finite-dimensional, the optimization problem
can be reduced to a (generalized) eigenvalue problem (Wiskott & Sejnowski,
2002; Berkes & Wiskott, 2005). Here, we restrict F to the set of linear func-
tions Yt = AXt , where A is a J × N-dimensional matrix. In the following,
we also assume that input signals Xt have zero mean. Then the optimal
matrix obeys the generalized eigenvalue equation,

A�Ẋt
= �A�Xt . (2.5)

Here, �Ẋ := 〈ẊẊT 〉t denotes the matrix of the second moments of the tem-
poral derivative of the input signals, and �Xt is the covariance matrix of
the input signals. � is a diagonal matrix that contains the eigenvalues
λ j on the diagonal. The solution of the optimization problem for SFA is
given by the J × N matrix A that contains the eigenvectors to the smallest
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eigenvalues λ j as determined by the generalized eigenvalue equation, 2.5.
For the mathematically interested reader, a derivation of equation 2.5 can
be found in appendix A.

We assume that the covariance matrix of the input data has full rank
and is thus invertible. The generalized eigenvalue problem, 2.5, can then be
reduced to a standard left eigenvalue problem by multiplication with �−1

Xt

from the right:

A
[
�Ẋt

�−1
Xt

] = �A. (2.6)

For discretized time, the temporal derivative is replaced by Xt+1 − Xt , and
�Ẋ can be rewritten as �Ẋ = 2�X − [�Xt+1;Xt + �Xt;Xt+1 ], where �Xt+1;Xt =
〈Xt+1 Xt〉t is the matrix containing the covariance of the input signals with
the input signal delayed by one time step 1 (Blaschke, Berkes, & Wiskott,
2006). Moreover, if the statistics of the input data are reversible, �Xt+1;Xt

is symmetric and �Xt+1;Xt = �Xt;Xt+1 . Using these relations in equation 2.6
yields

2A

[
I − �Xt+1;Xt �

−1
Xt︸ ︷︷ ︸

=:�

]
= �A. (2.7)

Note that the eigenvectors of the SFA problem are also the eigenvectors of
the matrix � as defined in equation 2.7. Given the form of equation 2.7, we
will be able to compare the eigenvalue problem with its counterpart from
the information bottleneck ansatz of predictive coding.

3 The Information Bottleneck Method

The information bottleneck is a method for extracting relevant aspects of
data (Tishby et al., 1999). One seeks to capture those components of a
random variable X that can explain observed values of another variable R.
This task is achieved by compressing the variable X into its compressed
representation Y while preserving as much information as possible about
R. The trade-off between these two targets is controlled by the trade-off
parameter β. Hence, the information bottleneck problem can be formalized
as minimizing the following Lagrangian:

minL : L ≡ I (X; Y) − β I (Y; R). (3.1)

The first term can be regarded as minimizing the complexity of the mapping,
while the second term tries to increase the accuracy of the representation.
From the point of view of clustering, the information bottleneck method
finds a quantization, or partition, of X that preserves as much mutual in-
formation as possible about R. From the perspective of machine learning,
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this corresponds to supervised learning. X is the input signal, and R tells
what aspects of the input should be learned. The information bottleneck
method has been applied successfully in different circumstances: for docu-
ment clustering (Slonim & Tishby, 2000), neural code analysis (Dimitrov &
Miller, 2001), gene expression analysis (Slonim, Friedman, & Tishby, 2006),
and extraction of speech features (Hecht & Tishby, 2005). In particular, in
case of a linear mapping between gaussian variables, the optimal func-
tions are the solution of an eigenvalue problem (Chechik et al., 2005). The
key point is that the entropy of gaussian variables can be written as the
logarithm of the relevant covariance matrices between input and output.
Minimizing the Lagrangian, finally, is equivalent to diagonalizing the co-
variance matrices; the eigenvector with the smallest respective eigenvalue
gives the most informative part of the mapping between input and output.

In the following, we transfer the gaussian information bottleneck to sen-
sory input data represented as a time series. We obtain a low-dimensional
encoding of the current input, while maximizing the information about the
subsequent input, and thus maximize predictive information.

4 Temporally Local Predictive Coding

The predictive coding hypothesis states that an organism extracts informa-
tion from its sensory input that is predictive for the future (see, e.g., Bialek
et al., 2001). Information theoretically, this corresponds to mapping the data
from the past into an internal state variable such that information between
that state and the future data is maximized. To enforce a compact mapping,
we introduce an additional penalty term that restricts the complexity of the
mapping:

maxL : L≡ I (state; future) − β−1 I (past; state). (4.1)

Obviously the state variable cannot contain more information about the fu-
ture than about the past, so for β−1 ≥ 1, the objective function L is negative:
L ≤ 0. In this case, L is optimized by the trivial solution, where the state
variable does not contain any information at all because then L = 0. Thus,
to obtain nontrivial solutions, the trade-off parameter should be chosen
such that 0 < β−1 < 1 or, equivalently, 1 < β < ∞.

The optimization problem above can also be formulated as an equivalent
minimization problem that has the form of an information bottleneck as
introduced in the previous section:

minL : L≡ I (past; state) − β I (state; future). (4.2)

Here, we restrict ourselves to the special case of only one time step and
a linear mapping. An extension to more time steps is possible with similar
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Figure 1: Temporally local predictive coding. The sensory system compresses
information of the current input Xt into Yt such that the mutual information
between Yt and the next input Xt is maximized.

techniques as presented here but exceeds the scope of this letter. Let us
assume a discrete input signal Xt that is mapped to an output signal Yt such
that Yt is most predictive about the next input signal Xt+1 while minimizing
the complexity in the information bottleneck sense, as illustrated in Figure 1.

We assume that the input signal Xt is an n-dimensional gaussian vector
and that the output signal Yt is generated by a noisy linear transformation:

Yt = AXt + ξ. (4.3)

The gaussian white process noise ξ is introduced for reasons of regulariza-
tion; otherwise, information-theoretic quantities would diverge. For sim-
plicity, we will assume that the noise is isotropic and normalized—that
�ξ = 〈ξξT 〉t = I , where I denotes the unit matrix. This is no limitation, as
it has been shown that every pair of (A, �ξ ) can be mapped into another
pair (Â, I ) such that the value of the target function L remains the same
(Chechik et al., 2005).

Optimization problem 1 can now be stated in information-theoretic
terms:

Optimization problem 2. Temporally local predictive coding (TLPC).
Given input signal Xt and output signal Yt = AXt + ξ where Xt and ξ are
gaussian with 〈ξtξt+1〉t = 0, find the matrix A(β) that minimizes

minL : LTLPC ≡ I (Xt; Yt) − β I (Yt; Xt+1) (4.4)

with β > 1.
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The general solution to this problem has been derived in Chechik
et al. (2005). For completeness, a sketch of the derivation can be found
in appendix B. Here we state the solution:

Proposition 1. The solution to optimization problem 2 is given by

A(β) =




[0; . . . ; 0] 0 ≤ β ≤ βc
1

[α1W1; 0; . . . ; 0] βc
1 ≤ β ≤ βc

2

[α1W1;α2W2; 0; . . . ; 0] βc
2 ≤ β ≤ βc

3

...




(4.5)

where Wi and λi (assume λ1 ≤ λ2 ≤ . . .) are the left eigenvectors and eigenvalues

of �Xt |Xt+1 �−1
Xt

, αi are coefficients defined by αi ≡
√

β(1−λi )−1
λi ri

, ri ≡ Wi�Xt W
T
i ,

0 is an m-dimensional column vector of zeros, and semicolons separate columns in
the matrix A(β). The critical β-values are βc

i = 1
1−λi

.

The eigenvalues of �Xt |Xt+1�
−1
Xt

, αi are guaranteed to be real and
nonnegative, as full-rank covariance matrices are positive definite. The
key observation is that with increasing β additional eigenvectors appear
(second-order phase transitions), corresponding to the detection of addi-
tional features of decreasing information content.

5 Relationship Between Slow Feature Analysis and Temporally Local
Predictive Coding

How does this solution relate to slow feature analysis? We can rewrite
� = �Xt;Xt+1�

−1
Xt

in a more convenient form using Schur’s formula:

�Xt |Xt+1�
−1
Xt

= (
�Xt − �Xt;Xt+1�

−1
Xt

�Xt+1;Xt

)
�−1

Xt
(5.1)

= I − �Xt;Xt+1�
−1
Xt

�Xt+1;Xt �
−1
Xt

(5.2)

= I − (
�Xt;Xt+1�

−1
Xt

)2
(5.3)

(7)= I − �2 , (5.4)

where we used the fact that time-delayed covariance matrices of reversible
processes are symmetric. Note that the matrix � = �Xt;Xt+1�

−1
Xt

also appears
in the eigenvalue problem for linear SFA in the case of discrete time series
2.7, and hence, the optimal eigenvectors are the same for temporally local
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Figure 2: Relationship between eigenvalues of slow feature analysis and tem-
porally local predictive coding. For discrete time series, fast components can be
equally predictive as slow components. Only white noise is nonpredictive.

predictive coding (TLPC) and SFA. From equation 2.7, we know that that
the matrix to diagonalize in SFA is

�SFA = 2I − 2�, (5.5)

with eigenvalues λSFA
i , whereas in TLPC, the target matrix is

�TLPC = I − �2, (5.6)

with eigenvalues λTLPC
i . Solving equation 5.5 for � and substituting the

solution into equation 5.6, we obtain the relationship between the eigenval-
ues:

λTLPC
i = λSFA

i − 1
4

(
λSFA

i

)2
. (5.7)

SFA is guaranteed to find the slowest components first, whereas TLPC
finds the most predictive components first. For example, a very fast compo-
nent can be very predictive, for example, if the value at t + 1 is the negative
of the current value (see Figure 2). Hence, from the TLPC point of view,
the absolute deviation from random fluctuations rather than slowness is
relevant. This may be important for the analysis of discrete time series
with high-frequency components. However, this is true only for temporally
discrete data: for continuous data, one would expect a monotonous rela-
tion between eigenvalues of an information bottleneck approach and SFA
eigenvalues.
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Figure 3: Temporally local predictive coding and SFA differ in weighting of
filtered components. Both algorithms find the original cosines underlying the
linear mixtures (x1, x2, x3). SFA discovers features in order of slowness only.
TLPC assigns weights to individual components according to their predictive
information. For TLPC, relative, not absolute, weightings are shown.

Temporally local predictive coding and SFA find the same components
in the same order. The difference is that TLPC allows quantifying the
components in terms of predictive information. For example, take a three-
dimensional signal that consists of a mixture of cosines with different fre-
quencies. Both methods can separate the original signals successfully (see
Figure 3). Slow feature analysis and temporally local predictive coding
reveal components in the same order, that is, according to slowness. How-
ever, slow feature analysis accredits the same amplitude to all components,
while TLPC gives higher weights to slower components according to their
predictive power.

6 Discussion

In this work, we relate slowness in signals to predictability. We have shown
that predictive coding and slow feature analysis correspond to each other for
the restrictions of gaussianity, linearity, and one-time-step prediction. Both
principles can explain some properties of visual receptive fields (Berkes &
Wiskott, 2005; Einhäuser et al., 2005; Rao & Ballard, 1999). On the one hand,
our approach indicates that results from SFA studies such as the findings
on complex cell properties (Berkes & Wiskott, 2005) and hippocampal place
cells (Franzius et al., 2007) can be seen in terms of predictive coding. On
the other hand, predictive coding by surround inhibition (Srinivasan et al.,
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1982) and feedback connections (Rao & Ballard, 1999) may be interpreted
from the viewpoint of the slowness principle.

We have also shown that linear slow feature analysis can be motivated by
information-theoretic principles. It is interesting to note that this linear, dis-
crete case is also related to an implementation of second-order independent
component analysis (Blaschke et al., 2006).

The relationship between predictive coding and temporal invariance
learning has also been suggested in other work, for example, by Shaw
(2006), who argued that temporal invariance learning is equivalent to pre-
dictive coding if the input signals are generated from Ornstein-Uhlenbeck
processes.

In one regard, temporally local predictive coding differs from slow fea-
ture analysis. The information bottleneck approach is continuous in terms
of the trade-off parameter β, and new eigenvectors appear as second-order
phase transitions. The weighting of the eigenvectors is different in that it
depends on their eigenvalue (see Figure 3). This can be important when
analyzing or modeling sensory systems where available bandwidth and,
hence, resulting signal-to-noise ratio, is a limiting factor. For temporally
local predictive coding, available bandwidth, such as number of neurons,
should be attributed according to relative amplitude, whereas slow feature
analysis accredits the same bandwidth to all features.

We emphasize that our approach is not directly applicable to many real-
world problems. Our derivation is restricted to gaussian variables and linear
mappings. Both restrictions are not needed for SFA. Note that an extension
of linear local predictive coding to nongaussian input signals would also
capture the case of nonlinear processing, because after a nonlinear expan-
sion, the problem can be treated in a linear fashion. Usually nonlinear SFA
corresponds to linear SFA after a nonlinear expansion of the input signals.
In this sense, nonlinear SFA can be regarded as the gaussian approxima-
tion to the full nongaussian local predictive coding problem on the nonlin-
early expanded input. This argument, together with effective nonlinear SFA
models of the visual system (Berkes & Wiskott, 2005; Franzius et al., 2007),
indicates that sensory systems are tailored to extract (relevant) predictive
information. For further research, we suggest comparing temporally local
predictive coding and slow feature analysis to generative hierarchical mod-
els for learning nonlinear statistical regularities (Karklin & Lewicki, 2005;
Schwartz, Sejnowski, & Dayan, 2006).

The restriction on the immediate past implies that SFA does not maximize
predictive information for non-Markovian processes. The generalization—
relating the infinite past with the infinite future—can be best framed in terms
of linear dynamical systems. Work on this topic is in preparation. Finally,
predictive coding is not a stationary property of the evolved sensory system
but dynamic and adapts with input statistics (Hosoya, Baccus, & Meister,
2005). A plausible extension of our work would aim to incorporate dynamic
properties.
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Appendix A: Derivation of the Generalized Eigenvalue Equation
for SFA

Let Wj denote the row vector that is formed by the j th row of the weight
matrix A. The output signal Yj is then given by Yj = Wj X. Accordingly, the
slowness objective, equation 2.1, is given by

�(Yj ) = 〈
Ẏ2

j

〉
t (A.1)

=〈(Wj Ẋ)2〉t (A.2)

= Wj 〈ẊẊT 〉tWT
j = Wj�Ẋt

WT
j . (A.3)

A similar calculation yields that the variance of the output signal Yj is given
by

var(Yj ) ≡ 〈
Y2

j

〉
t = Wj 〈XXT 〉tWT

j = Wj�Xt W
T
j

(3)= 1 . (A.4)

The task is to minimize equation A.1 under the constraint A.4 and the
decorrelation constraint, which we will neglect for now, as it will turn out
to be fulfilled automatically. The method of Lagrange multipliers states the
necessary condition that

� = �(Yj ) − λ
〈
Y2

j

〉
t (A.5)

is stationary for some value of the Lagrange multiplier λ, that is, that the
gradient of � with respect to the weight vector Wj vanishes. When equa-
tions A.1 and A.4 are used, this gradient can be calculated analytically,
yielding the following necessary condition for the weight vector Wj :

Wj�Ẋt
− λWj�Xt = 0. (A.6)

Note that condition A.6 has the structure of a generalized eigenvalue prob-
lem, where the Lagrange multiplier λ plays the role of the eigenvalue.
Multiplication with WT

j from the right and using the unit variance con-
straint A.4 yields that the �-value of a solution of equation A.6 is given by
its eigenvalue λ:

Wj�Ẋt
WT

j︸ ︷︷ ︸
(21)= �(Yj )

−λ Wj�Xt W
T
j︸ ︷︷ ︸

(24)= 〈Y2〉t=1

= 0 ⇒ �(Yj ) = λ . (A.7)

From this, it is immediately clear that the slowest possible output sig-
nal is provided by the linear function associated with the eigenvector
W1 with the smallest eigenvalue λ1. It can be shown that eigenvectors
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Wi , Wj with different eigenvalues λi , λ j are orthogonal in the sense that
〈Yi Yj 〉t = Wi�Xt Wj = 0, so they yield decorrelated output signals. For eigen-
vectors with identical eigenvalues, any linear combination of them is still an
eigenvector. Hence, it is always possible to choose a basis of the subspace
that still consists of eigenvectors and yields decorrelated output signals
(e.g., by Gram-Schmidt orthogonalization).

Combining these properties of the eigenvectors, it is clear that the op-
timization problem of linear SFA can be solved by choosing the functions
associated with the J eigenvectors Wj with the smallest eigenvalues, or-
dered by their eigenvalue. Reinserting the eigenvectors Wj into the matrix
A and the eigenvalues in a diagonal matrix �, the eigenvalue problem, A.6,
takes the form of equation 2.5:

A�Ẋt
= �A�Xt . (A.8)

Appendix B: Derivation of the Optimal Weight Matrix for Local
Predictive Coding

We first rewrite the mutual information quantities in the objective function
for TLPC in terms of differential entropies:

LTLPC = I (Yt, Xt) − I (Yt, Xt+1) (B.1)

= h(Yt) − h(Yt | Xt) − βh(Yt) + βh(Yt | Xt+1). (B.2)

Here, the differential entropy of a stochastic variable Z is given by h(Z) =
− ∫

Z f (z) log f (z) dz with f (z) denoting the probability density of Z. In
particular, for gaussian variables, the differential entropy becomes

h(Z) = 1
2

log (2πe)d |�Z|, (B.3)

where |�Z| denotes the determinant of �Z and �Z := 〈ZZT 〉t is the co-
variance matrix of Z (Cover & Thomas, 1991). Hence, we have to find the
covariance matrices of the quantities in equation B.2. As Yt = AXt + ξ , we
have �Yt = A�Xt AT + �ξ and �Yt |Xt = �ξ . The last covariance matrix is
obtained as follows:

�Yt |Xt+1 = �Yt − �Yt;Xt+1�
−1
Xt+1

�Xt+1;Yt (B.4)

= A�Xt AT + �ξ − A�Xt;Xt+1�
−1
Xt+1

�Xt+1;Xt AT (B.5)

= A�Xt |Xt+1 AT + �ξ , (B.6)
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where we used Schur’s formula, i.e. �X|Y = �X − �X;Y�−1
X �Y;X, in the first

and last step (Magnus & Neudecker, 1988). Neglecting irrelevant constants
and using that the noise is isotropic, the objective function, equation B.2,
becomes

L = (1 − β) log |A�Xt AT + I | + β log |A�Xt |Xt+1 AT + I |. (B.7)

The derivative of the objective function with respect to the weight matrix is
given by

dL
d A

= (1 − β)
(

A�Xt AT + I
)−1

2A�Xt +β
(

A�Xt |Xt+1 AT + I
)−1

2A�Xt |Xt+1 .

(B.8)

Equating this to zero and rearranging, we obtain a necessary condition
for the weight matrix A:

β − 1
β

(A�Xt |Xt+1 AT + I )(A�Xt AT + I )−1︸ ︷︷ ︸
=:M

A = A�Xt |Xt+1�
−1
Xt

. (B.9)

We will prove that this equation can be solved by filling the rows of
A with adequately scaled versions of the solutions Wj of the following
generalized (left) eigenvalue problem:

Wj�Xt |Xt+1 = λ j Wj�Xt . (B.10)

We first make some considerations on the solutions of the eigenvalue
equation, B.10, and then insert them into equation B.9 to show that this
yields M diagonal. It then becomes clear that there are scaling factors for
the eigenvectors such that equation B.9 is solved.

1. Wj is a left eigenvector of �Xt |Xt+1�
−1
Xt

:

Wj�Xt |Xt+1 = λWj�Xt (B.11)

⇔ Wj�Xt |Xt+1�
−1
Xt

= λWj . (B.12)

2. M is diagonal: The crucial observation for this statement is that the
eigenvectors Wj need not be orthogonal because �Xt |Xt+1�

−1
Xt

is not
necessarily symmetric. The structure of the generalized eigenvalue
equation is such that solutions of equation B.10 with different eigen-
values λ are orthogonal with respect to the positive definite bilinear
form induced by �Xt :

(Wi , Wj ) = Wi�Xt W
T
j = riδi j with ri > 0 . (B.13)
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When there are several eigenvectors with the same eigenvalue, it is
always possible to choose eigenvectors Wi that are orthogonal in the
sense above. Assume that the rows of Aare filled with the eigenvectors
Wj , scaled by a factor α j . With this choice, A�Xt AT + I is diagonal with
diagonal elements r jα

2
j + 1. Right multiplication of equation B.10 with

WT
j yields that A�Xt |Xt+1 AT + I is also diagonal with diagonal elements

r jλ jα
2
j + 1. Thus, M is diagonal with diagonal elements Mj j = r j α

2
j λ j +1

r j α
2
j +1

.
3. Using the above results, equation B.10 becomes[

β − 1
β

λ jα
2
j r j + 1

α2
j r j + 1

− λ j

]
α j Wj = 0 . (B.14)

This equation can be solved only if either α j = 0 or

β − 1
β

λ jα
2
j r j + 1

α2
j r j + 1

= λ j . (B.15)

Rearranging for α2
j yields the normalization stated in proposition 1:

α2
j = β(1 − λ j ) − 1

λ j r j
. (B.16)

Of course, this equation can be solved only if the right-hand side
is positive. Because r j and λ j are positive, this reduces to a relation
between the β-value and the eigenvalues:

β ≥ 1
1 − λ j

. (B.17)

For the eigenvalues that do not fulfill this condition for a given β,
equation B.14 can be solved only by α j = 0. This shows that the critical
β-values as stated in proposition 1 are those where a new eigenvector
becomes available. Moreover, we have now demonstrated that A(β) as
stated in proposition 1 is a solution of equation B.9. Note that in line
with the fact that the objective function of optimization problem 1 is
invariant with respect to orthogonal transformations of the output sig-
nals, any matrix Ã = U A with U−1 = UT is also a solution of equation
B.9. We refer the reader to Chechik et al. (2005) for the proof that A(β)
is not only a stationary point of equation B.9 but also minimizes the
objective function, equation B.7.
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