Programming with Closures for Fun and Profit

G Bordyugov

ITB Meeting on 11.10.2016
What Closures Are

Nothing fancy: Just functions with captured state

```
def makeAdder(y):
    def f(x):
        return x+y
    return f

add5 = makeAdder(5)
add13 = makeAdder(13)

add5(2)  # => 7
add13(13) # => 26
```

Pervasive: R, Python, JavaScript, ..., Clojure

Fifty years old, originating in APL and Lisp
def makeAccount(amount):
 money = [amount]
 def withdraw(x):
 money[0] -= x
 return money[0]
 def deposit(x):
 money[0] += x
 return money[0]
 return withdraw, deposit

withdrawA, depositA = makeAccount(100)
withdrawB, depositB = makeAccount(300)

withdrawA(10) # => 90
withdrawB(100) # => 200
depositB(150) # => 350
Building ODE Models

Solving numerically $x' = f(x, t, a, b, c, d, \ldots)$:

Having lots of parameters in the ODE often leads to

```python
def rhs(x, t, a, b, c, d, ...)  # calculate f of x, t, a, b, c, d, ...
    return f

# x0, t = ...
result = odeint(rhs, x0, t, a, b, c, d, ...)  # look at a particular point
rhs(x1, t1, a, b, c, d, ...)
```
Building ODE Models with Closures

```python
def makeModel(a, b, c, d, ...):
    def rhs(x, t):
        # calculate f of x, t, a, b, c, d, ...
        return f
    return rhs

rhs1 = makeModel(0.1, 0.2, 0.3, 0.4, ...)
rhs2 = makeModel(0.4, 0.3, 0.2, 0.1, ...)

# x0, t = ...
result1 = odeint(rhs1, x0, t)
result2 = odeint(rhs2, x0, t)

# look at particular rhs's
rhs2(x1, t1)
```
Another Numerical Example

Automatic numerical differentiator

```python
def makeDerivative(f, h=0.001):
    def derivative(x):
        return (f(x+h/2.0) - f(x-h/2.0))/h
    return derivative
dsin = makeDerivative(sin);
dsin(pi/2.0)  # => 0.0

myDer = makeDerivative(myBigFunction)
# ...
```

- Here, we capture rather a function (the one to be differentiated) than a state
Memoizing/Caching Functions

- Case: function $f(x)$ takes long time to compute, but happens to be called many times with a small number of different x
- Solution: to memoize (to cache) the results of $f(x)$
- Can be done on the fly using closures
Memoizing/Caching Functions

def memoize(f):
 cache = {}
 def g(x):
 if not x in cache:
 cache[x] = f(x)
 return cache[x]
 return g

f(x) is a "heavy" function
fmemoed = memoize(f)

f(x); f(x) # takes 2x time of f(x)

the second call is for free
fmemoed(x); fmemoed(x)
Concatenating Lists

- Problem: list concatenation can be expensive if the first list is long: In order to do the concatenation \([0, 1, 2, 3, 4, 5, 6, 7, 8, 9] + [1, 2]\), we must go through all elements of the first list.
- Gets worse if we have many concatenations all over the place, the associativity becomes important:

\([0, 1, 2, 3] + ([4, 5, 6]+[7, 8, 9])\)

or

\(([0, 1, 2, 3]+[4, 5, 6]) + [7, 8, 9]\)

- How to ensure the right (as opposed to left) associativity?
- Solution: Difference Lists
Difference Lists

A list is represented by a function that prepends it to a given list

```python
def dlist(x):
    def f(y):
        print("concinc", x, "+", y)
        return x + y
    return f

def show(x):
    return x([])
```

Concatenation becomes a simple function composition:

```python
def concat(x, y):
    def f(z):
        return x(y(z))
    return f
```
Difference Lists

one = dlist([0, 1, 2])
two = dlist([3, 4, 5])

onetwo = concat(one, two)
ootot = concat(onetwo, onetwo)

show(ootot)

> concing [3, 4, 5] + []
> concing [0, 1, 2] + [3, 4, 5]
> concing [3, 4, 5] + [0, 1, 2, 3, 4, 5]
> concing [0, 1, 2] + [3, 4, 5, 0, 1, 2, 3, 4, 5]

Why does it work?