Programming with Closures for
Fun and Profit

G Bordyugov

ITB Meeting on 11.10.2016




What Closures Are

Nothing fancy: Just functions with captured state

def makeAdder(y):
def T(x):
return Xx+y
return f

addb makeAdder(5)
addl3 makeAdder(13)

add5(2)
addl13(13)

Pervasive: R, Python, JavaScript, ..., Clojure

Fifty years old, originating in APL and Lisp




Sharing and Hiding State

def makeAccount(amount):

money = [amount]

def withdraw(x):
money[0] -= X
return money[0]

def deposit(x):
money[0] += X
return money[0]

return withdraw, deposit

withdrawA, depositA = makeAccount(100)
withdrawB, depositB = makeAccount (300)
withdrawA(10)
withdrawB(100)
depositB(150)



Building ODE Models

Solving numerically x'=f(x, t, a, b, c, d, ...):

Having lots of parameters in the ODE often leads to

def rhs(x, t, a, b, ¢, d, ...)
return f
result = odeint(rhs,x0,t,a,b,c,d, ...)

rhs(x1l, tl1, a, b, ¢, d, ...)




Building ODE Models with
Closures
def makeModel(a, b, ¢, d, ...):
def rhs(x, t):

return f
return rhs

rhsl makeModel (0.1, 0.2,
rhs2 makeModel (0.4, 0.3,

OO
N W
OO
el S

| |
[ ] [ ]
[ ]
S’

resultl
result?

odeint(rhsl, x0,
odeint(rhs2, x0,

—~+

rhs2(x1, tl)



Another Numerical Example

Automatic numerical differentiator

def makeDerivative(f, h=0.001):
def derivative(x):

return (f(x+h/2.0) - f(x-h/2.0))/h
return derivative

dsin = makeDerivative(sin):
dsin(p1/2.0)

myDer = makeDerivative(myBigFunction)

e Here, we capture rather a function (the one to be
differentiated) than a state




Memoizing/Caching Functions

e (Case: function f(x) takes long time to compute, but
happens to be called many times with a small number
of different X

e Solution: to memoize (to cache) the results of f(x)

e (Can be done on the fly using closures




Memoizing/Caching Functions

def memoize(T):
cache = {}
def g(x):
1f not x in cache:
cache[x] = f(x)
return cache[x]
return g

fmemoed = memoize(T)
f(x),; T(x)

fmemoed(x): fmemoed(Xx)




Concatenating Lists

e Problem: list concatenation can be expensive If the first
ist Is long: In order to do the concatenation

o, 1, 2, 3, 4, 5, 6, 7, 8, 9] + [1, 2], we
must go through all elements of the first list
e Gets worse If we have many concatenations all over the

place, the associativity becomes important:

[0, 1, 2, 3] + ([4, 5, 6]+[7, 8, 9])
or

(fe, 1, 2, 3]+[4, 5, 6]) + [7, 8, 9]

e How to ensure the right (as opposed to left) associativity?
e Solution: Difference Lists




Difference Lists

A list Is represented by a function that prepends it to a given
list

def dlist(x):
def f(y):
print("concing", x, "+", Vy)
return x + vy
return f

def show(Xx):
return x([])

Concatenation becomes a simple function composition:

def concat(x, y):
def T(z):
return x(y(z))
return f




one
two

onetwo
otot

show(otot)

>
>
>
>

concing |[3,
concing [0,
concing |[3,
concing [0,

Difference Lists

dlist([0O, 1, 2])
dlist([3, 4, 5])

concat(one, two)
concat(onetwo, onetwo)

4, 5] + []

L, 2] + [3, 4, 5]

4, 5] + 10, 1, 2, 3,
1, 21 + [3, 4, 5, 0,

Why does it work?




