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Abstract1

Models of decision making have2

traditionally assumed a rational3

decision maker who will always try4

to maximize the return currency.5

However, various findings breach6

with the idea that decisions are7

made solely on the basis of rational,8

economic principles. One possible9

explanation for this breach is that10

the cognitive process of translating11

perceived values of an option from a12

physical to a cognitive scale happens13

in a nonlinear fashion. In this study14

we analyzed choice behavior in mice15

by investigating reward evaluation16

with respect to the dimensions17

"amount of reward" and18

"propability to receive a reward". To19

this end, we designed a two20

alternative forced choice experiment21

presenting individual mice with22

differently rewarding options using23

water from two water feeders as24

reward. We exposed the mice to four25

contexts with incongruent and26

neutral setups of reward dimension27

parameters to test if noneconomical28
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behavior could be observed. Our29

results show that the mice did not30

use absolute reward evaluation.31

Furthermore, the mice were only32

efficient in making economically33

correct decisions when exposed to34

options that varied in volume but35

not in probability.36

Introduction1

The study of animal decision making2

is a useful method for the study of3

economic decision making in humans4

(Kalenscher and van Wingerden, 2011).5

Traditionally, decision making models have6

assumed a rational decision maker who7

will always opt for the most profitable8

option. In this context, profitability is9

understood as an optimization process of10

maximizing benefits and minimizing costs11

(Schuck-Paim and Kacelnik, 2002). In12

natural environments, options usually vary13

in multiple dimensions. For example, an14

animal might have to decide between a15

foraging option A offering vast amounts of16

food on an infrequent basis and a foraging17

option B offering few amounts of food with18

certainty.19

A common approach that allows20

comparisons between options varying in21
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multiple dimesions is the assumption that22

animals use value based decision making.23

In this model, the decision maker assigns24

weights to each dimension and derives a25

single value for each option. Options are26

thereby reduced to a common currency27

referred to as utility. Assuming a rational28

decision maker this concludes that the29

common currency will be maximized30

within the decision process. In evolutionary31

terms the common currency for an animal32

has been assumed to be Net Energy Gain33

(NEG) or Fitness Level. Therefore, an34

animal will always try to optimize its35

energy intake or reproductive opportunities36

(Stephens and Krebs, 1986).37

However, recent studies have questioned38

the idea that humans and animals use39

rational based decision making. Various40

observations show that humans as well as41

other animals do not always make42

economical decisions (Cnaani et al., 2006;43

Kahneman and Tversky, 1979; Shafir and44

Yehonatan, 2014). To understand how45

noneconomical behavior can be explained,46

it is necessary to look at the cognitive47

aspects involved in the reward evaluation48

process. In order for an animal to evaluate49

rewards by value, it needs the ability to50

store obtained values in memory and it51

needs the ability to discriminate between52

options by the sensory information53

obtained. This requires a translation from54

the physical quantities of a reward to55

cognitive information (Nachev et al.,56

2013a,b). The relationship between physical57

and cognitive scales has been a major58

research area within the field of59

psychophysics and is has been found that60

the translation is often nonlinear (Nachev61

and Winter, 2012). Comparisons between62

options could occur on a physical or a63

cognitive scale which has to be accounted64

for, when forming theories of decision65

making. Context can have a strong impact66

on the value assigned to an option on a67

cognitive scale, while context would not68

affect the physical quantities of an option.69

For example, a food deprived animal70

presented with a specific food reward71

might later prefer this specific reward over72

a food reward of higher caloric potential.73

The information obtained in the food74

deprivation context might have been75

processed in a way so that the animal will76

continue to prefer this reward over other77

more rewarding options in the future. This78

example illustrates, that physical reward79

information are not sufficient to fully80

understand the processes involved in81

decision making. Context-dependent82

reward evaluation has been intensively83

studied in starlings as well as in84

hummingbirds and honey bees (Bateson85

et al., 2003; Kacelnik and Marsh, 2002;86

Pompilio and Kacelnik, 2010; Shafir et al.,87

2002).88

Due to the insufficiency of the absolute89

reward evaluation model, various90

alternatives have been proposed.91

Comparative reward evaluation assumes,92

that animals base their decisions on a93

priority dimension and only use in94

dimension comparisons (Shafir et al., 1993;95

Shafir and Yehonatan, 2014). Comparative96

reward evaluation would explain97

noneconomic behavior because even98

though the animal might take overall99

caloric value into account, its decision100

might differ from the optimal decision due101

to the impact of the priority dimension. For102

example, it was shown that deciding103

beween nectar rewards in bumblebees is104

priorily influenced by sucrose concentration105

rather than by NEG (Cnaani et al., 2006).106

One advantage of comparative decision107

making is that it requires less108

computational effort, thus reducing109
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processing costs which could be beneficial110

for an animal. Comparative and context111

dependent reward evaluation offer possible112

explanations why objectively economic113

behavior is not always observed114

(Kahneman and Tversky, 1979; Shafir et al.,115

1993; Shafir and Yehonatan, 2014).116

Since we cannot directly measure subjective117

cognitive representations of rewards,118

researchers have instead focused on119

measuring behavioral output (Nachev et al.,120

2013b). In order to broaden our knowledge121

of when and how animals behave122

uneconimically, it is necessary to study a123

broad range of species.124

Mice are fairly closely related to humans,125

show similar brain organization and126

economic behavior. Therefore, studies with127

mice could provide valuable insights to128

human decision making processes129

(de Visser et al., 2011; Zschummel, 2014).130

The hypothesis that we test in the present131

study is that mice do not use absolute132

reward evaluation as it has been observed133

in bumblebees, starlings, humans and other134

species. To this end, we designed a135

two-alternative forced choice (2AFC)136

experiment presenting the mice with two137

differentially rewarding options. The138

rewards were provided by two water139

feeders that differed in the probability to140

give water and the water volume of a single141

reward. Naive mice have been observed to142

prefer probability over volume (Nachev,143

personal communication). In the present144

study we used non-naive mice that had145

previously been used in similar146

experiments. Assuming a learned certainty147

of eventual food rewards within the148

laboratory context we expected the mice’s149

preference of probability over volume to150

decrease. We exposed the mice to four151

different contexts creating incongruent and152

neutral parameter conditions. If mice used153

absolute reward evaluation and were able154

to distinguish between the relative155

intensities chosen for each dimension they156

should prefer the option that yielded the157

better average volume output. Each158

condition was tested for one day, followed159

by a reversal to avoid side biases. Our160

results are in accordance with our161

hypothesis and show that mice do not use162

absolute reward evaluation. Furthermore,163

mice decisions were only economically164

efficient when forced to decide between165

options that varied only within the volume166

dimension.167

Methods1

Experimental Setup2

In our experiment we used 8 female3

non-naive laboratory mice of the strain4

C57Bl6/NHsd. The mice, which were 205

weeks of age, had been used for similar6

behavioral experiments before.7

The mice were housed isolated in8

individually ventilated cages (IVCs). Each9

cage contained two water feeders which10

would be activated through nose pokes,11

while the water volume and reward12

probability could be programmed13

individually. The recorded information14

comprise the nose pokes on each feeder,15

together with a time stamp, the duration of16

each event and whether a reward was given17

or not. Further details on the cage setup as18

well as on the handling of the mice are19

found in Becker et al. (2016) and Clos et al.20

(2016). Differing from the experiments21

performed in those studies, we did not add22

any time delay or timeout. We also23

removed any separating walls between the24

feeders as we had observed them to cause25

strong left side biases.26

Our experiment was designed, executed27

3



MB-B55 • Cognition, Behaviour and Evolution • WiSe 2016

and pre-evaluated as a collaborational work28

together with Sophie Leineweber, Falk29

Mielke and Nicola Vallon.30

The experiment was designed so that the31

reward volumes differed between the two32

feeders. However, relative volume33

intensities were kept constant throughout34

the experiment and only the reward35

probabilities were varied instead. For the36

reverse experiments we swapped the37

parameters between the left and right38

feeder. The general idea was to subject the39

mice to four different setups in regard of40

the relative intensity ratio for volume Ir(v)41

and probability Ir(p). In all our setups the42

probability dimension opposed the volume43

dimension so that the greater reward44

volume was combined with the lower45

probability and vice versa. We created three46

incongruent setups, where the Ir(p)47

differed from the Ir(V) and one neutral48

setup where the Ir(p) was equal to the49

Ir(V) (Table 1). The relative intensities were50

calculated on the basis of equation 1.51

Ir(x) =
|x1 − x2|

x1+x2
2

(1)

with x: conditions on the different52

feeders53

We decided on the relative intensities to use54

in accordance with a psychometric curve55

obtained from previous experiments56

(Nachev and Rivalan, personal57

communication), fitted with a Weibull58

distribution (Weibull, 1951) (Figure 1).59

Experimental Schedule60

The mice were split into two groups of four61

mice, participating on our experiment for62

nine days one group at a time. Before the63

actual experiment started, the mice were64

given one day to adapt to their cages,65

without any differences on the reward66

Figure 1: Psychometric function based on which
the relative intensities were chosen. The relative
intensities were chosen to cover the slope of the
function, chosen values are indicated by different
symbols for both used dimensions.

Table 1: Experimental setup, chosen values
for the relative dimensions for volume and
probability.

Ir(V) Ir(p) Ir(p)/Ir(V) Setup

0.8 0.0 0.0 incongruent
0.8 0.5 0.6 incongruent
0.8 0.8 1.0 neutral
0.8 1.1 1.4 incongruent

volume between the feeders and a67

probability of one on both. Afterwards, the68

four setups were applied in a random order69

thus that ascending and descending orders70

of relative intensities were avoided and no71

mouse would get the same setup as another72

on the same day. Each setup was followed73

by its reversal the next day, to avoid side74

biases.75

For the first group of mice, reward76

probabilities between 0.26 and 0.9 were77

chosen. Since we observed a lack of78

learning behavior we lowered the79

probabilities for the second group to values80
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between 0.1 and 0.35, hoping to thereby81

enforce learning behavior. The exact values82

are listed in Table 2.83

Table 2: Values for volume and probability for
both groups of mice

Feeder Volume Group 1 Group 2
[ml] Probability Probability

1 6 0.3 0.15
2 14 0.3 0.15

1 6 0.5 0.25
2 14 0.3 0.15

1 6 0.7 0.35
2 14 0.3 0.15

1 6 0.9 0.35
2 14 0.26 0.1

At 4 pm each day the new set of84

experiments was started, the mice then had85

water access under the listed conditions for86

18 hours, during their nocturnal phase. To87

better understand the behavior of our mice,88

we captured two mice on video under89

infrared light during one night.90

Data Analyses91

We collected and distributed our data using92

an SQLite database (Hipp et al., 2015) as93

well as a GitHub account (GitHub Inc.,94

2015). Data Analysis has been done using R95

(R Core Team, 2015).96

Figure 2: Structure of the database used for data
analysis, which has been set up by Falk Mielke.
The data as well as our analysis are accessible
through GitHub as referenced below.

The collected data can be accessed via97

https:98

//github.com/falkm/mus_oeconomicus.99

The structure of the database is presented100

in Figure 2.101

Results1

Throughout the experiment all mice showed2

strong side biases while the side preferences3

varied for different mice. The alteration of4

the settings for the second group of mice5

even increased those biases. Mathematically,6

we broadly eliminated them by averaging7

over reverse experiments. However it is not8

possible to fully dispose of other influences9

besides the different rewarding options.10

As can be seen on our video footage, the11

mice regularly poked repeatedly at the12

same feeder or sometimes switched freely13

between feeders, as there were no walls to14

hinder them. This behavior has been15

captured on video (see Appendix). In16

consequence we excluded events which17

occurred within a threshold of 4 seconds18

from the prior event.19

Learning behavior20

We had planned to analyse the learning21

behavior by calculating the cumulated22
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water intake over time or trials for the23

different mice under the varying settings.24

However, in the majority of cases, our25

results do not indicate a clear learning26

behavior over one testing period (one day27

each).28

Instead, we did a changepoint analysis,29

using the approach proposed by Gallistel30

et al. (2004), by firstly calculating the31

cumulated sum of events at the feeder with32

the higher water volume (V+) over trials,33

then calculating the change points and34

subsequently the slopes between them35

(Gallistel et al., 2004). A changepoint in this36

context is the point where the behavior37

changes, indicated by a change in the slope.38

It is calculated for each point as the earlier39

point that deviates maximally from the40

straight line between the start of the record41

and the latest point. For this calculation the42

R function "cp_wrapper" from the package43

"cpdetectorr" has been used (Nachev, 2015).44

We applied a binominal test with a decision45

criterion of p=0.15. The slope between the46

last two change points (the last relevant47

slope) was used for further analysis. As an48

event at the feeder V+ counts plus one and49

an event at the feeder V− counts as zero,50

ideally a steep slope would be expected if51

the volume favored side provides the52

(objectively) better option and a flat slope53

otherwise. An exemplary fit is illustrated in54

Figure 3.55

For further analysis, we averaged the56

respective last slopes over those from the57

reversed experiments and then plotted our58

data for the Ir(p) (Figure 4). Even if single59

mice adapted diversely to the different60

conditions, overall no significant variance61

can be detected (using ANOVA, binominal).62

A mean slope around 0.5 indicates that the63

feeders on average had been chosen64

randomly. There is no exception for any65

condition. However, the data are widely66
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Figure 3: Exemplary changepoint analysis with
equal probability on both feeders, cumulated
sum of events at volume favored feeder. In
this case, a change in the mouse’s behavior after
approximately 100 trials can be observed. This
is reflected in the stepwise learning curve.

scattered for any condition that was tested,67

and individual mice reacted differently to68

the same conditions.69

The absence of a clear learning effect in70

conjunction with the strong side biases led71

us to examine the explorative behavior of72

our mice over an expanded period of time,73

supposing they might integrate over longer74

timescales than the duration of one75

experimental setting (one day).76

Therefore, for each day and each mouse, we77

calculated the ratio of events at the less78

frequented feeder to events at the preferred79

one. Then for each day, counting the day a80

mouse started to participate in the81

experiment as day one, we averaged over82

the event ratios from the different mice.83

Figure 5 illustrates how these mean ratios84

changed over the days of the experiment.85

A higher mean events ratio means that the86

mice were more explorative that day. As87

illustrated by Figure 5(a), if averaged over88

all 8 mice, the mean events ratio decreases89

over the days of experiment, meaning that90

the mice explored less over time. In Figure91
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Figure 4: Slope analysis for different Ir(p).
Dots represent single datapoints, each color
represents one mouse. The economical choices
would have been: Feeder V+ for Ir(p) = 0.0
and Ir(p) = 0.5 (slope > 0.5), feeder V− for
Ir(p) = 1.1 (slope < 0.5) and both feeders
equally for Ir(p) = Ir(V) = 0.8 (slope ≈
0.5). Nonetheless no significant variance could
be detected (tested with ANOVA). A mean slope
around 0.5 indicates that the feeders on average
had been chosen randomly.

5(b) and 5(c) the two groups of mice are92

presented separately. Since there were only93

4 mice in each group, no statistical94

approaches can be made for those two95

separate groups. Even so, we wanted to96

examine the behavior of each group97

because the lower probabilities, which have98

been used as parameter settings in the99

second group, might have influenced the100

mice’s behavior crucially. The plots indeed101

indicate that group 1 is mainly responsible102

for the decrease over time in 5(a) while no103

clear conclusion on the explorative104

behavior over time for group 2 is possible.105

All in all, the mean ratios for group 2 are106

lower than in group 1 and the explorative107

behavior possibly even increased over time.108
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(a) Averaged over all mice
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(b) Averaged over group 1
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(c) Averaged over group 2

Figure 5: Exploration behavior over days of the
experimental phase, illustrated by the ratios of
events and their standard deviation. (a) Events
ratio - averaged over all 8 mice - decreases over
the days of experiment. (b) Events ratio averaged
over the 4 mice from group 1, who seem to be
mainly responsible for the decrease over time in
(a). (c) Events ratio averaged over the 4 mice
from group 2. No clear tendency over time, mean
ratios are lower than in group 1.
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Efficiency109

Due to the lack of a clear learning effect, we110

decided against a psychometrical anaysis.111

Instead we calculated the efficiency of the112

mice under the different reward parameter113

conditions, regarding the dimensions114

Volume and Probability as well as the115

combination of the two dimensions,116

Volume×Probability.117

To calculate the efficiencies, we first118

calculated the sum of the infimum,119

supremum and the actual drinking120

performance over the events for volume,121

probability and the combination of both122

(volume×probabiliy). The infimum being123

the lowest possible value the mouse might124

have chosen, the supremum being the125

highest possible value and the actual126

drinking performance being the option the127

mouse actually did choose. We then128

calculated the efficiency index using129

equation 2. A high efficiency index130

indicates that the mice did prefer the better131

option in regard to the chosen dimension, a132

negativ index indicates that the mice133

prefered the other one while an index134

around 0 indicates that the mice treated135

both options equally.136

η(x) := 2× x− in f (x)
sup(x)− in f (x)

− 1 (2)

with x ⊂ {V, p, Vp}137

The results are presented in Figure 6.138

While there is no significant difference in139

the efficiency index, in regard to the140

dimension probability - for each141

Ir(p)/Ir(V) the index stays around 0 -142

there is a difference in regard to the143

dimensions volume and144

volume×probability. The smaller the145

Ir(p)/Ir(V), which means an Ir(p) near 0,146

the more efficient were the mice in regard147

to the dimension of volume, while they148
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(a) regarded dimension: probability
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(b) regarded dimension: volume
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(c) regarded dimension: volume×probability

Figure 6: Efficiencies for different Ir(p)/Ir(V),
regarding (a) probability, (b) volume and (c)
volume×probability. The results indicate that
the mice treat the dimension of probability
randomly and only distinguish for volume if
Ir(p)/Ir(V) ≈ 0. Regarding the combined
dimensions, the mice are highly inefficient, when
Ir(p)/Ir(V) is highest.
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started choosing randomly if the Ir(p)149

increased. Regarding the combined150

dimensions volume×probability this means151

the mice have been efficient for a152

Ir(p)/Ir(V) around 0 but are highly153

inefficient for a Ir(p)/Ir(V) around 1.4154

where the Ir(p) is largest. Nonetheless, the155

data again are widely scattered and single156

mice performed differently.157

Discussion1

Our findings support the initial hypothesis2

that mice do not use absolute reward3

evaluation. If so, they would have been4

expected to choose the altogether more5

profitable option more frequently6

throughout all tested conditions. However,7

as our efficiency analysis shows (see Figure8

6), this was not the case. Not choosing the9

economically correct option more often10

than other options based on a universal11

"currency" has also been observed in other12

species (Bateson et al., 2003; Cnaani et al.,13

2006; Shafir et al., 2002). The universal14

currency to compare different options15

across various dimensions is usually NEG,16

as is the case for our experiments, because17

the mice only eat when having access to18

water.19

Slope analysis revealed that, on average, all20

mice did choose both available reward21

options as if by chance and independently22

from relative intensity of probability. This23

observation was also apparent in the24

efficiency analysis, solely when25

probabilities of both feeders where equal26

did the mice choose the economically more27

profitable option more frequently and thus28

achieved an above average total water29

intake. This behavior implies that, for equal30

probabilites, they were able to discriminate31

between the offered options and identify32

the more rewarding choice. As this was not33

the case for the other settings, we could34

assume that our mice were not able to35

discriminate the offered choices when36

probability came into play. This unability37

could be due either to the introduction of38

another dimension or, in particular, that39

this dimension was probability. However,40

in earlier experiments mice were able to41

differentiate between choices that differed42

in probability (Zschummel, 2014; Nachev43

and Rivalan, personal communication).44

Another explanation for the lower45

efficiencies associated with the probability46

dimension could be that the mice were able47

to discriminate between the offered options,48

but the differences were not relevant to49

them. However, it should seem more50

reasonable to assume that discriminating51

between probabilities rather than differing52

volumes would be important to mice, as the53

water sources encountered in natural54

environments do not require a good ability55

to discriminate volume due to their usually56

large amount of water (Zschummel, 2014).57

Alternatively, the observed behavior could58

have been driven by influences unrelated to59

our setup and thus uncontrollable by us.60

Such influences can rarely be ruled out61

completely when studying mice, as they62

are complex animals, though well-studied,63

and their behavior is often obscure.64

It is noteable that the mice tested in the first65

week explored the offered choices more in66

the earlier days of testing, with an67

increasing side bias towards the end of the68

experimentation phase (Figure 5b). The69

mice tested in the second week were less70

explorative altogether and did not show a71

decrease or increase in their exploration72

behavior over time. The higher exploration73

habit in the mice of week 1 might indicate74

that they integrated the rewards over a75

longer period than one day and came to76

choose one favorite feeder after some time.77

9
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A possible reason for the differing78

exploration behavior between the two79

groups could have been the altered80

conditions. In the first week, the mice81

might not have felt pressured enough to82

choose a preferred feeder, because they83

received sufficient water from both feeders84

regardless of treatment. In the second85

group, however, due to much lower86

probabilities the pressure to select an87

option was considerably higher and88

therefore the mice from week 2 might have89

been forced to reconsider their choice more90

often. Another strategy which could be91

considered influential here is win-stay; a92

more explorative behavior during the93

beginning of an experimental phase, as has94

been observed for the mice from week 1,95

has been found for rats in an earlier study96

(Moustgaard and Hau, 2009). For the mice97

of the second week, which had already98

been exposed to another choice-experiment99

in the prior week, it could be possible that100

they had already developed a win-stay101

strategy during the preceding experiment,102

which they applied in our experiment.103

However, as the mice in general did not104

perform well in discriminating between105

offered options and thus choosing the more106

rewarding one, other factors have to be107

considered. Side preferences were apparent108

in all mice, but do not generally distort the109

results as long as sampling still occured -110

assuming, of course, that the mice based111

their decisions on the used dimensions.112

Still, to reduce side bias and enforce a113

stronger need to choose between options,114

the initial short walls between the nose115

poke-holes could be reintroduced to116

separate each hole and another short wall117

could be added instead of the long wall118

from the initial setup. This way, the mice119

would not be able to just sit in front of the120

feeders and switch between them without121

much effort. Other changes to increase the122

physical effort for the mice to reach the123

feeders could be considered, e. g. placing124

the feeders further apart or making them125

less accessible by placing them higher up.126

This way the mice would have to climb up127

first (which they are able to, as can be seen128

in the video footage) and therefore would129

require much more effort and energy to130

access the feeder, which could presumably131

lead to a greater desire to make the132

economically right choice. Additionally, to133

prevent repeated nose pokes, a delay of134

rewards rather than probability could be135

introduced, or, an activation key added,136

resultinh in the necessity to carry out137

another activity first to activate either one138

of the feeders, e. g. another poke hole139

located somewhere else in the cage.140

Furthermore, future studies should include141

congruent settings, as this might shed light142

on the discrimination ability of mice143

regarding different dimensions. If mice still144

do not perform above average with145

congruent settings, this would mean that146

the lower efficiency for all settings147

including a relative intensity of probability148

over zero in this study, is due to the149

introduction of another (random)150

dimension. Since we do not know if the151

underlying reason for the lacking efficiency152

regarding all settings including a relative153

intensity of probability over zero, is the154

introduction of the dimension ‘probability’155

or only the introduction of another156

dimension, the mice should be tested with157

several different dimensions. To conduct a158

psychometric analysis, both used159

dimensions should be tested with160

congruent conditions, with the relative161

intensity for one dimension set to zero162

constantly, while varying the Irel of the163

other.164

Keeping the mice in single cages could165

10
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have also influenced them in some way; on166

the one hand, they were not in competition167

with other mice for the water rewards,168

which might have led them to decide more169

freely. On the other hand, they could still170

see the neighboring mice through the171

plastic walls of their cages which might172

have had an influence. Furthermore, mice173

are social animals, therefore keeping them174

in single cages might affect their (choice)175

behavior.176

Summary177

As hypothesized earlier, our results show178

that mice do not use absolute reward179

evaluation. To find out, if mice can180

superiorly discriminate volume rather than181

probability or if incongruent conditions or182

the mix of two dimensions blocked the183

ability to discriminate proability, further184

research is necessary.185
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Appendix1

Video2

http://amor.cms.hu-berlin.de/~mielkefa/Sem9/CEB/20151208_165418_Mouse83all.mp43

• At 10:40 repeated nose poking behavior and feeder changing can be observed.4

Source Code5

The relevant source code for this paper accessed through6

https://github.com/Claartje/ceb_paper_1/tree/master/paper/relevant%20Code7

8

The code for the calculation of the mean events ratios is given as an example below:9

10

############### Connection to database - Code from Falk Mielke ###############11

## in this example, the dplyr way is chosen.12

require('dplyr')13

14

##### database connection #####15

## go to the folder of the current file16

setwd(dirname(parent.frame(2)$ofile))17

18

## load the SQL interface helpers19

source('../../database/SimplerSQLQuery.r')20

21

## connect the database, in this case you choose to return a dplyr tbl object22

sql_connection <- SQL_TBL$new(drv = RSQLite::SQLite(),23

dbname = "../../database/data.db")24

if(!sql_connection$connected) print ("something went wrong! no connection.")25

26

# print(sql_connection$tables)27

28

## load the tables with master data29

experiments = sql_connection$LoadTable("Experiments")30

schedule = sql_connection$LoadTable("Schedules")31

days = sql_connection$Run("SELECT day_nr,32

start_date,33

block FROM Days;") # alternative: run an SQL query34

35

## load the data table36

events = sql_connection$LoadTable("Events")37

events$date_time <- as.POSIXct(strptime(events$date_time, "%Y-%m-%d %H:%M:%S"))38

# (unfortunately, SQLite is incapable of reliable date/time handling.39

# Was saved as string.)40

13

http://amor.cms.hu-berlin.de/~mielkefa/Sem9/CEB/20151208_165418_Mouse83all.mp4
https://github.com/Claartje/ceb_paper_1/tree/master/paper/relevant%20Code
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41

mice = sql_connection$LoadTable("Mice")42

43

## when everything's done with SQL:44

sql_connection$Close()45

46

############### Claculate ratio of events - Code from Clara Jongen ###############47

#merge tables48

alldata<-merge(experiments,schedule)%>%49

merge(days)%>%50

merge(events)%>%51

merge(mice)52

53

#Count Number of events54

data<-alldata%>%55

filter(exclude==F)%>%56

group_by(day_nr,mouse_nr,side)57

58

eventsSummary<-summarise(data, length(event_duration_s))59

60

#filter for events on left and right side61

eventsLeft<-eventsSummary%>%62

filter(side=="l")%>%63

group_by(day_nr,mouse_nr)64

65

eventsRight<-eventsSummary%>%66

filter(side=="r")%>%67

group_by(day_nr,mouse_nr)68

69

####Calculate ratio events70

# divide number of events on less prefered side71

# through number of events on prefered side72

73

eventsRatio<-(ifelse(eventsLeft$`length(event_duration_s)`>74

eventsRight$`length(event_duration_s)`,75

eventsRight$`length(event_duration_s)`/eventsLeft$`length(event_duration_s)`,76

eventsLeft$`length(event_duration_s)`/eventsRight$`length(event_duration_s)`) )77

78

eventsRatio<-data.table(cbind(eventsLeft$day_nr,eventsLeft$mouse_nr,eventsRatio))79

names(eventsRatio)[1]<-c("day_nr")80

names(eventsRatio)[2]<-c("mouse_nr")81

82

#split tables for mice of first and second week83

eventsRatio_mice1<-eventsRatio%>%84

14



MB-B55 • Cognition, Behaviour and Evolution • WiSe 2016

subset(mouse_nr==1|mouse_nr==2|mouse_nr==3|mouse_nr==4)%>%85

mutate(day_nr=day_nr-1)86

eventsRatio_mice2<-eventsRatio%>%87

subset(mouse_nr==5|mouse_nr==6|mouse_nr==7|mouse_nr==8)%>%88

mutate(day_nr=day_nr-9)89

90

###calculate mean events ratios91

#for mice of first week92

mean_mice1<-eventsRatio_mice1%>%group_by(day_nr)%>%93

summarise(mean=mean(eventsRatio),94

st_deviation=sd(eventsRatio))%>%95

mutate(lower=mean-st_deviation,96

upper=st_deviation+mean)97

98

#for mice of second week99

mean_mice2<-eventsRatio_mice2%>%group_by(day_nr)%>%100

summarise(mean=mean(eventsRatio),101

st_deviation=sd(eventsRatio))%>%102

mutate(lower=mean-st_deviation,103

upper=st_deviation+mean)104

105

#calculate mean ratio over mice of all weeks106

meanMice<-full_join(eventsRatio_mice1,eventsRatio_mice2)%>%107

group_by(day_nr)%>%108

summarise(mean=mean(eventsRatio),109

st_deviation=sd(eventsRatio))%>%110

mutate(lower=mean-st_deviation,111

upper=st_deviation+mean)112

113

#########Plot Data################114

require('ggplot2')115

116

# Plot for all mice117

118

meanMice %>% ggplot(aes(day_nr,mean)) +119

xlab("Day number") +120

ylab("Mean ratio of events") +121

scale_x_continuous(breaks = 1:9) +122

geom_point()+123

geom_errorbar(aes(ymin = lower,124

ymax = upper))->meanMicePlot125

print(meanMicePlot)126

ggsave( sprintf("meanMice.pdf")127

, plot = meanMicePlot128

15
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, width = 16129

, height = 12130

, units = "cm"131

, dpi = 150132

, device = cairo_pdf133

)134

135

#Plot for mice of first week136

137

mean_mice1 %>% ggplot(aes(day_nr,mean)) +138

xlab("Day number") +139

ylab("Mean ratio of events") +140

scale_x_continuous(breaks = 1:9) +141

geom_point() +142

geom_errorbar(aes(ymin = lower,143

ymax = upper))->meanMice1Plot144

print(meanMice1Plot)145

ggsave( sprintf("meanMice1.pdf")146

, plot = meanMice1Plot147

, width = 16148

, height = 12149

, units = "cm"150

, dpi = 150151

, device = cairo_pdf152

)153

154

#Plot for mice of second week155

156

mean_mice2 %>% ggplot(aes(day_nr,mean)) +157

xlab("Day number") +158

ylab("Mean ratio of events") +159

scale_x_continuous(breaks = 1:9) +160

geom_point() +161

geom_errorbar(aes(ymin = lower,162

ymax = upper))-> meanMice2Plot163

print(meanMice2Plot)164

ggsave( sprintf("meanMice2.pdf")165

, plot = meanMice2Plot166

, width = 16167

, height = 12168

, units = "cm"169

, dpi = 150170

, device = cairo_pdf171

)172
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