

Sensing osmotic stress: A quantitative analysis of the osmoticinduced calcium response in *Arabidopsis* seedlings

Speaker: Philipp Burt (M.Sc. Biophysik, HU Berlin)

Projektmodul: University of California San Diego, Schroeder laboratory

17.05.2017 Berlin

Introduction

Plants are exposed to biotic and abiotic stresses

Stress: Primary receptor \rightarrow Sensor \rightarrow Response

Salt stress reduces water availability

Normal salt conditions

 $\Psi_{Soil} > \Psi_{Root Cell}$

Elevated salt conditions

 $\Psi_{Soil} < \Psi_{Root Cell}$

Salt stress has an osmotic and ionic component

Normal salt conditions

 $\Psi_{Soil} > \Psi_{Root Cell}$

Elevated salt conditions

 $\Psi_{Soil} < \Psi_{Root Cell}$

Perception of salt stress

Deinlein et al., 2014

Osmotic stress and salt stress induce an increase in cytosolic Ca²⁺

- Found in maize, corn, Arabidopsis
- \rightarrow Probably highly redundant
- \rightarrow Analysis might help to detect the channels involved in osmoperception

Knight et al., 1997

osca1 is the first mutant line with an impaired osmotic-induced Ca²⁺ response

Yuan et al., 2014

The molecular basis for plant osmoperception is unknown

Haswell and Verslues, 2015

Aequorin-based Ca²⁺ measurements

Kanchiswamy et al., 2014

Aequorin luminescence experiment

- Grow seedlings in 96-well plate for 7 days in ½ MS with 0.08 % phytoagar
- Incubate in coelenterazine for 6 hours
- \rightarrow Inject 100 µl stimulus into each well
- \rightarrow Measure luminescence
- \rightarrow Normalize aequorin expression

http://www.bio-protocol.org/e1519

Key points

- Ion channels involved in osmosensing are unknown
- Osmosensing probably involves Ca²⁺ signaling
- Osmotic sensors could be mechano-sensitive channels or receptorlike kinases
- osca1 first line with impaired osmotic-induced Ca²⁺ response
- Ca²⁺ can be measured using aequorin luminometry

What are the mechanisms involved in osmoperception?

- Approach: Forward genetic screen
- → Mutagenize Col-0 aequorin expression *Arabidopsis* line
- \rightarrow Luminescence screen for M1 seedlings with reduced Ca²⁺ response
- \rightarrow Select mutant with strongest phenotype
- \rightarrow Repeat with aequorin normalization and high sample sizes

Results

The 9.3CO9K line shows a significantly reduced Ca²⁺ response

Average traces, n = 80 – 96 seedlings per line Stimulus: 300 mM NaCl

Sorbitol and NaCl induced Ca²⁺ responses are impaired in the 9.3CO9K line

Average traces, n = 40 - 48 seedlings per line per condition

Optimization of stimulus osmolarity for luminescence assays

Average traces, n = 40 - 48 seedlings per line per condition

Ca²⁺ peak distribution of individual seedlings

→ Not easily possible to map the Ca²⁺ phenotype causing mutation based on Ca²⁺ Phenotype

Data and figure: Po-Kai Hsu

9.3CO9K seedlings have a root skew phenotype

n = 20 – 30 seedlings per line

FERONIA defective mutants show different root growth patterns and Ca²⁺ signatures compared to WT

Shih et al., 2014

1. Hypothesis: Root skew and Ca²⁺ phenotype in the 9.3CO9K line are caused by the same mutation

 \rightarrow Root skew phenotype was mapped to the bak1 gene (A. Stephan)

Approach: Reproduce root skew phenotype in *bak1* T-DNA lines

1. Hypothesis: Root skew and Ca²⁺ phenotype in the 9.3CO9K line are caused by the same mutation

 \rightarrow Root skew phenotype was mapped to the bak1 gene (A. Stephan)

Approach: Reproduce root skew phenotype in *bak1* T-DNA lines

2. Hypothesis: Root skew phenotype and Ca²⁺ phenotype are caused by a defect in BAK1

Approach: Generate *bak1/Aeq* lines and measure Ca²⁺ response

→ *bak1-3* and *bak1-4* root skew phenotype not reproducible with current setup

 \rightarrow High sample sizes required

→ Phenotype might not be perfectly suited for gene mapping

n = 20 – 30 seedlings per line

bak1-3 and 9.3CO9K complementation test

bak1-3 and *bak1-4* do not show an impaired osmotic-induced Ca²⁺ response

n = 20 – 24 seedlings per line Stimulus: 600 mM sorbitol

Ca²⁺ peak distribution of individual seedlings

Data and figures: Po-Kai Hsu

9.3CO9K root growh is affected by osmotic stress

n = 16 - 49 seedlings per line per condition

Summary

- 9.3CO9K line has a significantly reduced Ca²⁺ response
- 9.3CO9K line has a root skew phenotype
- 9.3CO9K shows reduced root growth when exposed to osmotic stress

Summary

- 9.3CO9K line has a significantly reduced Ca²⁺ response
- 9.3CO9K line has a root skew phenotype
- 9.3CO9K shows reduced root growth when exposed to osmotic stress
- Root skew phenotype might not be suitable for genetic mapping
- Ca²⁺ measurements and root growth experiments implicate that BAK1 might not be responsible for the Ca²⁺ phenotype in the 9.3CO9K line
- \rightarrow Root growth phenotype promising for genetic mapping

Outlook

- Genetic mapping of root growth phenotype in 9.3CO9K line
- Further phenotypical characterization of 9.3CO9K line
- Analysis of 9.3CO9K line with other Ca²⁺ reporters
- osca1 and 9.3CO9K lines might help to reveal channels involved in osmosensing

Further work

Cyclic nucleotide gated channel (CNGC) inhibitors impair the osmotic-induced Ca²⁺ response

CNCG19 and CNGC20 might be involved in the osmotic-induced Ca²⁺ response

Data: A. Stephan

Hypothesis: CNGC19 and CNGC20 together act as osmosensors

→ Use CRISPR/Cas9 to create a CNGC19/CNGC20 double knockout line

1000 bp

References

- Choi, W.-G., Hilleary, R., Swanson, S. J., Kim, S.-H., and Gilroy, S. (2016). Rapid, Long-Distance Electrical and Calcium Signaling in Plants. Annual Review of Plant Biology, 67(1):287–307.
- Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., and Schroeder, J. I. (2014). Plant salt-tolerance mechanisms. *Trends in Plant Science*, 19(6):371–379.
- Haswell, E. S. and Verslues, P. E. (2015). The ongoing search for the molecular basis of plant osmosensing. *The Journal of general physiology*, 145(5):389– 94.
- Kanchiswamy, C. N., Malnoy, M., Occhipinti, A., and Maffei, M. E. (2014). Calcium imaging perspectives in plants. *International journal of molecular* sciences, 15(3):3842–59.

References

- Knight, H., Trewavas, A. J., and Knight, M. R. (1997). Calcium signalling in Arabidopsis thaliana responding to drought and salinity. *The Plant Journal*, 12(5):1067–1078.
- Shih, H.-W., Miller, N., Dai, C., Spalding, E., and Monshausen, G. (2014). The Receptor-like Kinase FERONIA Is Required for Mechanical Signal Transduction in Arabidopsis Seedlings.
- Stephan, A. A. B., Kunz, H.-h., Yang, E., and Schroeder, J. (2016). Rapid hyperosmotic-induced Ca 2 + responses in Arabidopsis thaliana exhibit sensory potentiation and establish involvement of plastidial KEA transporters. *Proceedings of the National Academy of Sciences of the United States of America*, pages 1–29.
- Yuan, F., Yang, H., Xue, Y., Kong, D., Ye, R., Li, C., Zhang, J., Theprungsirikul, L., Shrift, T., Krichilsky, B., Johnson, D. M., Swift, G. B., He, Y., Siedow, J. N., and Pei, Z.-M. (2014). OSCA1 mediates osmoticstress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. *Nature*, 514(7522):367–371.

Acknowledgements

- PD. Dr. Christina Kühn
- Aleksandra Hackel
- Prof. Dr. Julian Schroeder and lab members
- Dr. Jiyoung Park
- Dr. Po-Kai Hsu

Thank You!

Slides and data: <u>https://github.com/burtphil/UCSD</u>

Online aequorin data analysis:

https://burtphil.shinyapps.io/aequorin_luminescence/

Water availability is dynamic

- Soil matrix root hair microenvironment
- → Water availability is different throughout the soil

Stephan et al., 2015

Stimulus	Example of Response	Reference
Red light	Photomorphogenesis	Shacklock et al. (1992)
Abscissic acid	Stomatal closure	McAinsh et al. (1990)
Gibberellin	α-Amylase secretion	Bush and Jones (1988)
Salinity/drought	Proline synthesis	Knight et al. (1997)
Hypoosmotic stress	Osmoadaptation	Taylor et al. (1996)
Touch	Growth retardation	Knight et al. (1991)
Fungal elicitors	Phytoalexin synthesis	Knight et al. (1991)
Cold	KIN1 gene expression	Knight et al. (1996)
Heat shock	Thermotolerance	Gong et al. (1998)
Oxidative stress	Free radical scavenger induction	Price et al. (1994)
NOD factors	Root hair curling	Ehrhardt et al. (1996)

Table 1. Some Physiological Stimuli That Elevate $[Ca^{2+}]_c$ in Plant Cells

Normalization

$$[Ca^{2+}] = 0.332588 (-logk) + 5.5593$$

k: Stimulus luminescence counts / total luminescence counts

Ca2+ peak amplitude is independent of aequorin expression

Luminescence baseline has a uniform distribution

