Ontogeny of Mappings for Invariant Recognition

Urs Bergmann

Computational Developmental Neuroscience 2008
1 Introduction
 - Invariance Problem
 - Retinotopy

2 Prenatal Transformation Emergence
 - Review of a Map Formation Mechanism
 - The Effect of Waves on Correspondence Finding
 - Results

3 Conclusion
The Invariance Problem

Schematic illustration of the invariance problem
The Invariance Problem

Schematic illustration of the invariance problem
The Invariance Problem

Schematic illustration of the invariance problem

Note
- blue and black Ys appear similar
The Invariance Problem

Schematic illustration of the invariance problem

Note
- blue and black Ys appear similar
- but they are orthogonal!
The Invariance Problem

Schematic illustration of the invariance problem

Note

- blue and black Ys appear similar
- but they are orthogonal!
- → recognition must be based on a different representation
Correspondence-based recognition

Visualization of a normalizing transformation

Memory (IT)

Input (V1)
Correspondence-based recognition

Visualization of a normalizing transformation

Memory (IT)

Input (V1)
Correspondence-based recognition

Visualization of a normalizing transformation

- active unit transforms the input in the normalized window
Correspondence-based recognition

Visualization of a normalizing transformation

- active unit transforms the input in the normalized window
- topogographic memories proved to be a viable basis for face recognition \([Wiskott96, Wolfrum2008]\)
Correspondence-based recognition

Visualization of a normalizing transformation

- active unit transforms the input in the normalized window
- topographic memories proved to be a viable basis for face recognition \([\text{Wiskott96, Wolfrum2008}]\)
- → similar to retinotopy
Correspondence-based recognition

Visualization of a normalizing transformation

- active unit transforms the input in the normalized window
- topographic memories proved to be a viable basis for face recognition [Wiskott96, Wolfrum2008]
- \rightarrow similar to retinotopy

Correspondence-based selection of control, e.g. [Wolfrum2008]:

$$k^* = \arg \max_k \left(\sum_o \sum_i w_{koi} O_o l_i \right)$$
Bilinear Models

Bilinear Model

\[O_o = \sum_k \sum_i w_{koi} c_k I_i \]

- information is actively routed \(\rightarrow \) transformations are explicitly accessible \([Grimes2005, Olshausen2007]\)
Bilinear Models

Bilinear Model

\[O_o = \sum_{k} \sum_{i} w_{koi} c_k I_i \]

- information is actively routed → transformations are explicitly accessible [Grimes2005, Olshausen2007]
- dimensionality of control RFs is high
Bilinear Models

\[O_o = \sum_k \sum_i w_{koi} c_k l_i \]

- information is actively routed \(\rightarrow\) transformations are explicitly accessible [Grimes2005, Olshausen2007]
- dimensionality of control RFs is high
- local minima might disrupt learning
Bilinear Models

Bilinear Model

\[O_o = \sum_k \sum_i w_{koi} c_k l_i \]

- information is actively routed → transformations are explicitly accessible \([Grimes2005, Olshausen2007]\)
- dimensionality of control RFs is high
- local minima might disrupt learning

→ Prenatal organization of object-independent transformations is advantageous
Modulation Hypothesis

A tripartite synapse

Implementation of Modulation

- astrocytes modulate synaptic transmission [Haydon2001]
Modulation Hypothesis

A tripartite synapse

Implementation of Modulation

- astrocytes modulate synaptic transmission \[Haydon2001\]
- specific locust neurons perform a multiplication \[Gabbiani2002\]
the retino-cortical pathway is organized prenatally

Figure: Retina-Cortex Wiring
[Hubel88]
the retino-cortical pathway is organized prenatally

mapping: topology of the retina is preserved in primary visual cortex

Figure: Retina-Cortex Wiring [Hubel88]
the retino-cortical pathway is organized prenatally
mapping: topology of the retina is preserved in primary visual cortex
two classes of proposed mechanisms:
1. chemoaffinity based [Sperry63]
2. activity based [Willshaw76]
the retina-cortical pathway is organized prenatally
mapping: topology of the retina is preserved in primary visual cortex
two classes of proposed mechanisms:
1. chemoaffinity based [Sperry63]
2. activity based [Willshaw76]
evidence for both! [Huberman2008]
Review of a Map Formation Mechanism

Weight Interaction Matrix

Emerging Weight Matrix

- Competition enforces 1-1 mapping
Review of a Map Formation Mechanism

Weight Interaction Matrix

- Competition enforces 1-1 mapping
- Cooperation encourages neighbors
Review of a Map Formation Mechanism

Weight Interaction Matrix

\[\dot{w}_{oi} = \alpha + F_{oi} w_{oi} - w_{oi} B_{oi}(\alpha + FW) \]

\[B_{oi}(X) = \left(\sum_{o'} x_{o'i} + \sum_{i'} x_{oi'} \right) / 2N \]

- Competition enforces 1-1 mapping
- Cooperation encourages neighbors
Multimap Formation

Necessary ingredients for multimap formation

1. Competition within a map
2. Cooperation in the proximity of each point within the map
Necessary ingredients for multimap formation

1. Competition within a map
2. Cooperation in the proximity of each point within the map
3. Competition between several maps
The effect of prenatal waves on correspondence finding

Retinal waves [Feller96]

Unstructured Memories

- assume unstructured memories:

\[O_o = \text{const. } \forall o \]
The effect of prenatal waves on correspondence finding

Retinal waves [Feller96]

Unstructured Memories

- assume unstructured memories:

\[O_o = \text{const. } \forall o \]

- then

\[c_k = \sum_{o,i} w_{koi} l_i O_o \propto \sum_{o,i} w_{koi} l_i \]
The effect of prenatal waves on correspondence finding

Retinal waves [Feller96]

Unstructured Memories

- assume unstructured memories:
 \[O_o = \text{const.} \quad \forall o \]

- then
 \[c_k = \sum_{o,i} w_{koi} I_i O_o \propto \sum_{o,i} w_{koi} I_i \]

- together with WTA mechanism → input-based competition
The effect of prenatal waves on correspondence finding

- Retinal waves [Feller96]

- Unstructured Memories
 - assume unstructured memories:
 \[O_o = \text{const.} \forall o \]
 - then
 \[c_k = \sum_{o,i} w_{koi} I_i O_o \propto \sum_{o,i} w_{koi} I_i \]
 - together with WTA mechanism → input-based competition
 - size variance [Warland2006] of retinal wave active regions imposes various transformation parameters
The model

Algorithmic Description

- generate input at a random position
- determine best fitting control unit $k = \arg \max_{k'} \left(\sum_{o,i} w_{k'oi} l_i \right)$
- change weight matrix:

$$\dot{w}_{koi} = \alpha + F_{oi}w_{koi} - w_{koi}B_{oi}(\alpha + FW_k)$$

$$B_{oi}(X) = \left(\sum_{\tau'} x_{o'i'} + \sum_{i'} x_{oi'} \right) / 2N$$

- where the input cooperation matrix is modulated by the input activity:

$$F = C^0 W(C^I \ast I)^2$$
Wave-driven Model

Inputs

Initial Conditions
Wave-driven Model

Inputs

$t = 150$
Wave-driven Model

Inputs

![Graphs of input functions at different times](image)

Output at t = 24000

![Graphs of output functions at time t = 24000](image)
Quantification of the Results

Definitions

- Input-Control Specificity is the (highest) winning probability a control unit has given an input:

$$\left\langle \max_c p_{\text{win}}(c|\text{input}) \right\rangle_{\{\text{input}\}}$$
Quantification of the Results

Definitions

- Input-Control Specificity is the (highest) winning probability a control unit has given an input:

 \[
 \langle \max_c p_{\text{win}}(c|\text{input}) \rangle_{\{\text{input}\}}
 \]

- Synaptic Standard Deviation is the width from which an output gets input:

 \[
 \text{ssd} = \langle w_{koi} \left(r_i - \sum_{i'} w_{koi'} r_{i'} \right)^2 \rangle_{\{k,o,i\}}
 \]
Quantification of the Results

Specificity

![Specificity Graph](image1)

Synaptic Standard Deviation

![Synaptic Standard Deviation Graph](image2)
Wave-driven 2D Results

Weight projection

Projection of Control Unit 1
Projection of Control Unit 2
Projection of Control Unit 3
Projection of Control Unit 4

Synaptic Standard Deviation

Mean Standard Deviation
Invariance transformations can be organized prenatally
Can be understood as learning before eye-opening
Necessary competitions between maps emerge from wave inputs
Model generalizes to higher dimensions
Acknowledgements

Thanks to my group:

Christoph von der Malsburg
Junmei Zhu
Jörg Lücke

Philipp Wolfrum
Jenia Jitsev
Yasuomi Sato
Acknowledgements

Thanks to my group:
Christoph von der Malsburg
Junmei Zhu
Jörg Lücke
Philipp Wolfrum
Jenia Jitsev
Yasuomi Sato

Thank you for your attention!