

Theoretical Biology Modeling

Prof. Hanspeter Herzel Dr. Anmar Khadra Dr. Pål Westermark Adrián E. Granada Lecture: Monday 08:15 H12 Exercises: Day? time? hr

itb.biologie.hu-berlin.de/~granada/teaching/

1. Exercise

Hand out: 20.10.08, Hand in: 27.10.08, in the lecture

1. Radioactive Decay.

A radioactive compound decays to 10% after 46 days.

- 1. Please calculate the half-life!
 - (a) When has 99% decayed?
 - (b) What isotope is it?
- 2. In a biochemical system a concentration c is given by:

$$\frac{dc}{dt} = k_1 - k_2 c$$

- (a) Calculate the steady state!
- (b) What is the temporal solution of this differential equation?
- (c) The following measurements are given.

Time	1	2	3	4	5
Concentration	2.2	2.9	3.3	3.6	3.8

Plot these time series data!

- (d) Estimate the rate constants k_1 and k_2 .
- (e) What has to be plotted in order to apply linear regression?

3. The yield of an ecosystem.

The yield of an ecosystem can be analyzed by means of a model of a single species. The equation for logistic growth is then modified to include a yield term E:

$$\frac{dx}{dt} = r \cdot x \cdot \left(1 - \frac{x}{K}\right) - E.$$

The yield is considered to be proportional to the population size x, according to: $E = a \cdot r \cdot x$, with a > 0.

- (a) Please calculate the steady state(s) and analyze their stability!
- (b) Please calculate the stationary yield, E^{st} . State the maximal stationary yield as a function of a.