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Next step: Structure in space
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BZ reaction in immobilized catalyst JN©)
http://www.youtube.com/watch?v=3]AgrRnKFHo @ A\
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figure from the original

| | . . Belousov’s paper
spatial structures in the BZ reaction with non-stirred reactants

u(t) — u(z,y,t),

v (t) = v(z,y,t)
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Rayleigh-Benard convection

£ N N TR o O |

00000

Equilibrium Conducting solution, Rolls emerge
macroscopically if temperature diff
fluid is not moving is too high

Our “observable” is the vertical velocity of the liquid v(z, 2, t)




Rayleigh-Benard convection

Benard convection in heated silicone oil
http://www.youtube.com/watch?v=nfvHIfzZVnt0
Main idea: due to the interplay of different
processes, the homogeneous state can become
unstable and a new structure can emerge
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Alan Turing on morphogenesis

THE CHEMICAL BASIS OF MORPHOGENESIS

By A. M. TURING, F.R.S. Unwersity of Manchester

(Received 9 November 1951—Revised 15 March 1952)

It is suggested that a system of chemical substances, called morphogens, reacting together and
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis.
Such a system, although it may originally be quite homogeneous, may later develop a pattern
or structure due to an instability of the homogeneous equilibrium, which is triggered off by
random disturbances. Such reaction-diffusion systems are considered in some detail in the case
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http://www.dna.caltech.edu/courses/cs191/paperscs |91 /turing.pdf
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Somite formation in zebrafish

http://www.youtube.com/watch?v=|mLhEd73jRw
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Spiral waves in human heart
can cause arrhythmias
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Computer simulation
of human heart by A Panfilov et al




What we have learned:

* structures and patterns are ubiquitous in the (living) nature

* they can spontaneously emerge from homogeneous states
under homogeneous conditions

* one obviously needs a more involving mathematics to
describe temporal evolution of spatial structures, ODEs are
not enough :-(

* modeling of spatio-temporal structures hence needs:
* more mathematics (PDEs instead of ODEs)
®* more computer power

* better resolved experimental data to compare to (for
instance, a normal ECG cannot resolve the spatial structure
of the heart activity)




Example of PDE:

VWWave equation in |d
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string profile: u = u (z, t) uAJ / IV f(x—c-2)
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wave running down the string with a speed ¢

any function in the form of u (x,t) = f (x — ct)

will be a solution to the wave equation. Indeed:

uge = (f (& — ct))y,, = (—cf’ (x — ct)), = S f" (x — ct)
Uze = (f (& — ct)),, = (f' (x —ct)), = " (z — ct)




Heat equation in 2D

Since the observables depend on both time and space, PDEs
involve (higher-order) partial derivative with respect to
them, for example, the heat equation:

ou 0*u
ot

temperature at (x,y) at momentt: u = u (x, y, t)
initial condition at t=0 is a function:

’UJ(aB,y,tZO) — UQ (w,y)




Reaction-diffusion systems (RDS)

f(u) describes the local reaction kinetics, can be nonlinear!
Du..,. describes the diffusion of u, D - diffusion coef.

U large negative

U SMmall negative

U SMall negative

U large positive

the role of diffusion in smoothening out the inhomogeneities



Fronts in RDS
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f (up,1) = 0 homogeneous stable steady states

wave of transition between _ il
> AR RE e S
two otherwise stable states propagation of fire fronts

the front profile and its speed doesn’t depend on the initial conditions!!!




nerve
terminal —

cell © axon (less than terminal

body dendrites 1 mm to more
than 1 m in length) g;"a'}%';,es

v - the recovery (slow)
variable




Spiral waves
in 2D Barkley model

PHYSICS TODRY
up =€ u(l—u)(u— (v+b)/a)+ Au, pm——

e <K 1 time-scale separation

a,b parameters

spirals come in two flavors:
rigidly rotating
and meandering




Questions about spirals

How their rotational frequency is chosen?

The reason spirals don’t care about
boundaries being hon-localized

Why they start to meander
Inward/outward meander

3D scroll waves




Symmetries

(a)

(b)
()

another Pictu re Fig. 5.7. Greyscale plots of some solutions on the hexagonal lattice: (a) rolls,
(b) up hexagons, (¢) down hexagons, (d) up rectangles, (e¢) down rectangles,

Of Benard Cel I S (f) patchwork quilt, (g) triangles and (h) regular triangles.

(e

a priori knowledge of the problem symmetries can
help to predict the emerging pattern




Numerics for PDEs

* even stiff ODEs can be solved by brute force with small time
steps, this doesn’t apply to PDEs. For example, the explicit
Euler scheme for the simplest PDE u; = u is unstable, no
matter how small your time step is.

e implicit schemes (backward Euler or Crank-Nicolson) are
needed, they involve heavy linear algebra calculations: solving
linear systems with large number of unknowns

* you are happy if doubling the number of grid points just
doubles your computation time (and not multiplies it by four
or eight, as it often is the case)

* much fewer standard tools for numerical analysis, full-scale
bifurcation analysis software must be hand-coded
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modern computer simulation

from original paper by A Turing




Turing instability

Ut — .f (’LL, ’U) + Duua:azv

Suppose that u = v = 0 is a steady state without diffusion:
f (0,0) =g (0,0) =0

Can diffusion (smoothening process by itself) lead to an
instability of the zero steady state!




Turing instability

Now concentrate on small perturbation of the zero steady state

ul, |[v] <1

F (u,v) = f(0,0) + fu (0,0) u+ f, (0,0) v,
— —

—0 def def
—a — —b

g (u,v) =g(0,0)+g, (0,0)u+ g, (0,0) v

=0

Taylor expansion of the first order at (u,v) = (0,0)




Turing instability: linearized Eqgs

close to the steady state we have

ur — au — bv + Dy ug,,

ve = cu —dv + D,v,,

stability without diffusion:

au — bv, B - B .
u (t) = upe?", v (t) = voe

a— d -

O —

by the imposed stability w/o diff ==> a < d, ad < bc



Turing instability: linearized Eqgs

solution Ansatz:

U (33, t) — uoeikm—|—at’

ikx+ot

ur — au — bv + D,ug,,

v = cu—dv+ D,v,,

v (x,t) = voe

Ozt (T,1) = —k2uge™* 1ot

ug\ (a— Dy k? —b Uo
vo ) C —d — D, k? Vo
\_
results in the characteristic equation for O:
0° + 0 ((Dy + Dy)k?* —a+d) -
+ (Dyuk® — a) (Dyk® + d) -

product of roots is given by the free term:
h (kz) = (Duk2 — a,) (kaz + d) + bc




Turing instability:
the critical wave number

h (k*) = (Dyk* — a) (Dyk* + d) + be

A

critical condition:

| (dD,, — aD,v)2 . p
— bc — a
instab 4D,, D,

. critical wave number:
J.2 . 1 a d
k? = —
© 2\ D, D,

minimal value of h:

(dD,, — aD,)?
hoin = 1D D ad -+ bc




Turing instability:
the dispersion relation

A
band of unstable modes band of unstable modes

solution Ansatz:

U (.’L‘, t) — uoeikm—l—at’

ikx+ot

v (x,t) = vge

wt ] T

modes with wave
k = kc: numbers close to the

=~ l A l critical one grow,
‘v A * A - others decay, thus a
" \ preferred wavelength
of the pattern is
' ' '

selected




Turing instability: Conclusions

* contra-intuitively, diffusion can result in an instability with a
characteristic wave length

* linear stability analysis can predict this length scale

* beyond instabilities, further analysis is needed (reduced
equations for the amplitude of the emerging mode, expansions
in higher-order terms)




