L ast lecture overview

® Many phenomena are spatially extended: Structures,
spatio-temporal patterns

Need PDEs to model - more involving mathematics and
numerics

Spatial structures with characteristic length scale can
spontaneously emerge even in spatially homogeneous
environments, example: Turing instability




Turing instability

two interacting and diffusing species dispersion:
uy = f(u,v) + Dy, d(k,o0c) =0
Ut — g (’LL, ’U) + Dyvgy ot

band of unstable modes | band of unstable modes

homogeneous steady state (HSS) k

u=0,v=0 //”\\\

perturbation about HSS

u (x,t) = 0+ uge** Tt

v (x,t) = 0 + voe'F* Tt




Turing instability: Length scales

linearized eqs

ur — au — bv + D, uy,,

v = cu — dv -
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Turing instability:
Activator-Inhibitor interaction

linearized eqs

< Ly <y

ur — au — bv + D, uy,, D,,
a

D,
d

v = cu —dv + D,v,,

a,d >0 activator has a smaller diffusion length:

locally:
u activates itself, whereas

v inhibits itself:
activator-inhibitor system

Due to the difference in the diff coeffs, experimentalist had
hard time finding a laboratory example of the Turing instability.
Solution: immobilize activator in a gel, thus decreasing its

diffusion length

short-range activation
+

long range inhibition




Homogeneous Hopf instability

Imo. #0

Example:
zt = (A + iw) — |2|?) 2 + 2ge
dispersion:
o=+ iw—k*

emergence of spatially homogeneous oscillations




Turing-Hopf (a.k.a. wave)
instability

Re o a Reo. =0, k:.#0, Imo.#0
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Instabilities of HSS

emerging

Im o
° pattern

Turing Imo. =0 |stationary wave

Hopf Im o, # 0 homqgeqeous
oscillation

Turing-Hopf T 0 running wave
(wave) moe 7 with speed




Fronts in

two stable HSSs

f(ug) = f(u1) =0

wave of transition between
two otherwise stable states

istable RDSs




Fronts in bistable RDSs
t f (u)
uy = f(u) + Ugpy f (up1) <O

moving coordinate
z=x —ct

partial derivatives:

diu (x —ct) = u, - 2y = —cu,
N ——

bistable kinetics f(u)

p
Oz (x — ct) = U, - (zf,[,)2 = U,
N —

=<

—cu, = f(u)+uz = Uy, +tcu,+ f(u)=0

equation for a particle moving in force field -f(u)!
Z is our new “‘time”




Fronts in bistable RDSs
Af (u), F(u)

Uzz—|—CUz—|—f(’lL):O

Newton’s 2nd law:
Uyry — —CUx — f (’U,)

potential F(u) F’ (u) = f (u)

bistable kinetics f(u)

¢ - friction coeff .
and potential F(u)

boundary conditions:

u(z = —o0) = ug,

u(z = 00) = uy

Uo

can be satisfied with just one value
of friction c !!!




Fronts in bistable RDSs

uzz+cuz+f(u)20

Usothy + ¢ (uy)’ 4+ f(w)uy, =0




Excitable media
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“La Ola” Wave Computer simulation




Excitable media

(¥
g(uav) =0

1
_f (uv ”U) + Uz, € — 0
€

g (u,v)

u: |/e-fast activator variable
v: slow inhibitor variable




Upstroke and downstroke

front velocity
as function of v

downstroke front upstroke front



Solitary pulse

downstroke

upstroke

>

how the v value of the pulse back is chosen




Periodic pulse trains

T

upstroke

Period of wave train
determines its speed




Periodic pulse trains

downstroke

Period of wave train
determines its speed

(nonlinear) dispersion:

c=c(T) or c=c(L)




Dispersion of Pulse Trains

Ly

normal dispersion anomalous dispersion




Interaction of pulses

c(L) < coo
(L)
L

<€

Ly

anomalous dispersion, bound states possible!



Overview

One-component bistable RDS - connecting fronts, unique
front profile and propagation speed

Two-component RDS - excitability pulses which consist

of up- and downstroke, also unique profile/speed for
solitary pulses

Pulses are obtained by connecting two fronts together
and exploring time-scale separation

Periodic pulse trains are characterized by dispersion




