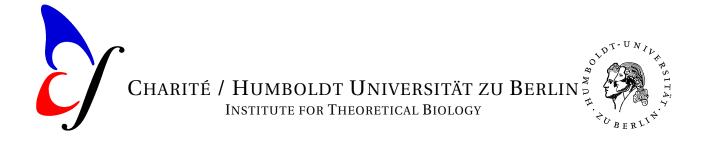


Prof. Hanspeter Herzel Dr. Karsten Jürchott Institute for Theoretical Biology D-10115 Berlin email: h.herzel@biologie.hu-berlin.de email: karsten.juerchott@charite.de Tel: +49 30 2903 9106 / 6044 Fax: +49 30 2903 8801

MODULE IV - BIOINFORMATICS: ASSIGNMENT 2


Please email (recommended) your solutions to karsten.juerchott@charite.de until Thu, May 5, 24:00 or return as hard copy at the beginning of the lecture.

1. Sequence statistics

What is the probability to find the motif ANRCTGSC in a Bernoulli sequence $(p_i = 1/4)$? How many such motifs are expected in 100 kb? What is the standard deviation?

2. Exons and Introns

- Could the sequence AAGCCTGGAACTACG be part of an open reading frame? If it could, which amino acids might be encoded? Hint: http://130.14.29.110/Taxonomy/Utils/ wprintgc.cgi?mode=t#SG1
- Could you find this sequence in human using BLASTp? How many entries did you find? http://www.ncbi.nlm.nih.gov/blast/?
- How many times this sequence is expected in a Bernoulli sequence $(p_i = 1/4)$ of length 1000000000 base pairs (1 Gb)?
- Determine the nucleotide frequency (A,C,G,T) for the following sequences within all three positions of a putative reading frame (Hint: You may use R):
 - Sequence A, follow the link: http://j.mp/ifNNaE
 - Sequence B, follow the link: http://j.mp/gXjItZ
- Determine the percentage of relative nucleotide frequency p_i , i = A,C,G,T of sequence B. Normalize the 3 × 4 table for sequence B to 100% per position. Which are the three highest deviations to the corresponding p_i ? Which of these deviations to an equal distribution are significant? Which sequence might be protein coding?
- Create and run an R script to determine the position asymmetry (PA) for sequences A and B.

2. Alignment on the Internet

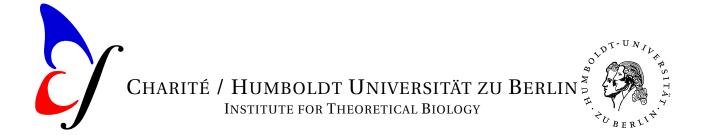
Use SIM http://www.expasy.ch/tools/sim-prot.html - an alignment tool for protein sequences on the ExPASy server http://www.expasy.ch/tools to produce a local alignment of sequencies

- Sequence 1: QTSYREIVLSYFSPNSNLNQSIDNFVNMAFFADVPVTKVVEIHMELMDEFAKKLRVE Sequence 2: IDAVIFILALFPLPIASSALFAASITFVEIHMDLIDAFWQQFRLE
- Use PAM40 matrix and gap open penalty GOP=10 and gap extension penalty GEP=3.
- How is the score and the second best alignment changing, if for GOP=10 and GEP=3 the scoring matrix is changed from PAM40 to PAM250 to PAM400? What is changing if GOP<10?

4. Exact matching-search

- How many entries can be found for the sequences PEPTIDE and SEVERAL in UniProtKB database located at PIR DB http://www-nbrf.georgetown.edu/pirwww/?You might use the tool "peptide search".
- Is there a membrane protein, which contains the sequence CHANNEL or KANAL (e.g. a transporter)?

5. BLAST-Search


During sequencing the following sequences were detected: MSSEAETQQPPAAPPAAPALSAADTKPGTTGSGAGSGGPGGLTS and

 ${\tt AGCAGACATTTTATGCACCAAAAGAGAACTGCAATGTTTCAGGACCCACAGGAGCGACCC}$

- From where these sequences might originate? Go to NCBI http://www.ncbi.nlm.nih.gov/and run a basic BLAST sequence search http://www.ncbi.nlm.nih.gov/BLAST/.
- How the E-value and the score associated with each hit can be interpreted?
- What does tBLASTx mean?
- To which phylum the sequences belong to?

6. FASTA-Search

Search for homologs to the following endonuclease by using the FASTA3 tool http://www.ebi. ac.uk/fasta33/ on EBI. The endonuclease sequence in FASTA format is available at http: //j.mp/e7lFYV The sequence has a length of 279 amino acids and might be aligned by using FASTA3:

- against SwissProt DB,
- against USPTO Patents DB.
- Write down the gene names of the given and the homologous endocucleases, EC numbers, origin / organism as well as restriction sites.

7. Information on IUPAC and IUBMB

What organisation is responsible for nomenclature for chemistry and which for biochemistry http://www.chem.qmul.ac.uk/iupac/jcbn/?

What do the letters B, W, X, Y, Z stand for (IUB one letter code for amino acids http://www.chem.qmul.ac.uk/iupac/AminoAcid/A2021.html#AA21)?

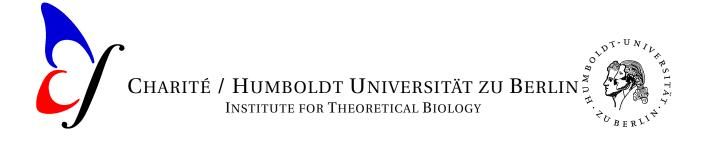
8. PubMed

In recent years, evidences arise for hereditary predisposition of the Parkinson's disease. Find out with the help of PubMed http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB= pubmed search (keywords: parkinson risk genetic), what noticeable problems and correlations were described (negative risk factor). What proteins seem to be mainly involved?

9. CLUSTALW

Calculate by using the CLUSTALW server in Japan http://align.genome.jp/ a multiple alignment and a phylogenetic tree for the sequences. Take the following five sequences for the alignment:

> seq1	> seq2	> seq3	> seq4	> seq5
armerhase	hasenbraten	arsenbraten	arsenhase	rasenhase


- What kind of data format is used above?
- Which are the two most related sequences in terms of scoring?
- How could one comment an entry out of the CLUSTALW output http://align.genome. jp/clustalw/clustalw_help.html#output_format?
- Is it a local or global alignment?
- Add the sixth sequence

```
> seq6
armerdummerhase
```

Why now is the left alignment is favored over the right one, which does not look worse:

seq1AR-MER-HASE-	seq1 ARMERHASE-
seq6 ARMERDUM-MER-HASE-	seq6 ARMERDUM-MER-HASE-

• How one might interpret both outputs and how the data format is called?


```
((s1:0.19444,s4:0.02778):0.11111,
(s2:0.09091,s3:0.09091):0.24242, s5:0.22222);
```

and

```
(((s1:0.06987, s6:0.15236) :0.14205, s4:0.08018) :0.05871,
(s2:0.09091, s3:0.09091) :0.24558, s5:0.21907);
```

10. Sequence Retrieval System (SRS)

- a) Create a dataset which contains all entries for MAP2K1 and MAP2K2 at Uniprot DB by using SRS http://www.ebi.ac.uk/uniprot/search/SearchTools.html.Note the numbers of entries for MAP2K1 and MAP2K2.
- b) Save the results for MAP2K1 only as a text file on hard disc (choose FastaSeq format).
- c) Take the mammalian entries for MAP2K1 and save them into a second text file (organism: mammalia).
- d) Save the results for MAP2K1 and MAP2K2 together in a third text file.

11. Construction of multiple alignment and tree for protein data

- Construct by using data of 10 b) a multiple alignment with CLUSTALW. Take default parameters for the alignment.
- Select and execute N-J-tree in the Selection menu at the end of the CLUSTALW output for the construction of a phylogenetic tree.
- Repeat first two steps with the data from 10 c).
- Repeat first two steps with the data from 10 d).
- Describe the differences in the trees shortly.
- Display (and refine) the trees graphically by using iTOL (http://itol.embl.de).