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Abstract
A model of novelty detection is developed which is based on an oscillatory
mechanism of memory formation and information processing. The frequency
encoding of the input information and adaptation of natural frequencies of
network oscillators to the frequency of the input signal are used as the
mechanism of information storage. The resonance amplification of network
activity is used as a recognition principle for familiar stimuli. Application of
the model to novelty detection in the hippocampus is discussed.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

Current opinion about information processing in the brain presumes that biological memory
systems constantly make decisions concerning the storage of incoming information (Squire
1992). One important attribute for deciding whether information should be stored or not is its
novelty to the organism. Novelty detection gives a living organism the possibility of avoiding
storage of redundant information and concentrating on processing new stimuli, which may be
important for survival.

Novelty detection can be thought of as a differential response of some parts of the brain to a
stimulus depending upon the relations between the incoming and previously stored information.
One well-known manifestation of novelty detection is the change in activity in the hippocampus
during the orienting response (Sokolov 1975, Vinogradova 1995). The long (tonic) theta
activity that appears in the hippocampus after presentation of a new or significant stimulus is
changed to a short (phasic) reaction during repeated presentations of the same stimulus. This
process is referred to as habituation. An important fact is that the tonic reaction is immediately
restored when a stimulus with different characteristics is presented.
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Recently, Borisyuk and Hoppensteadt (1998, 1999) developed an oscillator network model
of memory formation in the hippocampus. The model network is a chain of locally coupled
oscillators that receive two periodic input signals coming from two brain structures (the
entorhinal cortex and the medial septum). The dynamics of the network is determined by
phase relations between input signals. Depending on these relations, particular regions of the
network are activated by a stimulus, and the memory is created through Hebbian modification
of connections between oscillators.

Our model inherits the idea that memory storage is controlled by phase relations between
several input signals, but this idea is generalized in two respects. First, we consider multi-
dimensional input signals (the dimension is more than two) with random phase shifts. This
results in sparse distribution of high activity in the network during each stimulation and hence
in sparse distributed coding of stimuli in the network memory. Second, different stimuli
are supposed to be coded at the input by signals of different frequencies. This restricts the
population of oscillators participating in coding a stimulus to those oscillators whose natural
frequencies are similar to the frequency of the input signal. Thus, the memory in the network
appears as a result of the transformation of a time–frequency code at the input of the network
into a space–frequency code in the network memory. In addition, the following new features
appear in the model:

• memory storage by appropriate modification of natural frequencies of oscillators;
• memory retrieval by resonance of network oscillatory activity in response to an external

input.

The idea of learning and memorizing by forming an ensemble of frequency-tuned
oscillators is traditional in the field of oscillatory neural networks. This mechanism is
hypothesized to be one of the general principles of information processing in the brain
(Singer and Gray 1995). While connectionist theory assumes that an ensemble of synchronous
(in-phase) oscillators is formed via strengthening connections between the oscillators in the
ensemble, we suggest an alternative mechanism of memorization through adaptation of natural
frequencies of oscillators. We suppose that the input signal synchronizes the activity of some
oscillators in the network, resulting in a ‘learned’ pattern; that is, some oscillator frequencies
are gradually tuned by network dynamics to the frequency of the input signal. Eventually, a
population of recruited oscillators, now having identical dynamical properties, is formed.

The hypothesis that adaptation of oscillation frequencies in the brain can be used as a
learning mechanism appeared in the neurophysiological works of Ukhtomsky and his school
(Ukhtomsky 1978) and John (Thatcher and John 1977). Some neural network implementations
of this mechanism have been suggested by Torras (1986) and Hoppensteadt (1992).

The important feature of such oscillatory memory is that memory formation in a network
of N oscillators requires only N modifiable parameters (these are the natural frequencies
of oscillators). Note that the number of modified parameters (adjustable connections) in a
Hopfield network of associative memory is about 0.5 ×N2.

Another component of our model is a frequency resonance between the input and some
network oscillators. Suppose that oscillatory signals of the frequency ω are channelled in
parallel with different time delays to a set of oscillators working with a variety of natural
frequencies, so that each oscillator receives n signals. Those oscillators whose input signals
arrive approximately in-phase and whose natural frequencies are near ω can be most easily
phase-locked by the input. The permanent coincidence of the oscillator phase with the phases
of the input signals results in a sharp increase in oscillation amplitude while amplitudes of other
oscillators decay (on average). (A similar resonant recall has been considered in Hoppensteadt
(1992) by passing both the input and oscillator signals to a correlating cell and obtaining the
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output frequency increase with higher correlation.) In our model, the resonance is used to get
a dynamical label for those oscillators that should participate in memory storage and retrieval.

The idea of resonance interaction is not new in novelty detection modelling. It has been
efficiently exploited in adaptive resonance theory (ART) networks to distinguish between
the objects belonging to a learned category and the objects belonging to a previously unseen
category (Carpenter and Grossberg 1987a, b, Grossberg 1999). While our model is worked out
in the paradigm of oscillatory neural networks, ART-networks are traditional neural networks
whose information storage abilities are based on the modification of coupling strengths between
elements of the network.

We develop our model as a network of oscillators. It is assumed that each oscillator
represents a population of locally coupled excitatory and inhibitory neurons. The activity
of an oscillator represents the average activity of the population (local field potential). We
suppose that the interaction between oscillators can be described in terms of a phase-locking
procedure. Such networks have been useful in engineering applications and in mathematical
neuroscience when a qualitative mathematical representation of phase-locking is needed. In
our model, an oscillator is described by three variables: the oscillation phase; its natural
frequency; and its amplitude. Such an oscillator can be considered as a generalization of a
phase-locked loop oscillator. It is known that the explicit extraction of the oscillator phase as
a variable describing the dynamics of oscillator activity simplifies the analysis of conditions
that ensure the entrainment of oscillators. This has been confirmed by the mathematical
analysis of networks of phase oscillators with different connection architectures (Kuramoto
and Nishikawa 1987, Daido 1988, Strogatz and Mirollo 1988). Phase-locked loop oscillators
have been successfully used to model neurophysiological data related to phase-locking and
synchronization of neural activity in the brain (Kammen et al 1990, Sompolinsky et al 1990,
Schuster and Wagner 1990, Kuramoto et al 1992, Ermentrout and Kopell 1994, Kazanovich
and Borisyuk 1994, 1999, Hoppensteadt 1986, Hoppensteadt and Izhikevich 1997, Wu and
Gao 1999, Denham and Borisyuk 2000).

2. Model description

The model for novelty detection is a network of oscillators with a loop of inhibitory feedback
control (figure 1). The oscillators are combined into groups Gj(j = 1, . . . , m) with q

oscillators in each group. The oscillators belonging to the same group are coupled by all-
to-all connections. For simplicity, there are no connections between oscillators of different
groups.

There is an n-dimensional input channel that delivers the information about a stimulus to
each oscillator in the network. The input signal is C = (C1, . . . , Cn) with the components
Ci = sin(2πω0t + ψij ) (i = 1, . . . , n, j = 1, . . . , m). Thus, each stimulus is coded at the
input by a set of periodic oscillations with parameters ω0, ψij , where ω0 is the frequency of
oscillations and ψij are phase shifts that imitate different time-lags during signal transmission
to a particular group of oscillators. The values of ω0 are taken from some range (ωmin, ωmax)

and the phase shifts ψij are supposed to be randomly distributed in the range (−τ, τ ).
At the initial moment (before the network stores any information) each groupGj contains

oscillators whose natural frequencies are distributed in the whole range (ωmin, ωmax) of input
frequencies. During information storage these natural frequencies may change depending on
the parameters ω0, ψij of the input signal.

The network is trained by a sequence of stimuli. The presentation of each stimulus results
in the appearance of an oscillatory input signal during time T . The natural frequencies of
oscillators obtained after previous stimulations are used as initial values of natural frequencies
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Figure 1. Network architecture (the casem = 3, q = 3 is shown). The oscillators are combined into
groups Gj with all-to-all connections between oscillators in the groups. There are no connections
between oscillators of different groups. Each oscillator receives a multi-dimensional input signal
C. The inhibitory backward loop stops the activity in the network after the number of resonant
oscillators exceeds a threshold level.

at the beginning of a new stimulation (no memory decay). These modified natural frequencies
are the only information stored by the network about the stimuli. The amplitudes and phases
of oscillations are assigned zero values at the beginning of each stimulation (amplitude and
phase reset).

A basic assumption of our modelling is that an oscillator reaches and keeps a high level
of activity (high amplitude) if the signals that are supplied to this oscillator arrive in-phase,
that is if the values of ψij are approximately the same for the given j . Due to a random choice
of the values of ψij for each stimulus, this implies that the presentation of a stimulus results
in high oscillatory activity at only a small number of randomly chosen locations (groups),
where an appropriate coincidence of input signal phases takes place. The activity in other
parts of the network is low. Such of activity appears during both memorization and recall. We
call it a sparse representation (coding) of the stimuli in the network activity. The important
feature of sparse coding is that if the number of groups in the network is large relative to
the number of memorized stimuli, then different stimuli (even those that are labelled by the
same or similar frequencies) will activate different (though possibly overlapping) regions in
the network. Therefore, different stimuli are memorized in different locations of the network.

Memory storage is conditioned by the dynamics of oscillators and the related adaptation of
their natural frequencies. The formal description of the dynamics is presented in appendix A.
Here we describe it in a non-formal way, focusing on the algorithms embedded in the network.

The oscillators’ dynamics are controlled by a phase-locking procedure (1). Analytical
description of conditions for phase-locking of an oscillator in the case of a multi-dimensional
input signal C are presented in appendix B. Phase-locking is also used as the mechanism of
interaction between oscillators. The peculiarity of this procedure in our model is that the
amplitudes and natural frequencies of oscillators are not constant in time. The amplitude of
an oscillator depends on the synchrony of its oscillations with the input signals. This causes a
selective amplification of the activity of some oscillators.

The following two principles were applied to control the activity of an oscillator.

Principle 1. The amplitude of oscillations sharply increases if most of the input signals arrive
at an oscillator in-phase with its own oscillations (equation (2)). This implies that this oscillator
is synchronized with the input and operates with the current frequency ω0. We consider this
increase as a resonant response of an oscillator to properly tuned input signals. The amplitudes
of those oscillators that do not work in-phase with C are kept at a low level or decrease.
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By definition, an oscillator is in a resonant state if its amplitude is greater than a given
threshold. In simulations we put this threshold a bit lower than the maximal possible value of
the amplitudes (for details see appendix A).

Principle 2. The natural frequency of an oscillator tends to the value of its current frequency
(equation (3)). To avoid rapid jumps of natural frequencies during transitional stages of phase-
locking, the dynamics of natural frequencies is made slow relative to the rate of phase-locking.

Let us describe how these principles are embedded in network dynamics control.
Suppose that a stimulus is presented at the input of the network. According to principle 1,

under the influence of the signal C some oscillators of the network increase their activity and
reach a resonant state. The amplitudes of other oscillators are kept low.

The interaction between oscillators in the network is organized in such a way that only an
oscillator in a resonant state has an effective influence on the other oscillators of its group. In
fact, such an oscillator plays the role of a central element for the whole group in the sense as
introduced in Kazanovich and Borisyuk (1999). The dynamics of oscillators in this case has
been termed as partial synchronization. During partial synchronization, the current frequencies
of oscillators have a tendency to be entrained at the frequency of the central element or at least
to approach this frequency. Therefore, the natural frequencies of oscillators in a group that
contains a resonant oscillator will be moved in the direction of ω0. The speed of movement
depends on how far the natural frequency of an oscillator is from ω0. The oscillators whose
natural frequencies are in a close neighbourhood of ω0 will change their natural frequencies
to ω0 (and, hence, will reach a resonant state) in a short enough time. If the natural frequency
of an oscillator is far from ω0, a number of repeated stimulations by the same stimulus will be
needed to modify this natural frequencies to ω0.

This is the basic mechanism for memory storage in the network: a stimulus is coded in
the network memory by a sufficiently large population of oscillators with natural frequencies
nearly identical to that of the input. Such a population is formed as a result of two processes.
First, some oscillators in the group (with natural frequencies near ω0) are phase-locked by
other oscillators that are already in a resonant state. Second, this phase-locking results in these
oscillators ‘learning’ the new frequency ω0 (due to principle 2) and become resonant (due to
principle 1).

After several oscillators in a group reach a resonant state, they combine their efforts to
recruit other oscillators of the group to synchronization and resonance. The array of natural
frequencies that have been formed during stimulation is conserved and later these frequencies
are used as initial natural frequencies of oscillators during presentations of other stimuli. Note
that the memory in the form of adapted natural frequencies is of a static type in the sense that
it is supposed to be unchanged in the periods between stimuli presentations when the network
is silent.

The inhibitory feedback loop (mentioned at the beginning of this section) is used to stop
further changes of network parameters when the memory for a given stimulus is formed. In a
session of repeated stimulations by the same stimulus, the population of resonant oscillators (the
oscillators whose amplitudes exceed a certain level) gradually increases its size. We suppose
that memorization of this stimulus is finished if the size of the population of oscillators in a
resonant state exceeds a certain threshold level H . As soon as this event takes place, all the
activity in the network is shut down by the inhibitory loop (the amplitudes and phases of all
oscillators are kept equal to zero) until a new stimulation begins.

Let TH be the time from the beginning of stimulation until the moment the threshold
H is reached (by definition, TH = T , the duration of stimulus presentation, if the threshold
has not been reached during the current stimulation). We say that a network is in the active
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state during the time interval (T0, T0 + TH ), where T0 is the moment when some stimulation
has started. In the active state the dynamics of the network are governed by equations (1)–
(3). We say that a network is in the passive state during the time interval (T0 + TH , T1),
where T1 is the moment when the next stimulation has begun. In the passive state the phases
and amplitudes of the oscillators are zero and the natural frequencies of the oscillators are
unchanged.

During memorization of a given stimulus in repeated stimulations, TH gradually decreases.
We use this fact to formulate a criterion to distinguish between new and familiar stimuli. A
stimulus is considered to be a new one if TH > Tcr and Tcr < T , where Tcr is a given threshold
(critical time). If TH � Tcr, a stimulus is considered to be familiar. In network simulations we
put Tcr = T/2.

By computer simulation we show that it is possible to choose the parameters of the learning
control in such a way that this criterion for novelty detection is satisfied. More precisely, in
a sequence of presentations of the same stimulus, the stimulus will be recognized as a new
one during the first few presentations, but from a certain presentation the stimulus will be
recognized as familiar.

3. The simulation

As stated in the previous section, each stimulus is coded by both a frequency and a set of
phase shifts. To make the computations less time consuming, we separate the consideration
of stimuli coded by the same frequency and stimuli coded by different frequencies. In the first
case, we simulate a large network with many groups of oscillators and show how different
stimuli are coded in different locations of the network depending on the phase shifts. In the
second case, we restrict the consideration to one group and show how different populations of
oscillators in the group are involved in coding stimuli with different frequencies.

The learning procedure is the same in both cases. Four stimuli are presented in succession.
Each stimulus is repeated five times at the moments sT (s = 0, 1, . . . , 4) (we denote by 0 the
moment when stimulation by a new stimulus begins). The duration of each stimulation is
T = 3, so learning of a stimulus takes 15 time units.

At the initial state (before learning) the natural frequencies of the oscillators in each group
of the network are distributed with a fixed step in the range (ωmin, ωmax) so that ω1 = ωmin,
ωq = ωmax, ωi+1 − ωi = const.

3.1. The case of identical input frequencies

We consider a network with the following parameters: the number of groups is m = 500,
the number of oscillators in each group is q = 50, the range for distribution of initial values
of natural frequencies of oscillators is (6.5, 7.5), the frequency code of all stimuli is ω0 = 7,
phase shiftsψij are randomly distributed in the range (−π/2, π/2). In the criterion for novelty
detection, we put H = 450 and Tcr = 1.5. Other parameter values are presented in table 5 of
appendix A.

The parameters of the network have been chosen in such a way that five presentations of a
stimulus are sufficient to memorize this stimulus. More precisely, for each stimulus the network
reacts on its first P presentations (1 � P < 5) as if to a new stimulus and the network reacts
to the presentations P + 1, . . . , 5 as if to a familiar stimulus. Usually, the number of groups
with resonant oscillators involved in coding each stimulus in the simulation experiments was
about 10–20, which is more than one order lower than the number of groups m. This ensured
sparse coding of the stimuli in the network.
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(a)

 

(b)

Figure 2. Evolution of the natural frequencies of the oscillators in two groups that receive
coherent (a) and incoherent (b) input signals, respectively. In the first case, the oscillators tune their
natural frequency to the frequency of the input signal. In the second case, the oscillators keep their
natural frequencies unchanged. The same stimulus has been repeated five times at the moments 0,
3, 6, 9, and 12. The frequency code of the stimulus is ω0 = 7.

The results of the simulations are presented in figures 2–4. Figure 2 shows an example of
the evolution of the natural frequencies of the oscillators in two groups during five presentations
of the same stimulus. Figure 2(a) shows a group where resonant activity appeared in response
to the given stimulus. Figure 2(b) shows a group where no resonant activity took place in
response to the given stimulus. The adaptation of the natural frequencies is induced in the
case of figure 2(a) only. The values of the natural frequencies in figure 2(b) do not change.
In figure 2(a) the adaptation of the natural frequencies of those oscillators that were close to
ω0 started earlier and was faster. The size of the population of tuned oscillators in the group
increases with repeated presentations of the same stimulus. Finally, nearly all oscillators of
the corresponding group achieved approximately the same natural frequency.

Figure 3 shows the evolution of the amplitudes in the same groups. Those oscillators in
figure 3(a) that have been synchronized with the input signal sharply increase their activity,
while the oscillators in figure 3(b) work with a relatively low level of activity which does



8 R Borisyuk et al

Time

  #

A
m

p
lit

u
d

e

(a)

Time

  #

A
m

p
lit

u
d

e

(b)

Figure 3. Evolution of the amplitudes of the oscillators in the groups shown in figure 3: (a) resonant
increase of amplitudes for coherent input signals; (b) low values of amplitudes for incoherent input
signals. During the fourth and fifth stimulations, the activity of oscillators is shut down for a short
time after stimulation begins due to recognition of the stimuli as familiar.

not reach the resonance level. In figure 3(b), a relatively small increase in amplitudes can be
seen for those oscillators whose natural frequencies are near ω0 = 7. These oscillators are
phase-locked by the input signal, but they do not reach resonance due to poor coincidence of
phases in the input signal for this group of oscillators. There are also short spurious increases
of amplitudes of those oscillators with low values of natural frequencies (in the neighbourhood
of the value 6.5). Such effects take place at the moments when the phases of these oscillators
reach the best coincidence with the phases of the input signals. In figure 3(a), the size of the
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Figure 4. Graphics of the number of resonant oscillators in the network under stimulation by four
stimuli. Each stimulus has been repeated five times. The moments when stimulations begin are
shown by arrows. The vertical dashed lines show critical moments 1.5 time units after beginning
a stimulation. A stimulus is detected as familiar if the number of resonant oscillators exceeds the
threshold before the critical moment.

population of the oscillators with high amplitudes gradually increases from one stimulation to
the other. During the fourth and fifth stimulations, the activity in both groups (in fact, in the
whole network) is shut down before time T has past. This is the result of the fact that during
these two stimulations the number of resonant oscillators exceeds the threshold H .

Figure 4 presents the behaviour of the number of resonant oscillators in the network for
four stimuli. Dashed vertical lines show critical moments when discrimination between new
and familiar stimuli is made. As can be seen from the figure, the number of resonant oscillators
increases from one stimulation to the other and for the first time exceeds the threshold level
H during the second or the third stimulation by the same stimulus. After that, the time TH
gradually decreases until it becomes smaller than Tcr. This is the moment when a stimulus is
detected as familiar. In the given example, the number of repetitions of the same stimulus to
make it familiar is 5, 4, 3, and 4, respectively.

3.2. The case of different input frequencies

To illustrate the memorization of stimuli coded by different frequencies, we need a larger
number of oscillators in the groups and a larger range of distribution of their natural frequencies.
We put q = 250, ωmin = 4, ωmax = 9 and consider a network with one group only (m = 1).
This is enough for illustrative purposes because in a network with many groups the mechanism
of memorization is the same for each group where resonant oscillations appear. To ensure the
appearance of resonance in the group, we narrow the range of phase shifts of a stimulus to
(−0.4, 0.4). The number of resonant oscillators in the group is restricted by the threshold
H = 50. This allows the possibility of memorizing several frequencies since each stimulus
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Figure 5. Evolution of natural frequencies of oscillators in one group under stimulation by four
stimuli coded by different frequencies (83 out of 250 oscillators are shown). The frequencies of
input signals are 5 (a), 6 (b), 7 (c), and 8 (d), respectively. Each stimulus has been repeated five
times at the moments 0, 3, 6, 9, and 12. Note that each stimulus indices the evolution of natural
frequencies in its own population of oscillators, leaving the natural frequencies of other oscillators
unchanged.

of a given frequency is memorized by its own ensemble of oscillators. The frequency codes
ω0 of the four stimuli are 5, 6, 7, and 8, respectively. Other parameter values are presented in
table 5 of appendix A.

The results of the simulations are presented in figures 5, 6. Figure 5 shows an example
of the evolution of the natural frequencies of the oscillators during the stimuli presentations
(each stimulus is repeated five times). Figure 5(a) corresponds to the first stimulus with
the frequency code ω0 = 5. It can be seen that presentation of this stimulus results in
a gradual adaptation of the natural frequencies of those oscillators whose initial values of
natural frequencies were located in the neighbourhood of ω0 = 5. After several presentations
of the first stimulus, a population of oscillators with frequencies approximately equal to five
is formed. This population codes the stimulus in the network memory.

In a similar way, figures 5(b)–(d) show the formation of ensembles of tuned oscillators
corresponding to other stimuli. Note that the presentation of the next stimulus does not
corrupt the memory that has been formed already. The natural frequencies in a population
of tuned oscillators formed by one stimulus are kept unchanged during presentations
of the other stimulus if the frequency codes of these stimuli are far away from each
other.
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Figure 6. Evolution of amplitudes of the same oscillators as in figure 5. Note the correspondence
between resonant increase of amplitudes of oscillators in the figure and adaptation of natural
frequencies of oscillators shown in figure 5.

Figure 6 shows the evolution of the amplitudes of the oscillators. Those oscillators that
have been working in-phase with the input signal sharply increase their activity, while other
oscillators work with a relatively low level of activity. The size of a population of tuned
oscillators increases and the time TH gradually decreases with repeated presentations of the
same stimulus. As expected, for each stimulus a resonant increase in the amplitudes and an
adaptation of the natural frequencies occur in the same oscillators.

After four stimuli have been presented, four populations of tuned oscillators are formed,
each population being tuned to the frequency of the corresponding input signal. Such a
population is used as a code of the stimulus in the frequency domain. The presentation of the
learned stimulus results in rapid synchronization of the oscillators of the population coding
this stimulus, therefore the number of resonant oscillators quickly reaches the threshold level
H and after that the activity in the network is stopped.

In a network with one group of oscillators, the memorization in the frequency domain is
possible only if the difference between the input signal frequencies is sufficient to make the
coding populations of oscillators non-overlapping. Due to the restricted range of frequencies, a
limited (and relatively small) number of different stimuli can be coded in the frequency domain.
However, a combination of both space and frequency codes, as described in section 3, makes
the memory capacity potentially unlimited when the number of groups in the network increases.
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4. Estimation of novelty detection reliability

Consider a sequence of r different stimuli presented in succession to a network for novelty
detection, each stimulus being repeated K times. Three results of presentation of a particular
stimulus of the sequence may appear: (a) a stimulus has been recognized as familiar during its
kth presentation (1 < k � K), (b) a stimulus has been recognized as familiar during its first
presentation, (c) a stimulus has never been recognized as familiar during all K presentations.
Case (a) corresponds to a correct processing of the stimulus during novelty detection. Cases (b)
and (c) correspond to errors in novelty detection. In this section we are going to present some
results on the estimation of the number of errors during novelty detection. Since different
sequences of stimuli can give a different number of errors, to get an idea of how reliable
the network is for novelty detection, we compute the average number of errors made after
the presentation of a sample of randomly chosen sequences with r different stimuli. Every
presentation of a sequence of stimuli starts with ‘empty’ network memory, that is, all the natural
frequencies of the network oscillators are in the initial state. Averaging is done via the size of
the sample of sequences used in the network testing. We denote by Er the average number of
novelty detection errors and will consider this value to be a measure of the novelty detection
reliability.

In what follows, we present some results on estimating Er by Monte Carlo simulations.
Our simulations are limited to the case of stimuli coded by a fixed frequency (considered in
section 3.1) and therefore this study should be considered as a first step in a more detailed
investigation of novelty detection characteristics.

For the simulations, we have used a network with the same parameter values as defined in
section 3.1 (see also table 5 in appendix A). The only difference with respect to this subsection
is that a sequence of r = 20 different stimuli (each stimulus being repeated K = 5 times)
has been presented to the network and a sample of ten such sequences has been processed
by the network. For each stimulus, its time delay codes have been chosen randomly and
independently from other stimuli.

The following simulation results were obtained. The full number of errors was 18. All
errors were of type (b), that is, in all 18 cases a new input pattern was mistakenly detected as
familiar at the first presentation of a stimulus. Since the whole number of stimuli in the sample
of sequences was 200, this gives, on average, 9% of errors. About 6% of these errors were
made during the detection of the last ten of the 20 input stimuli. This is reasonable, because
the probability of an error increases as the network memory is filled.

Let us consider the source of errors in more detail. Since the number of oscillators tuned
with the frequency ω0 of the input signal monotonically increases during memorization, in
the limit all oscillators of the network will have their natural frequencies equal to ω0. Then,
presentation of any stimulus will result in its detection as familiar. (Note, that similar effects
of memory overflow that limit the number of memorized stimuli take place for networks with
associative memory.) In an intermediate case, an error may appear if a new stimulus evokes
resonant oscillations in the groups already associated with a previously learned stimulus. Then
if the number of tuned oscillators in these groups exceeds the thresholdH , an error in detection
will occur.

With some simplification, this reasoning can be approximated by the following
probabilistic model. Consider m empty boxes. Let us call a trial a random distribution of
s balls in the boxes in such a way that each ball occupies a separate box (s < m). If there is
a sequence of trials, we suppose that the trials in the sequence are made independently. This
means that during a trial the balls may fall into the boxes that have been occupied already on
previous trials. u denotes the number of balls in a trial that fall into occupied boxes. Thus, u
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Table 1. Normalized number of errors er in novelty detection; r = 0.03m, p = 0.0.

s

m 1 3 5 7 9 11 13 15

100 0.011 0.084 0.21 0.34 0.47 0.55 0.61 0.64
300 0.012 0.11 0.28 0.43 0.58 0.68 0.74 0.80
500 0.016 0.12 0.28 0.45 0.60 0.71 0.77 0.82
700 0.016 0.12 0.28 0.46 0.60 0.71 0.78 0.83
900 0.014 0.12 0.29 0.46 0.61 0.72 0.79 0.83

1100 0.014 0.12 0.29 0.46 0.61 0.72 0.79 0.84
1300 0.016 0.12 0.29 0.47 0.62 0.72 0.79 0.84
1500 0.014 0.12 0.29 0.47 0.62 0.72 0.79 0.84

is a random value that depends on the number of boxes filled on previous trials. Therefore the
probability that u will take a greater value increases with the number of trials. If u is greater
than a given constant p, we say that an error in balls distribution has appeared during the trial.
Er denotes the average number of errors that appear in a sequence of r trials (averaging is
carried out for all sequences of r trials). Than the average value of the probability of making
an error in one trial is er = Er/r . Below we present some results on the estimation of er for
different values of m, s, r , and p obtained by Monte Carlo simulation. In the computations,
averaging has been carried out for 1000 sequences of trials for each value er .

The correspondence between the above probabilistic model and the problem of estimation
of novelty detection reliability is evident. Them groups of the network are associated with the
m boxes in the model. Memorizing a stimulus that is coded by the oscillators of s groups is
associated with a trial (distribution of s balls among m boxes). So, if a group j of oscillators
participates in coding the stimulus by tuning the frequencies of these oscillators, we associate
this event with the occupation of the box j by a ball. Our assumption about random distribution
of the balls in a trial follows from random distribution of input signal phase shifts. An error in
the distribution of balls is associated with an error in novelty detection.

The simplifications introduced in the probabilistic model are the following. First, it is
assumed that the number of groups s that participate in coding a stimulus is constant. In
fact, this value varies for different stimuli. Second, it is assumed that memorizing a stimulus
after a sufficient number of stimulus presentations gives one of the following two results for
a group of oscillators: (1) all oscillators of the groups are tuned to the frequency ω0; (2) no
oscillator of the group changes its frequency in response to the given stimulus. In fact, the
number of oscillators in a group that codes the stimulus depends on how good the coincidence
of input phase shifts is at this group. Due to such simplifications, the estimation of Er cannot
be considered as a rigorous approximation of memory reliability. Yet, such an estimation
sheds some light on what kind of reliability can be expected in the network. In particular, by
these results we can judge under which parameter values the novelty detection can be of any
use.

Tables 1–4 show the values of er for the following cases. Each table represents the values
of er obtained for different values ofm (m varies between 100 and 1500) and s (s varies between
1 and 15). Tables 1, 2 correspond to r = 0.03m. Tables 3, 4 correspond to r = 0.05m. In other
words, the number of memorized stimuli is 3 or 5% of the number of groups of oscillators,
respectively. Tables 1 and 3 correspond to the case p = 0. In this case no overlapping between
the groups coding different stimuli is allowed. Tables 2 and 4 correspond to the casep = [s/2],
when half of the groups coding a stimulus may overlap with the groups coding previous stimuli.
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Table 2. Normalized number of errors er in novelty detection; r = 0.03m, p = [s/2].

s

m 1 3 5 7 9 11 13 15

100 0.011 0.0047 0.0013 0.0020 0.0023 0.0047 0.006 0.007
300 0.013 0.0062 0.0061 0.0044 0.0069 0.0072 0.014 0.020
500 0.012 0.0067 0.0055 0.0065 0.0072 0.011 0.013 0.022
700 0.016 0.0066 0.0055 0.0050 0.0061 0.0094 0.014 0.021
900 0.015 0.0070 0.0053 0.0060 0.0076 0.0093 0.015 0.022

1100 0.015 0.0058 0.0055 0.0066 0.0079 0.0110 0.015 0.023
1300 0.015 0.0068 0.0058 0.0061 0.0077 0.0110 0.016 0.023
1500 0.014 0.0068 0.0057 0.0066 0.0082 0.0110 0.016 0.024

Table 3. Normalized number of errors er in novelty detection; r = 0.05 m, p = 0.0.

s

m 1 3 5 7 9 11 13 15

100 0.022 0.16 0.37 0.54 0.66 0.73 0.77 0.79
300 0.022 0.180 0.41 0.60 0.73 0.81 0.85 0.88
500 0.023 0.19 0.42 0.61 0.74 0.82 0.87 0.89
700 0.023 0.19 0.42 0.62 0.75 0.82 0.87 0.90
900 0.023 0.19 0.42 0.62 0.75 0.82 0.87 0.90

1100 0.024 0.19 0.42 0.62 0.75 0.83 0.87 0.90
1300 0.024 0.19 0.42 0.62 0.75 0.83 0.88 0.91
1500 0.025 0.19 0.42 0.62 0.75 0.83 0.88 0.90

Table 4. Normalized number of errors er in novelty detection; r =0.05 m, p = [s/2].

s

m 1 3 5 7 9 11 13 15

100 0.021 0.012 0.014 0.023 0.032 0.043 0.08 0.13
300 0.021 0.016 0.021 0.027 0.042 0.066 0.10 0.14
500 0.024 0.016 0.019 0.029 0.045 0.069 0.10 0.15
700 0.026 0.018 0.021 0.027 0.046 0.068 0.11 0.15
900 0.024 0.018 0.021 0.031 0.046 0.071 0.11 0.15

1100 0.025 0.019 0.020 0.031 0.046 0.073 0.11 0.15
1300 0.023 0.018 0.021 0.030 0.048 0.072 0.11 0.15
1500 0.024 0.018 0.021 0.031 0.046 0.072 0.11 0.15

In terms of network memory reliability, the tables illustrate two trivial and two non-trivial
facts. Firstly, considering tables 1 and 3, one can see that the values of er in table 1 are smaller
than the values in the same cells of table 3. The same is true for tables 2 and 4. Note that
the only difference between these pairs of the tables is the value of r/m, which is smaller for
tables 1, 2 than for tables 3, 4. This reflects an intuitively obvious fact that the probability of
making an error in novelty detection increases as the memory is filled with a larger number of
memorized stimuli.

Secondly, permitting an overlap between the groups coding different stimuli decreases
the relative number of errors. For example, if p = 0 and s � 5 (tables 1, 3), the values of er
exceed 0.2. Such a large number of errors is too high for novelty detection to be of any use.
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Yet, if overlapping is permitted, the probability of making an error becomes much smaller. All
the values of er in tables 2, 4 are smaller than 0.1, excluding the last two columns in table 4.

The other two facts are not so obvious. Looking at the columns of the tables, one can
notice that for higher values ofm, the values of er show a tendency to increase to an asymptotic
level. This can be interpreted as an asymptotically linear increase of memory capacity when
m increases. Note that the number of parameters in the network used for memorization (the
natural frequencies of oscillators) is n = qm. Thus, the memory capacity is of the same order
as the number of modified parameters n. This memory characteristic is better than the one
known for associated memory of a Hopfield type, where the memory capacity is of the order
of

√
n, where n is the number of modified parameters (connection strengths).
Looking at the rows, one can see that the values of er in tables 2 and 4 do not show a

tendency to increase monotonically as in tables 1 and 3. This means that in the case where
overlap is permitted there is an optimal value of s (greater than 1) that gives the minimum
probability of errors. This optimal value of s is rather small relative to the number of groups
m. This confirms that only sparse coding of stimuli in the groups of the network is efficient.
In our network model the number of groups participating in coding a stimulus is controlled by
the parameter ξ2 in equation (2) of appendix A. Increasing this parameter results in decreasing
the number of groups involved in stimulus coding.

5. Discussion

We have developed a new approach to modelling memory formation and novelty detection.
This approach is formulated in terms of oscillatory mechanisms realized by an oscillatory
neural network with an inhibitory backward control loop. For information storage instead of
the traditionally used modification of connection strengths, we consider modification of the
natural frequencies of oscillators. In relation to this new approach to memory formation we
suggest a new encoding scheme that is based on the phase–frequency characteristics of the
input signal.

We assume that a stimulus is coded at the input of the network as an n-dimensional vector,
whose components are periodic oscillations of identical frequencies and different phases. A
similar idea of information encoding is used in a phase modulation scheme suggested by
Hoppensteadt and Izhikevich (1998) for their oscillatory neural network implementation of
the FM radio. The differences in-phase shifts of the input signals result in different responses
of the oscillators. Those oscillators that receive coherent (nearly in-phase) input signals and
that are phase-locked with a small phase shift relative to the input, start to generate high
amplitude (resonant) oscillations, while other oscillators are silent or work with low amplitudes
of oscillations.

The resonant oscillators modify their natural frequencies to the frequency of the input
signal. Thus, memorization of a stimulus results in the formation of groups of oscillators
tuned to the frequency of a given stimulus frequency code and distributed in different locations
of the network.

Resonant oscillations play a crucial role in this mechanism for novelty detection. If the
frequency of the input signal coincides with the natural frequency of an oscillator and if this
oscillator receives coherent input signals, the amplitude of oscillations in this oscillator rapidly
increases. Such rapid and simultaneous increase of activity of a critical number of oscillators
is detected by the inhibitory backward control loop. Thus the dynamics of the network can be
organized in such a way that the activity of the network continues for a long time in the case
of a novel stimulus (tonic reaction) and the activity is shut down much faster in the case of a
familiar stimulus (phasic reaction).
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Some ideas used in this paper for the model of novelty detection have already appeared
in our previous publications:

• phase–frequency encoding of the input information (Borisyuk and Borisyuk 1997);
• phase coincidence as a mechanism for choosing memory storage location (Borisyuk and

Hoppensteadt 1998, 1999);
• partial synchronization as an important type of dynamics for tuning neural oscillators

(Kazanovich and Borisyuk 1994, 1999).

Frequency adaptation as a mechanism for memory storage has been suggested in the paper
(Torras 1986), where the author presented a network of biologically plausible neurons for the
storage of information about two stimuli in frequency domain. Our approach can be considered
as a generalization of this result to memorization in the space–frequency domain. The main
advantage of our approach is in the combination of space and frequency coding of information
in the network memory so that stimuli coded by the same frequency are stored in different
regions of the network. As a result, the network memory is potentially unlimited.

The memory that we model is a temporary type. In terms of the model, we assume that
the oscillator tuning is not kept forever. Without constant repetition of the same stimulus
the oscillators that code this stimulus gradually return to their initial natural frequencies, i.e.
‘recall’ their original natural frequencies. Thus, the memory about this particular stimulus is
freed for the storage of other stimuli.

The oscillatory neural network model developed in this paper has been inspired by some
fascinating experimental evidence about the orienting reflex and theta activity in the septo-
hippocampal region (Sokolov 1975, Vinogradova 1995). The presentation of a new stimulus
elicits high and stable theta-rhythmic activity of the hippocampus. This activity continues with
a slow decrease long after the stimulus is switched off. This is the so-called tonic reaction of
the hippocampus. On the other hand, when this stimulus becomes familiar after a sufficient
number of presentations, the theta-activity response of the hippocampus to the stimulus is brief
and vanishes swiftly after the stimulus is switched off. This is the so-called phasic response
of the hippocampus. The phasic response demonstrates habituation in the theta-activity of
the hippocampus. It may be presumed that the theta-activity is necessary for information
processing and memory storage and it can be used as an efficient mechanism for selecting
what should be processed and stored.

There are two ways by which the information about a stimulus reaches the hippocampus.
The main information channel, which delivers the stimulus information to the hippocampus,
goes first to the neocortex, where certain features of the stimulus are extracted and combined,
then to the entorhinal cortex, and thence to the hippocampus. The spatial distribution of in-
puts from the entorhinal cortex to the hippocampus causes different time delays, which result
in-phase lags that may be as high as one half of the period of the theta rhythm (Miller 1991).
The other channel, which goes via the reticular formation, the medial septum and eventually to
the hippocampus, reflects the significance (in some context) of the signal. Experimental data
suggest that the signals in both inputs to the hippocampus contain theta rhythm frequencies
(Vinogradova 1995, Iijima et al 1996, Kirk 1998). The septal signal is responsible for appear-
ance and disappearance of the theta-activity in the hippocampus (Vinogradova 1995), while the
signal from the entorhinal cortex seems to control this activity in a more delicate way according
to the informational characteristics of the stimulus. There is some experimental evidence for
a special type of phase relationship between hippocampal neural activity and the theta wave
during spatial information processing in the hippocampus (O’Keefe and Reece 1993).

Trying to reproduce tonic and phasic types of hippocampal dynamics in our model of
novelty detection, we do not claim that the suggested mechanisms of novelty detection exactly
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reflect those used in the septo-hippocampal system. Despite many studies of this system and
the availability of a huge amount of experimental evidence, there are still many open questions.
For example, in a recent review by Eichenbaum (1999) it is stated that: ‘Recent successes in
functional brain imaging have suggested that the hippocampus is part of a novelty-detection
network; but consideration of the available evidence and of the cognitive demands of novelty
processing suggests that things are not so simple’. Nevertheless, we think that some aspects
of our model may be useful in developing a biologically plausible model of novelty detection
in the hippocampus.
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Appendix A. Dynamics of the network

The network consists of m groups of oscillators. Each group contains q oscillators. There
are all-to-all connections between oscillators of one group while there are no connections
between oscillators of different groups. During stimulation each oscillator receives an n-
dimensional (n = 20) periodic input signal C = (C1, . . . , Cn), where Ci = sin(2πω0t + ψij )
(i = 1, . . . , n, j = 1, . . . , m). The parameters ω0 andψij represent the frequency of the input
signal and phase shifts, respectively. An oscillator is described by three variables: oscillator
phase θjk ; amplitude ajk ; and natural frequencyωjk (j = 1, . . . , m, k = 1, . . . , q): the dynamics
of the network in the active state is determined by the following differential equations:

dθjk
dt

= 2πωjk +
v

n

n∑
i=1

sin(2πω0t + ψij − θ
j

k ) +
w

q

q∑
l=1

g1(a
j

l ) sin(θjl − θ
j

k ), (1)

dajk
dt

= −βajk + γg2

(
1

n

n∑
i=1

cos2
+(ω0t + ψij − θ

j

k )

)
, (2)

dωjk
dt

= −α g1(a
j

k )

(
ω
j

k − dθjk
dt

)
, (3)

where v, w, α, β, γ are positive parameters;

cos+(x) =
{

cos(x), if cos(x) > 0,

0, otherwise,

g1 and g2 are sigmoid functions of the form

gi(x) = exp((x − ξi)/ηi)

1 + exp((x − ξi)/ηi)
, (i = 1, 2)

with parameters ξ1, η1 and ξ2, η2, respectively.
Equation (1) represents a traditional description of phase-locking. The second term in the

right part of this equation describes the influence of the input signal, the third term describes
internal interactions in the group. Due to the multiplier g1(a

j

l ), only oscillators in a resonant
state can efficiently influence on the other oscillators of their group.
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Table 5. The values of parameters used in computations of network dynamics.

Parameters Values Parameters Values

m 500 w 16
n 20 ξ1 0.7
q 50 η1 0.02
α 1 ξ2 0.86
β 4 η2 0.02
γ 4 T 3
v 0.5 Tcr 1.5

Equation (2) provides different amplitudes for resonance and non-resonance response of
an oscillator. Note that the second term in the right part of this equation reaches its maximum
value for those oscillators which work approximately in-phase with the input.

Equation (3) provides the frequency learning mechanism. According to this equation,
the natural frequency of an oscillator changes in the direction of the current frequency of this
oscillator. The parameter α regulates the speed of adaptation of natural frequencies. The value
of α provides the rate of adaptation of natural frequencies that is much slower than changes in
the current frequency. The multiplier g1(a

j

k ) restricts frequency adaptation to those oscillators
that have reached a resonant state.

The parameters in equation (1) are chosen so that the oscillators with natural frequencies
near ω0 will be phase-locked by the input signal at the frequency ω0. If phase shifts between
such an oscillator and the input are near zero, the argument of the functiong2 in equation (2) will
be about 1. The parameters ξ2 and η2 are chosen so that g2(x) approaches to 1 for x ∈ (ξ2, 1),
where ξ2 is slightly lower than 1; also g2(x) is rapidly vanishing for x < ξ2. This implies that
if an oscillator works nearly in-phase with the input signal, the second term in the right side
of (2) will be about γ , hence the amplitude ajk will have a stable state at about R = γ /β. In
this case we have a resonant state of the oscillator.

For an oscillator that is not capable of running nearly in-phase with the input most of the
time, the argument of the function g2 will be much lower than ξ2, hence the amplitude of such
an oscillator will stabilize near zero, which implies that the oscillator is in a non-resonant state.

The parameter values used in the simulation are presented in table 5. According to these
parameters, the maximum amplitude in a resonant state is R = 1. An oscillator is defined as
being in a resonant state if its amplitude is greater than 0.8R.

Appendix B. Phase-locking condition

We are going to find conditions when a phase oscillator can be phase-locked by the input
which combines the signals of the same frequency but with different phase shifts. This is a
generalization of a similar result obtained in Borisyuk and Hoppensteadt (1999) for the input
of two signals.

Let us consider an oscillator whose dynamics is determined by the equation

θ̇ = ω + µ
n∑
i=1

sin(ω0t + ψi − θ).

This equation can be written in an equivalent form as

θ̇ = ω + µ
n∑
i=1

sin[(ω0t + ψ̃ − θ) + (ψi − ψ̃)] = ω +

(
µ

n∑
i=1

cos(ψi − ψ̃)

)
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× sin(ω0t + ψ̃ − θ) +

(
µ

n∑
i=1

sin(ψi − ψ̃)

)
cos(ω0t + ψ̃ − θ).

There is a value of ψ̃ for which the second term in the right part of the equation is equal to 0,
n∑
i=1

sin(ψi − ψ̃) =
( n∑
i=1

sinψi

)
cos ψ̃ −

( n∑
i=1

cosψi

)
sin ψ̃ = 0.

Hence

tan ψ̃ = (
∑n

i=1 sinψi)

(
∑n

i=1 cosψi)
.

For this value of ψ̃ the equation for θ takes the form

θ̇ = ω +

(
µ

n∑
i=1

cos(ψi − ψ̃)

)
sin(ω0t + ψ̃ − θ).

Denote

Q = µ

n∑
i=1

cos(ψi − ψ̃).

The condition for phase-locking is

|ω − ω0| � Q.
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