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Booth, Victoria and Amitabha Bose.Neural mechanisms for gen-
erating rate and temporal codes in model CA3 pyramidal cells.
J Neurophysiol85: 2432–2445, 2001. The effect of synaptic inhibition
on burst firing of a two-compartment model of a CA3 pyramidal cell
is considered. We show that, depending on its timing, a short dose of
fast decaying synaptic inhibition can either delay or advance the
timing of firing of subsequent bursts. Moreover, increasing the
strength of the inhibitory input is shown to modulate the burst profile
from a full complex burst, to a burst with multiple spikes, to single
spikes. We additionally show how slowly decaying inhibitory input
can be used to synchronize a network of pyramidal cells. Implications
for the phase precession phenomenon of hippocampal place cells and
for the generation of temporal and rate codes are discussed.

I N T R O D U C T I O N

Place cells in region CA3 of rat hippocampus have been
observed to fire in a spatially specific and a temporally specific
manner. As the rat enters a place field, the corresponding place
cell, generally considered to be a pyramidal cell, commences
firing (O’Keefe and Dostrovsky 1971), and a change in firing
rate has been observed as the place field is crossed. Two
experimental studies observed an increase in the firing rate as
the center of the field was approached and then a decrease as
the field was exited (O’Keefe and Recce 1993; Skaggs et al.
1996). This firing rate change has been modeled as a two-
dimensional Gaussian function of the animal’s Cartesian loca-
tion in the environment (O’Keefe and Burgess 1996). In a
study of CA1 pyramidal cells, a more monotonic increase in
firing rate was observed with lowest firing rate at the beginning
of the place field and highest rate at the end (Mehta et al. 2000).
The preferential firing of place cells in place fields suggests a
firing rate code for location, and the observed changes in firing
rate as the field is crossed may code for location within the
field. A specific relationship between timing of place cell firing
and the hippocampal electroencephalogram (EEG), or theta
rhythm, has also been observed as a rat runs along a linear
runway. Namely, the phase of the theta rhythm at which a place
cell fires systematically precesses as the place field is crossed
(O’Keefe and Recce 1993; Skaggs et al. 1996). Each time the
animal enters the place field, firing begins at the same phase,
and over the next 5 to 10 cycles of the theta rhythm it under-
goes up to 360° of phase precession. These findings suggest
that there may also be a temporal code for location in the phase
of firing relative to the theta rhythm. It has recently been shown

that a rat’s location can be more accurately predicted when
both rate and phase information are taken into account (Jensen
and Lisman 2000).

Despite the fact that much of the hippocampal anatomy is
known, the neural mechanisms generating the changes in firing
rate as the place field is crossed and the phenomenon of phase
precession have not been completely determined. Place cells
are known to receive excitatory synaptic projections from
dentate granule cells (Claiborne et al. 1986) as well as cholin-
ergic excitation from the medial septum (Shute and Lewis
1963). They also receive synaptic inhibition from a variety of
interneurons (Freund and Buzsa´ki 1996) that are influenced by
GABAergic projections from the medial septum (Freund and
Buzsáki 1996). In addition, place cells project to interneurons
(Csicsvari et al. 1998) offering the possibility of feedback
inhibition after place cell firing (Karnup and Stelzer 1999). The
theta rhythm may further modulate place cell firing (Kamondi
et al. 1998).

Several models to account for place cell firing patterns have
been proposed (Bose et al. 2000; Jensen and Lisman 1996;
Kamondi et al. 1998; Tsodyks et al. 1996; Wallenstein and
Hasselmo 1997). In some of these models, the phase of place
cell firing within the place field is essentially environment
driven with precession occurring as a result of recall of stored
memories for neighboring locations (Jensen and Lisman 1996;
Tsodyks et al. 1996; Wallenstein and Hasselmo 1997). Alter-
natively, phase precession has been achieved by varying the
total amount of depolarization to the cell (Kamondi et al.
1998). The models that address the firing rate changes within a
place field rely on increasing depolarization to the cell as the
place field is crossed to achieve the observed rate pattern
(Kamondi et al. 1998; Tsodyks et al. 1996). We have previ-
ously proposed a minimal CA3 network model (Bose et al.
2000) that uses synaptic inhibition to control the timing of
place cell firing and generate the onset, occurrence, and end of
phase precession. As only the burst envelope of place cell
firing was modeled, mechanisms to account for the changes in
firing rate as the place field is crossed were not addressed.

It has been shown both in experiment and in models that
inhibitory input to pyramidal cells can alter their firing pattern.
In CA3 pyramidal cells in vitro (Traub et al. 1994) and in
multicompartmental models (Kepecs and Wang 2000; Traub et
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al. 1994), inhibition arriving at dendritic locations could sup-
press the onset of bursting. It was additionally observed in the
model, that dendritic inhibition, when timed appropriately,
truncated the somatic burst envelope (Traub et al. 1994). In
these pyramidal cells, complex burst firing depends on a den-
dritic Ca21-based depolarization supporting sodium action po-
tentials initiated closer to the soma. Usually these complex
bursts are initiated by leading sodium spikes that back-propa-
gate to trigger the dendritic depolarization. Traub et al. (1994)
surmised that the effects of inhibition on burst waveform were
a result of suppression of dendritic Ca21-based depolarization.
Suppression of dendritic Ca21-based spikes by synaptic inhi-
bition was observed in dendritic recordings of hippocampal
pyramidal cells in vitro (Miles et al. 1996; Tsubokawa and
Ross 1996) and in vivo (Buzsa´ki et al. 1996). Furthermore,
depending on the strength and timing of the inhibition, relative
to leading sodium spikes, inhibition could delay the activation
of the dendritic Ca21-based spike, or it could abort an already
activated spike (Buzsa´ki et al. 1996). While in some of these
studies, suppression of the calcium spike resulted in no ob-
served change in somatic firing (Tsubokawa and Ross 1996), in
cortical pyramidal cells, when the dendritic calcium spike was
inhibited, the associated action potential burst was completely
abolished (Larkum et al. 1999). In a modeling study of a CA3
pyramidal neuron, dendritic inhibition could modulate somatic
firing in a more graded manner (Kepecs and Wang 2000).

In this paper, we investigate the effects of synaptic inhibition
on burst firing of a model CA3 pyramidal cell. We consider a
two-compartment model, developed by Pinsky and Rinzel
(1994, 1995), synaptically coupled to an excitable interneuron.
We find that synaptic inhibition can advance or delay the
timing of burst firing with the timing of inhibition determining
the effect. As a result, periodically timed inhibition can alter
the frequency of burst firing, acting to increase or decrease it in
a range around the intrinsic burst frequency. Furthermore, we
find that, depending on its strength, inhibition can modulate
calcium influx into the dendrites, such that the cell will fire full
complex bursts, bursts with a small number of spikes, or single
spikes. This results in a mapping between synaptic weight,
firing frequency, and burst waveforms.

While the two-compartment model has sufficient detail to
generate complex bursts with compartmentally segregated
mechanisms (Pinsky and Rinzel 1994) (and seeModel), we
take advantage of its relative simplicity to analyze the effects
of inhibition on burst firing using phase plane methods. A
result of this analysis is a new insight into the mechanisms
underlying complex burst generation. Briefly, in a repetitively
bursting neuron, we find that burst initiation does not strictly
depend on dendritic mechanisms but depends more on the
interaction between somatic and dendritic voltages. Dendritic
inhibition has the effect of decoupling these two influences to
reveal the distinction. We also find that, when inhibition mod-
ulates the dendritic active response, the interaction between
somatic and dendritic voltage, sometimes referred to as soma-
dendritic “ping-pong” (Wang 1999), plays a crucial role in
determining burst waveform.

Using the results of synaptic inhibition on a single pyramidal
cell, we additionally investigate the effects of inhibition on
anatomically isolated or weakly connected pyramidal cells.
Previous modeling studies have shown that a network of py-
ramidal cells with fast, recurrent excitatory synapses display

synchronous oscillations (Pinsky and Rinzel 1994; Traub et al.
1993). We show that synaptic inhibition is an alternate mech-
anism for synchronizing a network of pyramidal cells, as has
been demonstrated in vitro in the CA1 region by Cobb et al.
(1995). Moreover, we show that bistability can be obtained
between synchronous and out-of-phase network rhythms.

M O D E L A N D M E T H O D S

Model

The CA3 pyramidal cell model developed by Pinsky and Rinzel
(1994, 1995) consists of a soma compartment electrotonically coupled
to a dendrite compartment. The soma compartment contains a fast,
inactivating sodium current and a potassium delayed-rectifier current
and, when isolated from the dendrite compartment, repetitively fires
action potentials at a range of frequencies (from very low up to 300
Hz) in response to maintained applied currentIs. The dendrite com-
partment contains a calcium current and two potassium currents. A
slowly activating afterhyperpolarization (AHP) current has gating
variableq that depends only on Ca21 concentration. The other potas-
sium current is fast activating with activation depending on voltage,
but the conductance also contains a saturating term that depends on
Ca21 concentration. When isolated from the soma, the dendrite com-
partment generates low-frequency Ca21-based spikes. When the com-
partments are coupled together electrotonically, the model displays a
variety of firing patterns in response to somatic applied current or
dendritic synaptic input, including very low-frequency bursting (less
than 8 Hz), low-frequency bursting (8–20 Hz), and fast, periodic
spiking (30 Hz). Bursting occurs in the model due to interactions
between the soma and dendrite compartments in what has been dubbed
soma-dendritic “ping-pong” (Wang 1999). Specifically, aburst is initi-
ated by a somatic sodium spike that triggers a dendritic calcium spike.
Successive somatic spikes in the burst are caused by depolarization of
the soma by the slower dendritic calcium spike. The burst ends when
the dendritic calcium spike ends. The burst profile is not uniform but
is characterized by an interval of high-frequency, damped spiking in
the middle due to the large dendritic depolarization during the calcium
spike overdriving the somatic spike generator. We consider the model
in the very low-frequency bursting regime with somatic applied
current Is 5 0.5 (mA/cm2). With this low level of stimulation, the
model displays periodic bursting at approximately 1.5 Hz.

We synaptically couple this pyramidal cell to an excitable inter-
neuron (Fig. 1) that generates an action potential in response to a brief
applied current pulse or synaptic excitation. The interneuron is mod-
eled with the Morris-Lecar equations (Morris and Lecar 1981). We
consider two synaptic architectures in this two-cell network. In the
first network structure, the only synaptic connection is between the
interneuron and the pyramidal cell with fast inhibitory synaptic cur-
rent arriving to the dendrite compartment. With this network, we
consider the effect of inhibition arriving during the interburst interval.
In the second network structure, in addition to the connection between
interneuron and dendrite compartment, the soma compartment of the
pyramidal cell makes a fast excitatory synaptic connection back onto
the interneuron. With this network structure, where the pyramidal cell
receives feedback inhibition from the interneuron, we consider the
effects of inhibition arriving during a burst. We do not include a
synaptic delay in either connection.

The equations for this two cell network are

CmV9s 5 2INa~Vs, h! 2 IK2DR~Vs, n! 2 ILeak~Vs! 1 Is/p 1 gc~Vd 2 Vs!/p

CmV9d 5 2ICa~Vd, s! 2 IK2C~Vd, c, Ca! 2 IK2AHP~Vd, q! 2 ILeak~Vd!

1 gc~Vs 2 Vd!/~1 2 p! 2 ginhsinh~Vd 2 Vinh!

CmV9i 5 2ICa~Vi! 2 IK~Vi, w! 2 IL~Vi! 1 Ii 2 gexcsexc~Vi 2 Vexc!
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whereVs, Vd, andVi are voltages in the soma and dendrite compart-
ments and the interneuron, respectively. We refer the reader to the
original references of the pyramidal cell model for the ionic current
terms, gating equations, intracellular calcium equation, and parameter
values (Pinsky and Rinzel 1994, 1995). In our phase plane analysis,
however, we will refer specifically to the gating variablesn (for the
somatic, delayed-rectifier current) andq (for the dendritic, slow AHP
current), and to the intracellular calcium concentration in the dendrite,
Ca. The parametergc is the coupling conductance between compart-
ments, andp represents the fraction of the total area of the cell
occupied by the soma compartment. The ionic current terms for the
interneuron areICa(Vi) 5 gCam`(Vi)(Vi 2 VCa), IK(Vi, w) 5 gKw(Vi 2
VK) and IL(Vi) 5 gL(Vi 2 VL). The gating equation forw is w9 5
0.08[w`(Vi) 2 w]/tw(Vi). The steady-state activation functions are
m`(Vi) 5 0.5{1 1 tanh [(Vi 1 1.2)/18]} and w`(Vi) 5 0.5{1 1
tanh [(Vi 1 25)/11]}. The time constant function istw(Vi) 5 1/
cosh [(Vi 1 25)/22]. The maximal conductances (in mS/cm2) are
gCa 5 4.4, gK 5 8, gL 5 2. The reversal potentials (in mV) are
VCa 5 120, VK 5 284 andVL 5 260. Membrane capacitance is
Cm 5 3 mF/cm2. The applied current to the interneuron isIi 5 88
mA/cm2, which assures that the interneuron is excitable.

The strength of synaptic current is governed by a maximal conduc-
tanceginh for the synapse from interneuron to pyramidal cell andgexc

for the synapse from pyramidal cell to interneuron. In the first synaptic
architecture we consider,gexcis set to zero, then it is made nonzero for
the second network structure (see figure captions for values). The
reversal potential in the synaptic current terms determines whether the
synapse is excitatory or inhibitory; we setVinh 5 280 mV andVexc5
0 mV. The dynamics of the synaptic currents are governed by equa-
tions of the form

s9inh/exc5 aH`~Vx 2 Vthresh!~1 2 sinh/exc! 2 bH`~Vthresh2 Vx!sinh/exc

whereVx is presynaptic voltage. The Heaviside function,H`, is used
to enforce the synaptic threshold. The constantsa 5 2 mS21 andb 5
1 mS21 are the rise and decay rates, respectively, of the synapse, and
Vthresh 5 210 mV is the synaptic activation threshold. We work
primarily in the regime where the synaptic currents are fast acting and
decaying, meant to mimica-amino-3-hydroxy-5-methyl-4-isox-

azolepropionic acid (AMPA)–mediated excitation and GABA-A–me-
diated inhibition.

Methods

In RESULTS, we analyze the effect of inhibition on burst firing using
phase plane methods. Strictly speaking, phase plane methods are only
appropriate for use on two-dimensional equation systems. We may
apply these methods to the pyramidal cell model, however, by re-
stricting the analysis to the silent phase of bursting. During the silent
phase, several variables are approximately constant so that each
compartment reduces to essentially a two-dimensional system. Spe-
cifically, in the soma compartment during the silent phase, the sodium
inactivation variableh is approximately 1 and does not change sig-
nificantly until somatic voltage increases past 0 mV, near the peak of
the leading sodium spike of the burst. Thus, leading up to burst
initiation, the soma dynamics are governed by theVs andn equations.
Similarly, the dendrite dynamics during the silent phase are essentially
governed by theVd andq equations. The gating variabless andc of
the calcium current and the voltage-activated potassium current, re-
spectively, are approximately 0, as is Ca21 concentrationCa. By
restricting our attention to the silent phase of bursting, leading up to
burst initiation, we may consider the soma trajectory in theVs 2 n
phase plane and the dendrite trajectory in theVd 2 q phase plane.

In phase plane analysis of single compartment models, the trajec-
tory is governed by the position of the nullclines of each equation, and
these nullclines are stationary for fixed values of parameters. For our
phase plane analysis of this two-compartment model, we consider
separate phase planes for each compartment, and the trajectory for
each compartment is determined by the position of its respective
nullclines. But the compartments, and thus their phase planes, are
linked through the coupling current,Icoup 5 gc(Vd 2 Vs)/p. As the
voltages evolve, the coupling current continuously changes. Hence the
nullclines in each phase plane are not stationary but are continuously
moving. During the silent phase, both voltages, and thusIcoup, evolve
slowly, and we can track trajectories in each phase plane relative to
slowly moving nullclines.

Another difference in the phase plane analysis of a two-compart-
ment model compared to that of a single compartment model is the
effect of brief synaptic current. In a single compartment model,
inhibitory synaptic current, for example, shifts down the voltage
equation nullcline, which generally has a cubic shape. When the
synaptic current shuts off, the cubic nullcline returns to its original
position. In the two-compartment model, inhibitory synaptic input to
one of the compartments has a similar effect of shifting the cubic
nullcline down. But when the synaptic current shuts off, the nullcline
may not return to its original position because the voltages in each
compartment, and thusIcoup, are not the same as before the synaptic
input.

R E S U L T S

Inhibition arriving before a burst delays burst firing

We consider the effect of a single dose of synaptic inhibition
arriving during the interburst interval on the timing of subse-
quent burst firing. We consider the pyramidal cell-interneuron
network structure with one synaptic connection from the in-
terneuron to the dendrite compartment (ginh 5 1 andgexc 5 0
mS/cm2). The interneuron is made to fire by giving it a brief
applied current pulse of sufficient magnitude to generate a
single action potential. The soma voltage traces in Fig. 2,A–C,
show a delay in burst firing caused by the inhibition. In Fig. 2A,
no inhibition is given, and the pyramidal cell displays very
low-frequency, periodic bursting. In Fig. 2,B and C, the
interneuron is stimulated so that inhibition arrives before py-

FIG. 1. Pinsky-Rinzel (1994) 2-compartment CA3 pyramidal cell synapti-
cally coupled to an excitable interneuron. Inhibitory (excitatory) synaptic
current from interneuron (soma compartment of pyramidal cell) to dendrite
compartment of pyramidal cell (interneuron) controlled by maximal conduc-
tanceginh (gexc).
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ramidal cell firing. Thebottom tracesshow the inhibitory
postsynaptic current (IPSC) at the dendrite compartment. Since
the synapse is fast and no synaptic delay is modeled, there is

only a 1- to 2-ms lag between the applied current pulse to the
interneuron and the IPSC in the dendrite compartment. Also
note that the inhibition decays quickly. The synaptic inhibition

FIG. 2. Delay in timing of burst firing due to synaptic inhibition given before burst firing (ginh 5 1 andgexc 5 0 mS/cm2). A:
pyramidal cell bursting at very low frequency with no inhibition given (soma voltage shown).B andC: interneuron fires at phases
u 5 300° (B) and 350° (C), causing phase delays of approximately 24° (B) and 55° (C) in somatic burst firing [top trace: soma
voltage;bottom trace: inhibitory postsynaptic current (IPSC) received at the dendrite compartment].D: phase resetting curve
plotting new phaseu 2 f in response to inhibition arriving at different phasesu in the burst cycle, wheref is phase delay.

2435NEURAL MECHANISMS FOR RATE AND TEMPORAL CODES



delays firing of the next burst with the amount of delay de-
pending on its time of arrival. Figure 2D shows a summary of
this effect as a phase resetting curve where the phase that
inhibition arrivesu is plotted on thex-axis, and the resultant
new phase after inhibition is plotted on they-axis. To interpret
the diagram, we associate 360° in phase to the intrinsic period
of the pyramidal cell. We calculate the time difference between
when the inhibited pyramidal cell fires and when it would have
fired in the absence of inhibition. This time is then converted to
a phasef. The new phase isu 2 f. If inhibition arrives
immediately following a burst and up to approximately 260° in
the burst cycle, it has virtually no effect on burst firing as seen
by the new phase being approximately equal to the old phase.
When inhibition arrives closer to the time of burst firing, it
delays the next burst, thus shifting its phase back. The amount
of delay or phase shift increases as the timing of inhibition
approaches the time of burst firing with a maximal delay, with
this set of model parameters, of about 55° or 100 ms.

A similar delay effect of inhibition is obtained when the
intrinsic frequency of the pyramidal cell is varied by changing
the value of the applied current to the soma compartment
Is. For Is values between approximately20.2 and 1.3mA/cm2,
where the pyramidal cell displays very low-frequency bursting
in the range from 0.4 to 4 Hz, inhibition arriving during the
interburst interval delays the following burst, and the amount
of delay increases as the timing of inhibition approaches the
time of firing. The maximal delay obtained and the range of
phases where the delay is observed depends on the intrinsic
burst frequency. For example, for higher intrinsic frequencies
obtained with larger values ofIs, delays are first observed at
earlier phases, and the maximal phase delay is larger.

In this study, we consider the inhibition arriving to the
dendrite compartment. The same delay effect is obtained if the
inhibition arrives instead to the soma compartment. In fact, the
phase where delays are first observed and the maximal phase
delay are basically the same as those obtained above.

An interesting result of this effect is that if the inhibition is
periodic such that it always arrives at the same phase of the
burst cycle, pyramidal cell firing can be entrained to a lower
frequency. For example, if the interneuron is paced to fire with
a slightly longer period than the intrinsic pyramidal cell burst
period and the interneuron fires at a phase between 260° up to
360° of the burst cycle such that the phase delay is equivalent
to the difference in periods, then the pyramidal cell will always
be inhibited at the same phase, and firing will be entrained to
the lower interneuron frequency. We have previously proved
that fast synaptic inhibition can entrain a simple neuron model
to a lower frequency than its intrinsic firing frequency and that
the lower frequency firing is a stable periodic orbit (Bose et al.
2000). A similar proof may be applied to the present network
model to show that the lower frequency firing is a stable state.
With these values of model parameters, periodic synaptic in-
hibition arriving once during the interburst interval can entrain
the pyramidal cell to fire at frequencies in the range from
almost 1.3 to 1.5 Hz, where the intrinsic burst frequency is
approximately 1.5 Hz (simulations not shown). We note that if
the inhibition arrives at a sufficiently high frequency, the
pyramidal cell frequency can be made arbitrarily small or even
completely suppressed.

In the following paragraphs, we analyze how synaptic inhi-
bition causes the delay in firing in the two-compartment pyra-

midal cell model with phase plane methods, starting with an
analysis of burst initiation. An interesting insight revealed by
this analysis is a subtle difference in the mechanism of burst
initiation than is described in the original model paper (Pinsky
and Rinzel 1994). In the very low-frequency bursting regime,
Pinsky and Rinzel (1994) describe that the duration of the
silent phase is determined by the potassium AHP current in the
dendrite compartment. In particular, they propose that when
the slow gating variable,q, for this current passes below a
threshold value, a somatic sodium spike is triggered, thus
initiating a burst. Our analysis shows that while the decay of
the gating variableq governs the duration of the silent phase,
it is actually the resulting slow rise inVd that leads to burst
initiation. So, instead of there being a threshold value forq,
there is aVd threshold,V*d, that must be crossed to trigger the
leading sodium spike of the burst. In a normal burst cycle, the
slow rise inVd is determined primarily by the decrease inq, but
inhibition arriving before a burst decouplesVd from q, thus
revealing this distinction.

For our phase plane analysis, we refer to the soma compart-
mentVs 2 n and dendrite compartmentVd 2 q phase planes
shown in Fig. 3. In both phase planes, the burst trajectory of
Fig. 2C is shown by the heavy curve (arrows indicate flow
direction). At the beginning of the silent phase (indicated by
“sp” in Fig. 3,A andB), Vs andVd are hyperpolarized resulting
in a hyperpolarizing coupling current in each compartment that
pushes theVs andVd cubic nullclines down to the positions at
the lower boundaries of the shaded regions. In the soma com-
partmentVs 2 n phase plane, the local minima or left knee of
theVs cubic is below then-nullcline (thin dashed curve). This
results in a fixed point on the lefthand branch of theVs cubic
at the intersection of the two nullclines, which prohibits the
soma from spiking. Because of the fast dynamics in the soma
compartment, the soma trajectory moves to within a small
neighborhood of this fixed point at the beginning of the silent
phase.

During the silent phase, the electrotonic coupling between
compartments causes a slow evolution of the cubic nullclines
in each phase plane. AsVs andVd depolarize during the silent
phase (solid portion of trajectory curves), the coupling current
increases and the cubic nullclines slowly move up through the
shaded regions (direction indicated by long arrows). The den-
drite trajectory moves down the lefthand branch of the slowly
rising Vd cubic and the soma trajectory tracks the fixed point at
the intersection of the slowly risingVs cubic and the
n-nullcline. Note that the trajectory in theVd 2 q plane remains
away from the knees of theVd cubic nullcline (Fig. 3C) as is
expected since firing is initiated in the soma compartment.

Let Icoup5 gc(Vd 2 Vs)/p denote the coupling current in the
soma compartment. For the uninhibited trajectory,Icoup
reaches a critical valueI*coupwhen the left knee of theVs cubic
becomes tangent to then-nullcline. The position of the cubic
nullclines at this point is indicated by the upper boundaries of
the shaded regions in Fig. 3. LetV*s be the value ofVs at the
point of tangency of theVs and n nullclines, also called a
saddle-node point. WhenIcoupincreases throughI*coup, the fixed
point on theVs nullcline disappears and, provided thatVs is
nearV*s, the soma can trigger the leading spike of the burst. In
the uninhibited trajectory, since the soma voltage is atV*s when
Icoup5 I*coup, this defines a threshold value for dendrite voltage
at burst initiation,V*d.
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We can summarize by stating two conditions for burst ini-
tiation: 1) Vs must be sufficiently close toV*s and2) Icoupmust
be greater thanI*coup. Sincecondition 1is satisfied in the silent
phase,condition 2 reduces toVd . V*d. Pinsky and Rinzel’s

description of burst initiation caused byq decreasing below a
threshold value is consistent with these two conditions. In the
intrinsic burst trajectory, since decreasingq governs the rise in
Vd, an equivalentq threshold can be defined as theq value on

FIG. 3. Phase plane analysis of silent phase of complex burst cycle. InA andB, solid bold portion of curve indicates silent phase
where phase plane analysis is valid. InA–C, during silent phaseVs andVd cubic nullclines slowly rise through shaded regions due
to coupling current between compartments (long arrows indicate direction). Nullclines at lower boundaries of shaded regions
indicate position at beginning of silent phase (labeled by “sp” on trajectory) and curves at upper boundaries indicate positions at
burst initiation.A: soma voltage trajectory of Fig. 2C (heavy curve, short arrows indicate flow direction) projected inVs 2 n phase
plane.n nullcline shown by dashed curve. A somatic sodium spike is triggered after the fixed point at the intersection of the cubic
nullcline, and then nullcline disappears atV*

s. B: dendritic voltage trajectory of Fig. 2C projected into theVd 2 q phase plane.
Inhibition is given just prior to burst firing. The top trajectory (dashed curve) indicates the uninhibited burst trajectory. The bottom
trajectory (dotted curve) is the burst trajectory delayed by inhibition. Both voltages evolve along the same trajectory in the silent phase
until the moment the delayed trajectory feels inhibition causing itsVd value to hyperpolarize. For both cases, the complex burst is initiated
whenVd 5 V*

d. C: a zoom out ofB. Burst initiation occurs when trajectory is far away from the left knee of theVd cubic.
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the upper boundary of the shaded region in Fig. 3B atVd 5 V*d.
However, for the case of synaptic inhibition given before the
burst, we will show that a true threshold inq does not exist.

The cause of delay in burst firing when inhibition is given
during the silent phase before a burst can now be described
(Fig. 3B, dotted curve shows inhibited trajectory). In response
to inhibition, theVd cubic nullcline is quickly shifted down.
Depending on the strength of inhibition, the cubic may be
shifted to a position below or within the shaded region (not
explicitly shown in the figure). TheVd trajectory approxi-
mately follows the shifted nullcline (note the sharpVd decrease
in Vd 2 q trajectory in Fig. 3B). This decrease inVd, and hence
Icoup, shifts theVs cubic down to a position below or within the
shaded region (not explicitly shown). The soma trajectory
continues to track the fixed point as it is moved to lowerVs
(since the trajectory moves back along the same path that it had
been traveling, this shift inVs is not apparent in the figure). The
slow variableq is not dependent onVd and thus continues to
decrease. When the inhibition shuts off, theVd nullcline will
quickly rise. It does not return to its position before the syn-
aptic event, however, because nowVs, Vd, and hence the
coupling current are at different values than before the inhibi-
tion. The overall effect of the inhibition is to shift both theVd
andVs cubic nullclines down, forcing the trajectories to evolve
along the cubic nullclines as they slowly move up through the
shaded region. Since the soma trajectory remains close to the
fixed point on theVs cubic,condition 1for burst firing is still
satisfied after the inhibition. The delay in firing is caused by the
additional time needed forcondition 2to be satisfied, namely
for Vd to increase pastV*d. During this time,q continues to
decrease, passing below the nominal threshold value deter-
mined by the intrinsic trajectory. Thus it is clear that it is more
appropriate to think about a threshold value forVd for burst
initiation rather than a threshold value forq.

We note that due to this delay effect of inhibition, this model
cell is not able to fire via postinhibitory rebound in the strict
sense. Namely, the cell does not immediately fire when it is
released from inhibition, regardless of when the inhibition is
given.

Inhibition arriving during burst causes advance in burst
firing and modulates burst waveform

We now consider the effect of inhibition arriving during a
burst, specifically arriving just following the leading spike of
the burst. We achieve this timing for the inhibition with the
network structure in which there is an excitatory synaptic
connection from the soma compartment of the pyramidal cell
to the interneuron (gexc nonzero) and an inhibitory synaptic
connection from the interneuron back to the dendrite compart-
ment (ginh nonzero). In this network, pyramidal cell firing
causes the interneuron to spike, thus sending inhibitory synap-
tic current back to the dendrite compartment of the pyramidal
cell (Fig. 1). Since there is no synaptic delay modeled, the
inhibition arrives just after the leading spike of the burst.

As shown in Fig. 4,A andB, such feedback inhibition during
a burst causes an advance in the firing of the subsequent burst.
When the pyramidal cell is repetitively bursting, as it is in Fig.
4 (uninhibited firing shown inA), the feedback inhibition
advances each burst and higher frequency repetitive bursting
can be obtained (Fig. 4B, top trace). The brief IPSC in the

dendrite compartment as a result of interneuron firing is shown
in the bottom traceof Fig. 4B. The amount of phase advance
depends on the strength of inhibition that is controlled byginh.
As ginh increases from zero to 0.45 mS/cm2, the phase advance
increases to, in this case, approximately 120°, equivalent to
decreasing the period by 215 ms. This phase advance by
inhibition is summarized in the phase response plot shown in
Fig. 5A. In this figure, the new phase resulting from the
inhibition is plotted versus strength of inhibition,ginh. The data
points marked with “C” (for complex burst) show the increase
in phase advance of bursting asginh is increased from 0 to 0.45
mS/cm2. Another way to view these results is in the plot of
steady-state burst frequency shown in Fig. 5B. In this plot, the
“C” data points show the increase in burst frequency from
approximately 1.5 to 2.3 Hz asginh is increased from 0 to 0.45
mS/cm2.

Whenginh is increased past 0.45 mS/cm2, the phase advance
continues to increase, and, furthermore, the burst waveform is
modified. We find a smooth transition from a full complex
burst (0# ginh # 0.45, Fig. 4,A andB) to bursts consisting of
4 spikes (ginh 5 0.5, Fig. 4C) and 3 spikes (ginh 5 0.51,D), to
bursts with 2 spikes or spike doublets (ginh 5 0.53,E), to single
spikes (ginh $ 0.57,F). Occurring with these changes in burst
profile is an increase in phase advance of the subsequent burst,
from approximately 120° for the complex burst whenginh 5
0.45 to 310° for the single spike whenginh 5 1 mS/cm2. When
the pyramidal cell is repetitively bursting, as it is here, these
phase advances correspond to an increase in burst frequency
from 2.3 Hz whenginh 5 0.45 to over 11 Hz whenginh 5 1
mS/cm2. We again refer to Fig. 5,A andB, to summarize the
increases in phase advance and frequency, respectively, with
increasingginh. In the figures, the number at each data point
indicates the number of spikes per burst. Combining these
results with those from the previous section, inhibition can
entrain the pyramidal cell to fire in a range from arbitrarily low
frequencies up to 11 Hz.

We obtain similar phase advances and modulation of wave-
form for different intrinsic burst frequencies of the pyramidal
cell when the applied current to the somaIs is changed. But the
values ofginh where the effects occur are different. For exam-
ple, when the intrinsic burst frequency of the pyramidal cell is
higher (Is 5 0.75mA/cm2), the transitions in waveform occur
at lower values ofginh, and the phase advances occurring with
the waveform changes are larger. The transitions in waveform,
however, are not smooth. Asginh is increased, complex burst-
ing gives way to irregular firing of 3 spike bursts and doublets.
Periodic firing of bursts with 4 or 3 spikes are not observed in
this case. But asginh is increased further, periodic firing of
spike doublets and single spikes is obtained. In general, for all
values of Is, regular spike doublet and single spike firing is
obtained for high values ofginh.

We also obtain similar phase advances and similar modula-
tion of waveform as inhibition is strengthened when the inhi-
bition arrives at the soma compartment instead of at the den-
drite. Again, the values ofginh where similar results are
observed are different, but phase advances and regular firing of
the same types of burst waveforms are obtained. For example,
in the case shown here, if inhibition arrives to the soma
compartment, the transition from complex bursting to regular
firing of bursts with 4 spikes occurs at a higherginh value, and
the range ofginh values over which 4-spike bursts are obtained
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is larger. Asginh is increased further, regular firing of 3-spike
bursts and spike doublets are obtained over larger ranges of
ginh values.

To understand the phase advance caused by inhibition, we

recall that in this model a burst is generated by dendritic,
calcium-based depolarization supporting somatic, sodium spik-
ing. The general effect of inhibition arriving just after burst
initiation is to lessen dendritic depolarization. This attenuation

FIG. 4. Advance in timing of burst firing and modulation of burst waveform due to synaptic inhibition given during burst.A–F:
soma voltages shown,gexc 5 5 mS/cm2, ginh values given in mS/cm2. A: with no inhibition given, pyramidal cell fires complex
bursts at very low frequency.B: weak inhibition (ginh 5 0.4) arriving during bursts (IPSC received at dendrite compartment shown
in bottom trace) phase advances following bursts by approximately 110°.C–F: with stronger inhibition during burst (IPSCs are
similar toB but with slightly larger amplitudes), burst waveform is modulated and phase advance increases as follows: (C, ginh 5
0.5) 4-spike bursts with phase advances of 220°, (D, ginh 5 0.51) 3-spike bursts with 253° advances, (E, ginh 5 0.53) spike doublets
with 282° advances, and (F, ginh 5 0.57) single spikes with 310° advances.
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of peakVd whenginh 5 0.4 mS/cm2 compared to the uninhib-
ited case can be seen when both trajectories are plotted in the
dendrite compartmentVd 2 q phase plane (Fig. 6A) and in a
time plot (Fig. 6G, bursts are offset for comparison purposes).
We note that strict phase plane analysis of solutions is only
appropriate during the silent phase of bursting, but we find that
plotting the trajectories in their phase planes is helpful in
understanding effects of inhibition during the burst. As a result
of the inhibition, Ca21 influx is suppressed during the burst
(Fig. 6B), which causes less activation of the slow potassium
AHP current with gating variableq (Fig. 6C). The inhibition
acts during the active phase of the burst (Fig. 6G, heavy bars
under bursts indicate duration of IPSC) and has decayed away
by the time the cell returns to the silent phase. Thus, in the
silent phase (Fig. 6A, beginning indicated by “sp”), the cell will
track the nullclines corresponding to the intrinsic burst case in
the Vd 2 q phase plane (heavy portion of dotted curve). As
discussed in the previous section, when no inhibition is given,
the control of the rise ofVd by q during the silent phase
determines the duration of the interburst interval. The inhibi-
tion induced attenuation of theCa and q peaks shortens the
subsequent silent phase of the burst cycle since, as can be seen

in the Vd 2 q phase plane, the inhibited trajectory begins the
silent phase (heavy portion of solid curve) at a lower value of
q and higher value ofVd. Thus it takes less time forVd to cross
V*d and trigger a somatic spike.

The change in burst profile with increasingginh occurs
similarly by an attenuation of dendritic depolarization. When
ginh is small (ginh 5 0.4 mS/cm2, for example), the inhibition
is not strong enough to prevent aVd Ca21-based spike. So
while peakVd is attenuated compared to the uninhibited case,
it is still large enough to overdrive the soma spike generator
and create a complex burst (Fig. 6G, 1st 2 bursts). If, however,
ginh is large (ginh $ 0.57, for example), the inhibition abolishes
theVd Ca21-based spike, and only the leading sodium spike of
the burst is realized. As can be seen in theVd 2 q phase plane
(Fig. 6D, solid curve) and in a time plot (Fig. 6G, last burst),
there is aVd spike due to backpropagation of the leading
sodium spike, but the dendritic response has been inhibited.
The leading spike allows a minimalCa increase (Fig. 6E, solid
curve) and thus a small increase inq (Fig. 6F, solid curve).

For intermediate values ofginh (0.5# ginh # 0.56 mS/cm2),
the dynamics are more interesting. In these cases, the inhibition
is strong enough to prevent the initiation of a fullVd Ca21-
based spike, but is not strong enough to completely hyperpo-
larize the dendrite. The partial depolarization of the dendrite
allows soma-dendritic ping-pong interactions to support a
burst. For example, whenginh 5 0.51 mS/cm2, the leadingVd
spike, shown in theVd 2 q phase plane (Fig. 6D, dashed curve)
and in a time plot (Fig. 6G, 4th burst), is the same as for larger
ginh, but the weaker inhibition allows the dendrite to remain
sufficiently depolarized to support another sodium spike. The
backpropagation of this second sodium spike again sufficiently
depolarizes the dendrite providing for a third sodium spike.
This ping-pong effect does not continue indefinitely since
dendritic depolarization and calcium influx (Fig. 6E, dashed
curve) trigger theIK2C current, which ultimately ends the
burst. Similar dynamics account for the 4-spike bursts (Fig.
6G, 3rd burst) and spike doublets that are observed forginh
values in this intermediate range.

Pinsky and Rinzel (1994) showed that by increasing applied
current to the somaIs, to mimicN-methyl-D-aspartate (NMDA)
excitation, the pyramidal cell changes from a bursting mode to
a single spiking mode with frequencies between 20 and 30 Hz.
The changes effected by increasingIs resulted from an essen-
tial shutdown of the dendritic calcium-based mechanisms. At
high values ofIs, the dendrite and soma spike at the same
frequency, causing low-amplitude, fast oscillations in calcium
concentration. These changes inCa are sufficiently fast such
that the slow gating variableq of the AHP current remains at
a constant level. Even though the constantq level is relatively
high, near peak values in the bursting mode, the AHP current
does not participate in the afterhyperpolarization of spikes or
affect the interspike interval. Also, any hyperpolarizing effect
on the soma compartment by the AHP current is counteracted
by the high somatic applied current. To summarize their re-
sults, tonic somatic depolarization weakens the effect of the
dendritic compartment. In our model, fast synaptic inhibition to
the dendrite provides a similar regulation of dendritic calcium
mechanisms. However, the frequency of single spikes that we
obtain is significantly lower than what Pinsky and Rinzel
(1994) obtain with largeIs. The reason is that even though
calcium concentration remains at low levels, the AHP gating

FIG. 5. Phase advances caused by inhibition given during burst (A) and
resultant steady-state frequency of burst firing (B) as strength of inhibition
(ginh) is varied. Data points marked with ‘c’ indicate full complex bursts.
Numbers at otherginh value indicate number of spikes per burst as burst
waveform is modulated.
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FIG. 6. Burst trajectories with inhibition arriving during the burst plotted in dendrite compartmentVd 2 q phase plane.A and
D: trajectories from simulations in Fig. 4 shown inVd 2 q plane.A: Figs. 4A (. . .) and 4B (———), bold portion of trajectories
indicates silent phase (beginning labeled by “sp”), cubicVd nullclines and location ofV*

d shown for reference.D: Figs. 4A (. . .),
4D (– – –), and 4F (———); ginh values given in mS/cm2. B, C, E, andF: corresponding time traces of dendritic intracellular Ca21

concentration,Ca (B andE) and of dendritic potassium afterhyperpolarization current gating variable,q (C andF). G: dendritic
voltage traces from simulations in Fig. 4,A–D andF, showing the effect of inhibition. Traces are offset for comparison purposes.
Heavy bar under bursts indicates duration of IPSC in dendrite compartment.
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variable q is activated with every spike and participates in
spike afterhyperpolarization and determination of the inter-
spike interval since somatic applied current levels are low.

Synchronous and out-of-phase oscillations in networks of
pyramidal cells

Pinsky and Rinzel (1994) show that a network consisting of
a number of their two-compartment pyramidal cells can exhibit
synchronous or near-synchronous oscillations if the pyramidal
cells have recurrent AMPA-mediated excitatory connections.
This mechanism for synchrony was also previously observed
by Traub et al. (1991) in their large-scale computational model.
By blocking AMPA in those studies, the cells desynchronize.
These studies did not include the effect of inhibition in pro-
moting relevant rhythmic patterns. We show here that there is
an alternate mechanism that may promote synchrony among
the pyramidal cells; namely slowly decaying inhibitory input
can be used to synchronize pyramidal cells that are weakly
connected or even unconnected.

We consider two pyramidal cells that each have reciprocal
synapses onto the same interneuron (Fig. 7A). The interneuron
makes an inhibitory synaptic connection to the dendrite com-
partment of each pyramidal cell and an excitatory synaptic
current is sent from the soma compartments of each pyramidal
cell back to the interneuron. The pyramidal cells initially are
assumed to have no excitatory connections between them-
selves. We focus on two specific rhythm patterns; synchronous
and out-of-phase oscillations.

Figure 7B shows the voltage traces of the two pyramidal
cells P1 and P2. The simulation shows that the cells start
out-of-phase with one another, but that their burst envelopes
quickly synchronize after the first few cycles. Both cells re-
ceive a common slowly decaying inhibition from the interneu-
ron I (decay rate of synaptic gating decreased tob 5 0.1
mS21). Slowly decaying inhibition is known to synchronize
cells when both cells receive the inhibition from a common
inhibitory cell, but in situations where neither cell synapses
back to the inhibitory cell (Terman et al. 1996). If the cells do
synapse on the interneuron, for one-compartment models, a
delay to the onset of inhibition is necessary for synchrony
(Rubin and Terman 2000; Terman et al. 1998; van Vreeswijk
et al. 1994). In our model, we do not require an explicit delay,
because the separation of the soma and dendrite provides an
“effective delay” to the onset of inhibition. In particular, the
inhibition acts to hyperpolarize the dendrites, which then hy-
perpolarizes the soma via the coupling current. The speed with
which the inhibition ultimately affects the soma is dependent
on the intrinsic properties of the dendrite (the rate at which it
hyperpolarizes) and the strength of the electrical coupling. If
either of these quantities is small, then there effectively will be
a small window of time from when the inhibitory cell fired to
the time the soma receives the full impact of this input. During
this time, the soma will be able to fire a sodium spike, thus
initiating the burst. This delay plays the same role that explicit
synaptic delays play in Terman et al. (1998) and Rubin and
Terman (2000). The slowly decaying inhibition has the effect
of keeping the dendritic voltages of each cell close to one
another. As we showed earlier, the dendrite voltage must cross
V*d in order for the soma to fire. The slowly decaying inhibition
allows the dendritic voltages of each cell to compress and cross

this threshold within a small time window of one another. By
varying the maximal conductance of the inhibitory synapse, we
also obtain synchrony between the cells during complex burst
mode, single spike mode, and multiple spike mode (simula-
tions not shown). We note that to achieve synchrony in the
burst mode, a much slower decay of inhibition is necessary
relative to the decay rate for synchrony of single spikes. In the
burst mode, the dendrite voltage trajectories return to the silent

FIG. 7. A: the 3-cell network. The soma compartments of both pyramidal
cells make fast excitatory synapses onto a common inhibitory interneuron. The
interneuron makes a fast inhibitory synapse onto the dendrite compartment of
each pyramidal cell.B: synchronous oscillations. Traces show the somatic
voltages of each of the pyramidal cells. The burst envelopes of the cells
become and then remain synchronized throughout the simulation, but the
number of spikes within each burst alternates from cycle to cycle.C: anti-phase
oscillations. Traces show the same cells, with the same parameter values, but
different initial conditions thanB, firing anti-phase doublets. ForB andC, Is 5
0.5, b 5 0.1, ginh 5 0.5 mS/cm2, andgexc 5 5.0 mS/cm2.
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phase with lowVd and highq values. If the inhibition decays
quickly, the dendrite trajectories will quickly follow that of an
uninhibited dendrite, as depicted in Fig. 2B. In this case, there
will be no compression betweenVd trajectories. Alternatively,
this type of inhibition can synchronize single spiking cells
since they return to the silent state with higherVd and lowerq
values. Thus the quickly decaying inhibition will now act to
delay the next spikes, as in Fig. 2B, which allows compression
of the Vd trajectories to occur.

Figure 7C shows the two cells oscillating in anti-phase with
one another. The parameter values are the same as those for the
synchronous oscillations. Thus the network exhibits bistability
of periodic solutions. The bistability is produced much in the
same way as for one-compartment relaxation oscillator models.
The synchronous solution arises as discussed above if the
dendritic voltages start out sufficiently close together. If these
voltages are not close, then an anti-phase, and, more generally,
an out-of-phase solution arises. In this case, the firing ofP1, for
example, causesP2 to receive an inhibitory input before it were
to fire. This, as depicted in Fig. 2B, may cause a delay of the
P2 burst. Thus during the timeP1 is active,P2 is moved away
from its firing threshold. Similarly whenP2 fires, it delays the
onset of aP1 burst. Moreover, depending on the strength of the
inhibition, the firing pattern of each cell within its burst is also
modulated as described previously.

The addition of weak excitatory coupling between the py-
ramidal cells does not change the qualitative behavior de-
scribed above. However, it can change the firing pattern within
a burst of each cell. Weak excitation lessens the overall level of
hyperpolarization due to the interneuron, if both excitation and
inhibition wear off on similar time scales. As seen above, the
firing pattern of the cells is sensitive to small changes in the
maximal conductance of the inhibitory synapse. As a result,
weakly connected pyramidal cells that may have fired spike
doublets while unconnected, may now fire bursts with more
spikes due to the changed balance between excitation and
inhibition (simulations not shown).

D I S C U S S I O N

We have shown that, depending on its timing, synaptic
inhibition may delay or advance burst firing in a model pyra-
midal cell. As a result, periodically timed inhibition can either
increase or decrease the firing frequency of a repetitively
bursting neuron within a range around the intrinsic bursting
frequency. Increasing burst frequency requires inhibition to
arrive at the beginning of a burst, following the initial sodium
spike. In this case, we generate periodic inhibition as a result of
the reciprocal synaptic connections between the pyramidal cell
and the interneuron. Thus the source of periodic inhibition is
the repetitive firing of the pyramidal cell itself. Decreasing
burst frequency, on the other hand, requires that inhibition
arrive before burst firing, at a constant phase of the burst cycle.
This can be achieved if the interneuron fires periodically at a
lower frequency than the intrinsic frequency of the pyramidal
cell. A possible source for periodic inhibition in this case may
be the theta rhythm. It is known that cells in the medial septum
make GABAergic connections to interneurons in CA3 and act
as a pacemaker drive for the theta rhythm (Green and Arduini
1954). If the intrinsic frequency of the pyramidal cell is greater
than theta frequency, interneurons driven to fire at theta fre-

quencies could provide the appropriate periodic inhibition to
decrease pyramidal cell frequency.

Our results show that slowly decaying inhibition can be used
to synchronize the activity of pairs of pyramidal cells. The
results suggest an alternative to the explanation of Pinsky and
Rinzel (1994) and Traub et al. (1991) that fast excitatory
AMPA-mediated synapses between these cells are responsible
for synchrony. The synchronization of actual CA3 cells could
be reflective of a two-step process; the first is recruitment of
co-active place cells due to excitatory synapses; the second is
maintenance of the synchrony due to slowly decaying inhibi-
tion. Synchrony ranges from complex bursts to single spikes,
thus encompassing the full range of firing behaviors detailed in
Fig. 4. Moreover, there is no difficulty in generalizing the
synchrony result to larger networks of pyramidal cells.

An experiment that would investigate whether inhibitory
interneurons participate in synchronizing pyramidal cells in
CA3 would be to stimulate a single interneuron and record
from two or more of its target pyramidal cells. It has been
shown in CA1, that a single interneuron can entrain the firing
of two target pyramidal cells in vitro (Cobb et al. 1995).
Similarly, in CA3, we may expect that if AMPA and NMDA
receptors are blocked, we would observe synchronous inhibi-
tory postsynaptic potentials (IPSPs) in the target pyramidal
cells entraining their firing. Additional experiments where cer-
tain synaptic receptors are blocked and then washed out could
further indicate the contributions of both inhibitory and exci-
tatory inputs to network synchrony.

The delay/advance of bursts due to inhibitory input can also
be achieved in simpler mathematical models, such as relax-
ation oscillators. With these models, inhibition applied during
a burst tends to shorten the burst length. However, in the
present model, the length of the burst changes in less intuitive
ways. For example, in Fig. 4, we note that the length of the
burst increasesas inhibition is increased fromginh 5 0.4–0.5
mS/cm2, and then decreases in response to further increase in
ginh. The initial burst lengthening results from a modulation of
the ping-pong interaction between dendrite and soma by inhi-
bition. If inhibition is weak, dendritic voltage is high during the
burst leading to fast activation ofIK2C, which ends the burst.
If inhibition is strong, the dendrite is completely suppressed
and does not support a burst of multiple spikes. For interme-
diate values, the ping-pong effect allows theIK2C current to
build up slowly, thereby elongating the burst.

Relation to experimental observations

When synaptic inhibition arrives during a burst, our model-
ing results suggest that it can modulate the dendritic calcium
spike, and thus the somatic firing pattern, in a graded manner.
Several experimental studies show complete abolition of den-
dritic calcium spikes (Buzsa´ki et al. 1996; Miles et al. 1996;
Traub et al. 1994; Tsubokawa and Ross 1996), although an
already activated calcium spike could be aborted by inhibition
resulting in a shorter calcium spike (Buzsa´ki et al. 1996). A
graded response, however, is suggested by the dendritic re-
cordings of Kamondi et al. (1998) when current pulses of
different amplitudes are injected into the dendrite. In their Fig.
7B, a strong current pulse evokes a large-amplitude calcium
spike. In response to a weaker current pulse, the dendritic
voltage displays a group of fast spikes of decrementing ampli-
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tude. We compare these results with our model results when no
inhibition arrives during the burst and when the dendrite re-
ceives a moderate level of inhibition during a burst (Fig. 6G).
When no inhibition is given,Vd displays a full Ca21-based
spike (1st burst in figure). With moderate inhibition (ginh 5 0.5
mS/cm2, 3rd burst in figure),Vd displays a group of back-
propagated spikes similar to the initial group of spikes in the
Kamondi et al. (1998) dendritic voltage trace. In the Kamondi
et al. (1998) trace, the higher frequency of the initial group of
spikes, compared to the low-amplitude spikes seen later on
during the applied current pulse, seems to suggest a partial
depolarization due to dendritic mechanisms that may support
somatic spikes in a ping-pong fashion.

In the model, as a result of inhibition arriving during a burst
and attenuating the dendritic calcium spike, the following burst
was advanced due to less activation of the potassium AHP
current. We further found that complex bursts brought on by a
distinct dendritic calcium spike occurred at lower frequencies
than bursts with fewer number of spikes and that single spikes
fired at the highest frequency. A prediction of our modeling
results is that, in pyramidal cell firing, bursts consisting of a
few spikes will be followed by shorter interburst intervals than
bursts consisting of a larger number of spikes. This firing
pattern would be a result of less activation of the potassium
AHP current with a shorter burst and thus less hyperpolariza-
tion of dendritic voltage, leading to crossing of theVd threshold
more quickly. Similarly, the model results predict that single
spikes should be followed by the shortest interval to next firing.

In this paper, we have modeled the interneuron as a single
cell, and the strength of the synaptic input to the pyramidal cell
is determined by the maximal conductance of the synaptic
current. As the dendrite compartment represents the lumped
distal dendrites of the pyramidal cell, similarly the interneuron
could be thought of as representing a pool of interneurons
impinging on the distal dendrites, and the maximal conduc-
tance could be thought of as a measure of the net inhibitory
input. In this way, the model results are not inconsistent with
the experimental results that found negligible effect of unitary
IPSPs on somatic firing patterns (Karnup and Stelzer 1999;
Tsubokawa and Ross 1996). If the single IPSP was received in
a background of excitatory input, its effect would not influence
the net dendritic depolarization significantly. Our model results
suggest that an attenuation of net dendritic depolarization dur-
ing burst generation may result in modulation of burst wave-
form.

In this model, the firing frequency and burst waveform
observed in the soma compartment were modulated by net
dendritic depolarization, which to some extent depended on
dendritic calcium concentration. For example, the occurrence
of a full dendritic calcium-based spike and the accompanying
large increase in intracellular Ca21 resulted in a complex burst
in the soma followed by a long interburst interval. But when
the dendritic calcium spike was attenuated by inhibition and
calcium influx was suppressed, shorter bursts or even single
spikes were obtained in the soma and were followed by shorter
intervals until the next firing event. These results suggest a
dependence of firing pattern and frequency on dendritic cal-
cium concentration, similar to the encoding of firing frequency
of cortical layer V pyramidal neurons by dendritic intracellular
calcium suggested experimentally (Helmchen et al. 1996) and
in models (Wang 1998).

Firing rate changes and phase precession of place cells

Our motivation for studying the effects of synaptic inhibition
on pyramidal cell firing is to understand the neural mechanisms
responsible for the firing patterns of place cells in hippocampal
region CA3. The results presented here suggest that synaptic
inhibition may be able to modulate firing rate in a way that is
consistent with the experimental observations. Also, the results
suggest that firing of the bursting cell can be modulated to
produce the phase precession phenomena as modeled in our
previous work (Bose et al. 2000). There we proposed that a
minimal model consisting of one place cellP, one interneuron
I, and one theta pacemakerT could accurately describe the
phase precession phenomena. Briefly, we argued that when the
animal is outside the place field of the pyramidal cell, the
pacemaker drives the interneuron, which in turn entrains
the pyramidal cell at the theta rhythm. Within the place field,
the pyramidal cell instead drives the interneuron, and they both
phase precess relative to the theta pacemaker. The change in
control of the interneuron from the pacemaker to the place cell
is initiated by the dentate gyrus, which sends an excitatory
input to the place cell at the beginning of the place field. The
phase precession ofP andI ends after 360° of precession when
I returns to a phase at whichT can recapture control of it. Two
of the major predictions of that model are that some interneu-
rons phase precess, and that the minimal network could deter-
mine the end of the place field with no additional external
input. There are two drawbacks of that work, however. One is
that within the place field, we only modeled phase and not
firing rate. Second, the model predicts an out-of-place field
firing rate that is too high. The model presented in this work
eliminates both of these concerns. As demonstrated, the inter-
neuron can entrain the pyramidal cell at very low frequencies
when the inhibition arrives prior to the burst. This behavior is
similar to out-of-place field activity. Additionally, when the
pyramidal cell drives the interneuron, the burst frequency is
dramatically faster and can exhibit precession. Moreover,
changes in firing rate due to changes in the overall level of
inhibition versus excitation can be achieved as the animal
passes through the place field. For example, a monotonic
decrease in the net inhibitory input to a given pyramidal cell
would have the effect of increasing its firing rate as seen by
Mehta et al. (2000). This decrease could result from added
excitation obtained due to recruitment of co-active place cells.
The mechanisms for change of control of the interneuron from
T to P and back toT remain as before. We shall demonstrate
the viability of these ideas in future work.

Our work also can be generalized to show how the same
cells can participate in multiple, disjointed place fields. For
example, in our two pyramidal cell, one interneuron network,
bistability between synchronous and anti-phase or out-of-phase
solutions exists. The synchronous solution represents firing of
place cells that share the same place field. However, these cells
might also be part of other cell assemblies that code for other
spatial locations. That the cells can also oscillate out-of-phase,
for the same parameter values and synaptic connections, im-
plies that the cells have the potential to participate in multiple
cell assemblies. What keeps the cells of different cell assem-
blies from synchronizing is the level of inhibition versus ex-
citation that any particular cell receives. The analysis of this
paper provides a framework to understand the balance between
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these two effects. We propose that depending on the timing of
the inputs, excitation and inhibition can compete or cooperate
to produce multiple types of behaviors.
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