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Abstract. The phase relationship between the activity of hippocampal place cells and the hippocampal theta
rhythm systematically precesses as the animal runs through the region in an environment called theplace field
of the cell. We present a minimal biophysical model of the phase precession of place cells in region CA3 of the
hippocampus. The model describes the dynamics of two coupled point neurons—namely, a pyramidal cell and an
interneuron, the latter of which is driven by a pacemaker input. Outside of the place field, the network displays a
stable, background firing pattern that is locked to the theta rhythm. The pacemaker input drives the interneuron,
which in turn activates the pyramidal cell. A single stimulus to the pyramidal cell from the dentate gyrus, simulating
entrance into the place field, reorganizes the functional roles of the cells in the network for a number of cycles of the
theta rhythm. In the reorganized network, the pyramidal cell drives the interneuron at a higher frequency than the
theta frequency, thus causing a systematic precession relative to the theta input. The frequency of the pyramidal cell
can vary to account for changes in the animal’s running speed. The transient dynamics end after up to 360 degrees
of phase precession when the pacemaker input to the interneuron occurs at a phase to return the network to the
stable background firing pattern, thus signaling the end of the place field. Our model, in contrast to others, reports
that phase precession is a temporally, and not spatially, controlled process. We also predict that like pyramidal cells,
interneurons phase precess. Our model provides a mechanism for shutting off place cell firing after the animal has
crossed the place field, and it explains the observed nearly 360 degrees of phase precession. We also describe how
this model is consistent with a proposed autoassociative memory role of the CA3 region.
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1. Introduction

There is considerable current interest in the ways in
which the temporal firing pattern of neurons may pro-
vide additional information that is not conveyed by the
averaged firing rate alone. This interest has led to a
search for ways in which temporal firing properties
of neurons are generated and detected in the central
nervous system (for a review, see Rieke et al., 1997;
Recce, 1999). The main goal of this article is to use
minimal biophysical modeling to demonstrate how a

group of neurons in region CA3 of the hippocampus
of freely moving rats can generate a spatially encoded
output, calledphase precession, using only limited and
spatially nonspecific inputs.

It has been proposed that hippocampal place cells
provide information for downstream neurons through
the phase relationship between neuronal activity and
the hippocampal EEG (O’Keefe and Recce, 1993).
Place cells were first described in the CA1 region of
freely moving rats (O’Keefe and Dostrovsky, 1971),
and the activity of these putative pyramidal cells (Fox
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Figure 1. Extraction of the firing phase shift for each spike during a single run through the place field of a place cell on the linear runway. A:
Each action potential from cell 3 during the one second of data shown in the figure is marked with a vertical line. B: The phase of each spike
relative to the hippocampal theta rhythm. C: Hippocampal theta activity recorded at the same time as the hippocampal unit. D: Half sine wave
fit to the theta rhythm that was used to find the beginning of each theta cycle (shown with vertical ticks above and below the theta rhythm).
Reprinted from O’Keefe and Recce (1993).

and Ranck, 1975) is highly correlated with the rat’s lo-
cation in an environment (O’Keefe, 1976; Muller et al.,
1987). The preferred firing location of a place cell is
called itsplace field.

During locomotor activity, the hippocampal EEG
has a characteristic 6 to 12 Hertz sinusoidal form called
the theta rhythm(Green and Arduini, 1954), and the
phase and frequency of this rhythm is highly correlated
across the CA1 region of the hippocampus (Bullock
et al., 1990). As the rat runs through a place field, on a
linear runway, the phase of the theta rhythm at which
a place cell fires systematically precesses. Each time
the animal enters the place field, the firing begins at
the same phase, and over the next five to ten cycles
of the theta rhythm it undergoes up to 360 degrees of
phase precession (O’Keefe and Recce, 1993; Skaggs
et al., 1996). The maximum observed phase preces-
sion was 355 degrees (O’Keefe and Recce, 1993). So,
by the phrase “up to 360 degrees of phase precession”
we mean strictly less than but in a neighborhood of
360 degrees. An example of the phase precession of a
place cell is shown in Fig. 1. During the run along the
track, the phase of hippocampal place cell firing is more
correlated with the animal’s location within the place
field than with the time that has passed since it entered
the place field (O’Keefe and Recce, 1993). This sug-
gests that the phase of place cell activity provides more
information on the location than is available from the

firing rate of the cell alone. A downstream system that
measures the phase of place cell activity would then
have more information about the location of the an-
imal in the environment and may be able to ignore
out of place field firing that occurs preferentially at
a phase that is different from the range found in the
place field. Place cells in both the CA1 region and
the upstream CA3 region are found to undergo phase
precession (O’Keefe and Recce, 1993).

Skaggs and coworkers (1996) confirmed this find-
ing and additionally found that the initial phase was
consistent among a large number of place cells in the
CA1 region. They also found that dentate granule cells
that project to CA3 undergo a small number of cy-
cles of phase precession and therefore provide a syn-
chronized, timed excitation to the CA3 pyramidal cells.
Marr (1971) proposed that this input from the dentate
granule cells provides a seed input for a memory re-
trieval and pattern completion process that is driven
by the excitatory feedback among pyramidal cells in
the CA3 region (Treves and Rolls, 1994; Gibson and
Robinson, 1992; Hirase and Recce, 1996). The phase
precession of place cells may be an essential part of
this pattern completion process.

The hippocampal regions also contain a variety
of interneurons that contribute to the generation of
hippocampal oscillations. These interneurons project
to place cells as well as to other interneurons (Freund
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and Buzs´aki, 1996). Skaggs and coworkers (1996)
measured the phase of interneuron firing in the CA1 re-
gion and found that on average the interneurons do not
phase shift. On the other hand, Csicsvari and cowork-
ers (1998) found a large, significant cross-correlation
between pyramidal cell and interneuron pairs, where
the pyramidal cell firing precedes interneuron firing by
tens of milliseconds. This implied high synaptic con-
ductance from pyramidal cells to interneurons suggests
that interneurons could phase precess. This sugges-
tion may not be inconsistent with the experimentally
observed average properties of interneurons (Skaggs
et al., 1996) if only a subset is shown to transiently
phase precess.

The medial septum is also involved in modulating the
temporal firing patterns of hippocampal place cells and
interneurons. The projection from the medial septum to
the hippocampus is both GABAergic and Cholinergic
(Freund and Antal, 1988), and it provides a pacemaker
to drive the theta rhythm (Green and Arduini, 1954).
We have shown that the interburst frequency of some of
the neurons in the medial septum is a linear function of a
rat’s running speed on a linear track (King et al., 1998).

In summary, the observed properties of the phase
precession phenomenon include the following: (1)
place cells fire in only one direction of motion dur-
ing running on a linear track; (2) all place cells start
firing at the same initial phase; (3) the initial phase is
the same on each entry of the rat into the place field of a
place cell; (4) the total amount of phase precession is al-
ways less than 360 degrees; (5) the cells in the dentate
gyrus that project to CA3 undergo a smaller number
of cycles of phase precession; (6) in one-dimensional
environments, the phase plus firing rate provide more
information of the rat’s location than the firing rate of
a place cell; (7) phase is more correlated with the ani-
mal’s location in a place field than with the time since
the animal entered the place field; and (8) background
firing of place cells outside of the place field occurs
at a fixed phase that is closest to the initial phase that
occurs when the animal enters the place field.

Several models have been proposed to explain the
neural basis of the phase precession phenomenon. The
model proposed by Tsodyks and coworkers (1996) pro-
vides an environment-driven phase precession, which
is certain to be more correlated with position than time.
Other models of environment-driven phase preces-
sion have been proposed by Wallenstein and Hasselmo
(1997) and Jensen and Lisman (1996). In these mod-
els, the phase correlation in CA1 pyramidal cells results
from CA3 input that is phase precessing. Kamondi and

coworkers (1998) have proposed a model for phase pre-
cession in the CA1 region that does not depend on pre-
cisely timed inputs, but instead the phase is a result
of the total amount of depolarization of the place cells.
In this model, the total amount of phase shift is much
less than 360 degrees.

In this article, we describe a minimal biophysical
temporal model for phase precession in the CA3 region
of the hippocampus. It differs from prior models in
that (1) it generates the spatial correlation of the phase
precession from a single spatial input and from infor-
mation about the animal’s running speed; (2) it does
not require phase precession in the upstream projec-
tion cells; (3) it does not require a spatially dependent
depolarization of place cells; (4) it provides a mecha-
nism for determining the end of the place field; (5) it
provides a mechanism for up to 360 degrees of phase
shift; and (6) it is consistent with associative memory
models for the CA3 region.

Alternatively, our model does not include a mecha-
nism to account for the firing rate of place cells. The
activity of place cells includes both rate and timing in-
formation. In the present model, we are only concerned
with the timing properties.

This minimal model, which is composed of two neu-
rons (one pyramidal cell and one interneuron) and a
pacemaker input, can explain the onset, occurrence,
and end-of-phase precession. The network has two im-
portant dynamic patterns. The first is a stable attracting
state, which mimics the behavior of CA3 outside of the
place field. The second dynamic pattern is a transient
state that encodes the behavior of CA3 within the place
field. The main difference between the two states is the
input that controls the firing pattern of the interneuron.
In the stable state, the pacemaker input controls in-
terneuron firing, while in the transient state, excitation
from the pyramidal cell does. The seed from the den-
tate gyrus switches control from the pacemaker to the
place cell to initiate phase precession, and the duration
of phase precession is determined by the duration of the
transient dynamics as the network returns to the stable
state.

The transient place cell firing in the place field is a
temporal process in which the phase of firing of the cell
in each cycle of the theta rhythm strictly depends on
the phase in the prior cycle of the theta rhythm. This
is in contrast to all other models of phase precession
in which the phase of firing of place cells depends on
the external inputs arriving at that cycle and not on
the phase in other cycles of the theta rhythm. For this
reason, to account for the spatial correlation of phase
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precession, the present model requires that the amount
of phase change during a theta cycle depends linearly
on changes in the animal’s running speed. Neurons in
the medial septum have been found to have an inter-
burst frequency that is a linear function of the running
speed of a rat (King et al., 1998). Also, the theta fre-
quency in the hippocampus of rats running on a linear
track has been found to be highly correlated with the
rat’s speed (Recce, 1994). Since the phase-precession
data includes a range of running speeds (O’Keefe and
Recce, 1993), this implies the interburst frequency of
place cells is also a function of the animal’s running
speed. These data provide a mechanism to maintain a
spatially correlated phase precession in the proposed
temporal model.

The model generates two different types of spatial
information. First, it determines the length of the place
field. The place field ends when phase precession ends,
which occurs when the pacemaker regains control of
the interneuron from the place cell. Second, the model
determines the location of the animal within the place
field. Note that these two types of spatial information
are generated from the seed, a single location specific
input, and the velocity of the animal, a nonspatially
specific input.

Our model supports two themes that have arisen in
other neural modeling studies. The first is that the con-
trol of the dynamics in a network may switch among
different neurons over time. These switches can occur
in the absence of any synaptic changes. Instead, dy-
namics are governed by the timing of events relative
to one another (Ermentrout and Kopell, 1998; Nadim
et al., 1998). The second theme concerns the role of
inhibition in networks of neurons. In recent studies
(Terman et al., 1998; Rubin and Terman, 1999; van
Vreeswijk et al., 1994), it is shown that inhibition may
have counterintuitive effects on the network, such as
synchronizing mutually coupled inhibitory cells. In the
present study, we use inhibition tospeed upthe oscil-
lations of the pyramidal cell.

The primary prediction of this model is that phase
precession is a spatially specific output that results from
an integration of a spatial signal from the dentate gyrus
at a single point and a nonspatial velocity coded signal
originating from the medial septum. We predict that no
upstream physiological signal exists that contains as
much information about the animal’s spatial location
as the phase of hippocampal place cell firing in CA3.
This prediction differentiates our model from all other
models of phase precession that require an input that

is as spatially precise as the phase precessing output.
Another prediction, which is easier to address experi-
mentally, is that a subset of the interneurons transiently
phase precesses. The model also strongly depends on,
and thus predicts, continued evidence for a linear fre-
quency dependence of pyramidal cells in CA3 and pro-
jection cells in the medial septum on running speed of
the animal.

2. Model and Methods

2.1. Model

Our minimal biophysical model for phase precession
in CA3 consists of a pyramidal or place cell, an in-
terneuron, and a pacemaker input, denotedP, I , andT ,
respectively. The pacemaker inputT may be thought
of as an individual cell or perhaps a conglomeration
of inputs that produce the theta rhythm. The synap-
tic connections amongP, I , and T reflect the net-
work architecture of CA3 (see Fig. 2). Specifically,
the pyramidal cellP receives fast, GABA-mediated
inhibition from the interneuronI and projects toI
via fast, glutamatergic excitation. The pacemaker input

Figure 2. Two cell and pacemaker network model consisting of a
pyramidal or place cell (P), an interneuron (I), and a pacemaker input
(T). Synaptic connections reflect CA3 network architecture (arrow
indicates excitatory and filled circle indicates inhibitory synaptic
connections).
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T projects only toI through fast, GABA-mediated
inhibition.

Our analysis does not depend on a specific model for
the individual neurons; hence, we use a general form for
the model equations for each cell. The few restrictions
we require on the model properties (outlined below) are
satisfied by a large class of neural oscillators, including
the Morris-Lecar (Morris and Lecar, 1981) equations,
which have been successfully used in numerous mod-
eling studies (Rinzel and Ermentrout, 1997; Somers
and Kopell, 1993; Terman et al., 1998; Terman and
Lee, 1997), and which we use for our simulations (see
Appendix B).

TheP cell is a general neural oscillator, modeled by
equations of the following form:

v′p= f p(vp, wp)

w′p= εgp(vp, wp),
(1)

where′ denotes the derivative with respect to timet .
The variablevp represents the membrane voltage of
the place cell and the functionf p is composed of the
sum of the ionic and leakage currents found in the cell
as well as an applied current. We considerP to have
bursting behavior and the variablevp to model the burst
envelope and not to account for individual, fast spikes
occurring during the active phase of the burst. In this
general class of neural models, the variablewp mod-
els the activation gating variable of an outward, ionic
current, usually potassium-mediated, and the function
gp governs the activation gate dynamics of this con-
ductance. The parameterε controls the time scale of
thewp dynamics. Our analysis assumes thatε is small
(ε ¿ 1), so that this general neural oscillator behaves
as a relaxation oscillator.

The model for the interneuronI also has a general
form, but we considerI to be an excitable cell, rather
than oscillatory. The model equations are

v′i= fi (vi , wi )

w′i= εgi (vi , wi ),
(2)

wherevi represents the membrane voltage ofI andwi

represents the activation gating variable of an outward,
ionic current. As described below in terms of its phase
plane, we require that it is able to fire in response to
either excitation received fromP or inhibition received
from T .

The equations for the pacemakerT are completely
general. In fact, we simply assume thatT oscillates

between 0 and 1, with a periodTT in the theta range.
When the value ofT exceeds a prescribed threshold,
then we assume thatT fires, and we measure the dura-
tion of its “spike” as the time spent above the threshold.

For the network model, appropriate synaptic currents
are added to the individual cell models. In the synap-
tic current variables and parameters, the first subscript
denotes the presynaptic cell and the second subscript
denotes the postsynaptic cell. The network equations
for P are

v′p = f p(vp, wp)− gipsip(t − σi p)[vp − vi p],

w′p = εgp(vp, wp).
(3)

For I , the network equations are

v′i = fi (vi , wi )− gpispi (t − σpi )[vi − vpi ]

− gti sti (vi − vt i ), (4)

w′i = εgi (vi , wi ).

This form of the synaptic currents has been used in
other modeling studies (Ermentrout and Kopell, 1998;
Wang and Rinzel, 1992). The variablessip, spi , andsti

govern the dynamics of the synaptic currents, and each
satisfies an equation of the form

s′ = αH∞(v − vθ )(1− s)− βs, (5)

whereα and β are the rise and decay rates of the
synapse, andvθ is the synaptic activation threshold.
The Heaviside step functionH∞ acts as an activation
switch for the synapse;H∞(v− vθ ) is 0 if v <vθ and
is 1 if v≥ vθ . The parametersgpi , gti , andgip are the
maximal conductances of these synaptic currents, and
vpi , vt i , andvi p are the reversal potentials. In particu-
lar, vi p andvt i are set to make the associated currents
outward, whilevpi is set to make the synaptic current
inward. Finally, the parametersσi p andσpi represent
a synaptic delay fromI to P andP to I , respectively.
Without loss of generality, we assume there is no delay
betweenT and I .

2.2. Phase Plane Methods

In this section, we describe the phase plane methods
we use to analyze the model. We first explain how the
behavior of each cell when isolated from the network
can be studied in the phase plane and then describe
the effect of network interactions. An important aspect
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of our analysis that is worth mentioning at this initial
stage is that we often compare behavior of uncoupled
and coupled versions ofP. By the former, we mean
the intrinsic P cell oscillation in isolation from the
network. By the latter, we mean the oscillation of the
sameP cell when it must now interact withT and I
in the network. One of the important conclusions of
our analysis is that the network dynamics can evolve
in dramatically different ways, depending on the firing
sequence of the cells.

The oscillatory behavior of the isolatedP cell can be
analyzed in thevp−wp phase plane where the trajec-
tory of the cell is determined by the nullclines of each
equation (see Fig. 3). Thevp-nullcline, denotedCP,
is a cubic-shaped or N-shaped curve found by solving
f p(vp, wp)= 0 forwp. Thewp-nullcline, denotedDP,
is a sigmoidal-shaped, nondecreasing curve found by
solving gp(vp, wp)= 0. To ensure that the isolatedP
cell is oscillatory, parameters in the functionsf p andgp

are chosen so thatCP andDP intersect uniquely along
the middle branch ofCP. As in prior models (Somers
and Kopell, 1993; Terman and Lee, 1997; Terman et al.,
1998), we require that the following condition ongp

holds near the left branch ofCP:

∂gp

∂vp
> 0. (6)

Following standard analysis of relaxation oscillators,
in the limit ε= 0, the burst trajectory of theP cell can
be traced in the phase plane. As displayed in Fig. 3,
the silent phase of the burst occurs as the trajectory
travels down the left-hand branch of the cubic-shaped
nullclineCP, while during the active phase of the burst,
the trajectory travels up the right-hand branch ofCP.
The transitions between the active and silent phases of
the oscillation occur when the trajectory reaches the
knees of the nullcline. One cycle of the burst oscil-
lation is obtained by tracing along the four different
“pieces” of the trajectory. Specifically, settingε= 0 in
(1), we obtain the following, fast equations governing
the transitions of theP cell between its active and silent
states:

v′p = f p(vp, wp)

w′p = 0.
(7)

In this case,wp acts as a parameter in thevp equa-
tion, which is simply a scalar equation and thus easy
to analyze. The equations governing the slow variation
of vp during its active and silent states are obtained

by rescaling time usingτ = εt in (1) and then setting
ε= 0:

0 = f p(vp, wp)

ẇp = gp(vp, wp),
(8)

where˙ denotes the derivative with respect to the slow
time variableτ . To mathematically construct the os-
cillation cycle, we denote the left and right knees of
the nullclineCP by (vLK, wLK) and(vRK, wRK) respec-
tively. Results by Mishchenko and Rozov (1980) imply
that forε sufficiently small, an actual periodic orbit lies
O(ε) close to a so-called singular periodic orbit. The
singular periodic orbit consists of four pieces, all of
which are constructed withε= 0. The first is a solution
of (7) that connects(vLK, wLK) to some point(vR, wLK)

on the right branch ofCP (rising edge of burst). The
next piece is a solution of (8) that connects(vR, wLK)

to (vRK, wRK) (active phase of burst). The third piece is
a solution of (7) that connects(vRK, wRK) to (vL , wRK)

(falling edge of burst). The final piece is a solution of
(8) that connects(vL , wRK) back to(vLK, wLK) (silent
phase). Note that with respect to the slow time scale
τ , the jumps between the active and silent states of the
burst are instantaneous. We denote the period of the
singular periodic orbit byTP.

The nullclines for the model interneuron with ex-
citable behavior have the same qualitative shape as
those for theP cell, except model parameters are ad-
justed so that the cubic-shapedvi -nullcline, denoted
CI , and the sigmoidalwi -nullcline, DI , intersect along
the left branch ofCI . The intersection point of the null-
clines is a stable fixed point along the left-hand resting
branch ofCI , that ensures that the isolatedI cell is
unable to oscillate on its own. This change in the null-
clines can be obtained, for example, by shifting the
half-activation voltage of the outward current to lower
voltage levels. A property we assume for the intersec-
tion point of the nullclines is that this point be close
to the left knee of the nullclineCI , thus allowing the
interneuron to fire either in response to excitation from
theP cell or via rebound following inhibition from the
pacemakerT . As with P, we assume that near the left
branch ofCI ,

∂gi

∂vi
> 0. (9)

In our geometric analysis in the phase plane, the
general effect of introducing a synaptic current is to
either raise or lower the cubic-shaped nullcline of
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the postsynaptic cell without qualitatively changing
its shape, as long as the maximum synaptic conduc-
tance is not too large relative to the maximum ionic
conductances. Since (5) contains no factor ofε, the
synapses turn on and off on the fast time scale gov-
erned byt ; thus they are instantaneous with respect
to the slow flow of the trajectories governed byτ .
To examine the effects of the synaptic currents on the
P cell in our network model, we denote the solution
curve of f p(vp, wp)− sip(t − σi p)gip[vp− vi p] = 0
by CPI . Since P receives inhibition,CPI lies below
CP (see Fig. 3). We assume that the nullclineDP and
CPI intersect somewhere along the left branch ofCPI .
This intersection point will be a stable fixed point for
the inhibitedP cell, with the result that the inhibitedP
cell will not spontaneously oscillate. Further note that
this intersection point will lie below the left knee ofCP

because of our restriction (6)∂gp

∂vp
> 0 (see Somers and

Kopell, 1993).
The effect onI of the excitatory synaptic current

from P and the inhibitory synaptic current fromT is
that its cubic-shaped nullcline can be raised or lowered
depending on the activation ofspi andsti . For any pos-
sible case, we assume that thewi -nullcline DI contin-
ues to intersect the synaptically perturbedvi -nullclines
along their left branches, thus ensuring thatI remains
excitable. As noted previously, we require thatI be
able to fire due to either excitation received fromP
or via rebound from inhibition received fromT . For
example, assume thatI is sufficiently close to the inter-
section point of the nullclines when it receives synap-
tic input. If the input is excitatory fromP, the cubic-
shaped nullcline of theI cell is instantaneously raised
releasing the trajectory from its left branch. The tra-
jectory is then attracted to the right branch of the raised
nullcline, thus initiating an action potential. If the input
is inhibitory fromT , the cubic-shaped nullcline is low-
ered and the trajectory moves left toward the new stable
fixed point at the intersection of the perturbed nullcline
andDI . For sufficiently strong inhibition, because of
our restriction (9), the new fixed point will lie below
the left knee ofCI . When the synaptic inhibition shuts
off, the nullcline rises back again towardCI , and the
trajectory is attracted to the right branch, initiating an
action potential via postinhibitory rebound. The ability
of the I cell to fire due to these two different stimuli is
critical to our analysis.

The mathematical analysis for this article, as well
as the specific equations used in the simulations, can
be found in Appendices A and B, respectively. We

work throughout in the appropriateε= 0 limit and then
use results of Mischenko and Rozov (1980) to obtain
theε small result. Our proofs depend on the use of a
time metric that allows us to define times between cells
and also times over which relevant behavior occurs. It
turns out that we can relate many of the times associ-
ated with the network model back to times associated
with the isolated cells.

3. Results

3.1. System Properties

We first present an overview of our results that provides
a qualitative description of how and why the model
generates phase precession. In the second part of this
section, we provide the analysis of our model and spe-
cific analytical results.

There exist two different, important firing patterns
for the simple network. The first firing pattern repre-
sents network behavior when the rat is outside of the
place field. The second represents network behavior
when the rat is inside the place field. The difference
between these two behaviors is directly correlated to
whetherT or P controls the firing ofI . An important
aspect of our analysis is to identify mechanisms that al-
low the control of firing to be shifted betweenT andP.
As described below, the first change in control fromT
to P requires a brief external input to the network oc-
curring when the rat first enters the place field. The
second change in control fromP back toT is deter-
mined internally by the network and signals that the
place field has ended.

The firing pattern representing out-of-place field be-
havior is a stable periodic state that we call theTIP
orbit. In this stable pattern, the pacemakerT controls
the firing of I , which fires via postinhibitory rebound.
In turn, I modulates the firing ofP, so that it fires
phase-locked to the underlying theta rhythm. The ef-
fect of the inhibition fromI is to either delay or ad-
vance the firing ofP, depending on where inP’s cycle
the inhibition occurs. Thus,P is phase-locked to the
theta rhythm and does not phase precess whether its
intrinsic frequency is higher or lower than theta (see
Section 3.2.1). Moreover,P can only fire when re-
leased from inhibition fromI .

Simulation results from the simple network where
each cell is modeled with Morris-Lecar equations are
shown in Fig. 4. During the first five bursts of the P cell
(top trace), the network is in the stableTIP orbit. The
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Figure 4. TIP andPIT orbits for the two cell and pacemaker net-
work with each cell modeled by Morris-Lecar equations. TheT spike
is not explicitly shown and is denoted by dashed vertical lines. The
network oscillates in theTIP orbit for the first 5 cycles. ThePIT
orbit is initiated by the arrival of the memory seed (heavy arrow at
535 msec, which lasts for 3 msec) and phase precession occurs over
the next 7 cycles (under heavy bar). The network returns to the stable
TIP orbit for the remainder of the simulation. The model equations
and parameter values are given in Appendix B.

sequence of cell firing withT firing first (not explic-
itly shown; time of peak indicated by dotted vertical
lines), followed byI (lower trace) and thenP is evi-
dent. During theT spike, I is inhibited as seen by the
hyperpolarization in theI voltage trace immediately
following the peak ofT . During theI spike (after its
release from inhibition fromT), P is inhibited as seen
by the hyperpolarization in theP voltage trace imme-
diately preceding the spike.

Clearly, the out-of-place field firing rate in theTIP
orbit is higher than experimentally observed. This high
out-of-place field firing leads to a loss of spatial speci-
ficity to a downstream detector of firing rate but has
minimal effect on a downstream detector that uses the
phase of firing to determine the spatial location of the
animal. The simplest way to reduce or remove the out-
of-place field firing is to have a spatial inhibitory signal
that provides inhibition at all points outside of the place
field. This approach is not taken here because it relies
on spatial information upstream from the hippocampus
about the size and extent of the place field. The goal of

this model is to generate the spatial phase correlation
from less spatially specific upstream information. Fol-
lowing the description of the properties of the simple
model, we show in Section 3.2.7 how to completely
suppress the out-of-place field firing, without resorting
to additional upstream spatial information (see Fig. 9).

The second firing pattern, representing behavior
within the place field, is a transient state that we call
thePIT orbit. ThePIT orbit is initiated by a brief, soli-
tary dose of excitation toP, representing a memory
seed externally provided from the dentate gyrus. The
seed causesP to fire earlier than it would have in the
TIP orbit and thereby allowsP to seize control ofI ’s
firing. TheP cell is able to fire via its intrinsic oscilla-
tory mechanisms for as long as it controlsI . Thus, the
seed has the effect of switching control ofI from T to
P. During thePIT orbit, the period ofP firing, TP, is
less than the period ofT , TT , regardless of the intrinsic
period of P, provided thatTP andTT are not too dis-
parate. The reason phase precession occurs in thePIT
orbit is somewhat subtle and depends both on the intrin-
sic periods ofP andT and also on the time duration of
inhibition from I to P. If this inhibition is short-lasting,
then duringPIT, P fires at its intrinsic frequency. Thus
if TP < TT , it is clear that precession will occur. Al-
ternatively, if the inhibition is long-lasting, then during
PIT, P fires at a substantially faster rate than its in-
trinsic frequency. Counterintuitively, this increase in
firing rate is most strongly dependent on the strength
of the inhibitory synaptic conductance fromI to P. In
Section 3.2.2, we clarify how inhibition may speed up
the firing rate ofP. For this case, precession occurs
whether the intrinsic periodTP is less than, greater than
or equal toTT . In either case, sinceP controls the fir-
ing of I in thePIT orbit, forcing I to fire with everyP
burst,I also phase precesses.

Figure 4 illustrates thePIT orbit and phase preces-
sion for the Morris-Lecar model network. Arrival of
the memory seed toP is modeled by a brief, excita-
tory, applied current pulse (heavy arrow) that causes
the early firing ofP and the interruption of theTIP
orbit. Due to the excitation fromP, I overcomes the
inhibition fromT and fires withP, as seen by the slight
hyperpolarization in the peak of theP burst. Over the
next six cycles (under the heavy bar),P and I phase
precess relative toT . The firing of P due to intrinsic
oscillatory mechanisms is evidenced by the smooth rise
to threshold displayed by its voltage trace.

The phase precession ofI provides an internal mech-
anism that returns the network to theTIPorbit. Namely,
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in PIT, I continues to receive inhibition with eachT
spike, but the timing or phasing of the inhibition is such
that postinhibitory rebound does not occur at each cy-
cle. For example, during the first two spikes of phase
precession, the inhibition fromT arrives during theI
spike, as seen by the lower spike heights, and rebound
does not occur. Over the next three cycles,T inhibits
I during early portions of its afterhyperpolarization
when rebound is not possible. But by the last spike
of phase precession,I is inhibited sufficiently late in
its afterhyperpolarization, resulting in a rebound spike
that interrupts thePIT orbit, returning the network to
the stableTIP orbit. The recapture ofI by T signals
the end of the place field and occurs whenP andI have
precessed through up to 360 degrees of phase, which is
consistent with experimental data (O’Keefe and Recce,
1993). Thus, the precession ofI is necessary for
determining the end of the place field.

The brief dose of excitation in the form of the mem-
ory seed reorganizes the functional roles of the cells in
theTIPandPIT orbits. Namely, the excitation switches
the control ofI from T to P. T is able to regain control
of I only whenP and I have precessed through up to
360 degrees. Note that this functional reorganization
occurs without any changes in the coupling or intrin-
sic properties of the cells. We emphasize that, in the
model, phase precession is a transient phenomena that
ceases with no further input to the network. Thus, the
length of time over which the pyramidal cell precesses,
or alternatively, the length in space over which preces-
sion occurs, completely determines the spatial extent
of the place field. In this way, the network generates
the temporal code embodied in phase precession.

In the following analytic results section, we provide
mathematical justification for the qualitative observa-
tions described here (see Table 1 for a list of relevant
symbols). In particular, in Section 3.2.1, we discuss the
existence of theTIP orbit. In Sections 3.2.2 to 3.2.5,
we focus on thePIT orbit and determine parameters

Table 1. List of relevant symbols.

TT = intrinsic period of the pacemaker input CP = intrinsic P cell cubic

TP = intrinsic period of theP cell CI = intrinsic I cell cubic

Ä= TT − TP CPI = P cell cubic withsip = 1

TPC= period ofP cell in TIP network CI P = I cell cubic withspi = 1

TP̄ = period ofP cell in PIT network CIT = I cell cubic withsti = 1.

τTon = duration of the inhibition fromT to I τIon = duration of inhibition fromI to P

τP A= duration of the active state of the intrinsicP cell τP R= duration of the silent phase of the intrinsicP cell

σi p = synaptic delay fromI to P σpi = synaptic delay fromP to I

Note: All times are measured atε= 0 in slow time scaleτ .

that most strongly affect this network behavior. In
Section 3.2.6, we show how experimentally supported
data relating running speed to interburst frequency of
the pyramidal cells can be used to achieve a spatial cor-
relation in this temporal model. Finally in Section 3.2.7,
we introduce a modification to the simple network that
suppresses out-of-place field firing.

3.2. Analysis

3.2.1. The Network Oscillates at Theta Frequency
Outside of the Place Field. The trajectories ofP and
I in theTIP orbit can be traced along nullclines in their
phase planes. We may assume that atτ = 0, T fires,
the trajectory ofP lies on the left branch ofCP with
wp(0) = w? and the trajectory ofI lies somewhere
along the left branch ofCI . In response to the inhibi-
tion received fromT , I falls back toCIT and is released
from inhibition atτ = τTon. We assume thatwi (0) is
such thatwi (τTon) lies below the left knee ofCI . Thus
at τ = τTon, I fires by postinhibitory rebound. Allow-
ing for synaptic delay fromI to P, atτ = τTon+σi p, P
feels inhibition fromI and as a result falls back toCPI .
At τ = τTon + σi p + τIon, P is released from inhibition.
We show in Appendix A thatw? can be chosen such
thatwp(τTon + σi p + τIon) < wLK . With this condition,
when P is released from inhibition, it will fire. De-
pending on the position of the trajectory ofP on the
left branch ofCP when the inhibition fromI arrives, at
τ = τTon+ σi p, the firing of P has either been delayed
or advanced relative to its intrinsic frequency. We also
show in Appendix A that whenT fires again atτ = TT ,
wp(TT ) = w?, thus ensuring that this cycle of firing
repeats, and we show that theTIP orbit is stable. Note
that for P to fire, it must be released from inhibition;
it is unable to take advantage of the fact that it is an
oscillatory cell.

In Fig. 5, we superimpose the phase portrait of the
coupledP cell onto that of the uncoupledP cell to
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clarify the differences in their trajectories. In the fig-
ure, we have used lowercase letters to denote times
that these cells spend in parts of their orbit where their
trajectories differ. The letters with bar superscripts cor-
respond to the coupledP cell. Note thatTPC − TP =
c̄+ d̄ − (b− b̄). SinceTPC = TT , a necessary con-
dition for theTIP orbit to exist is that the difference in
intrinsic periods ofP andT ,Ä = TT−TP, must satisfy

Ä = c̄+ d̄ − (b− b̄). (10)

The differenceb− b̄> 0 is related to the magnitude of
∂gp

∂vp
. Since∂gp

∂vp
> 0, cells evolve through the same Eu-

clidean distance onCP more slowly than onCPI . Thus
b− b̄ measures the additional time that the uncoupled
P cell must spend to cover the same Euclidean dis-
tance along the left branch ofCP that the coupledP
cell covers onCPI .

In the case whenÄ>0, a stableTIPorbit is obtained
if c̄+ d̄> b− b̄. This can be achieved by choosing
wp(τTon+ σi p), and hencew?, such that the trajectory
of P enters a neighborhood of the stable fixed point
at the intersection ofCPI and DP within the duration
of τIon. The trajectory ofP will remain near the fixed
point until P is released from inhibition. In this way,
the firing of P is delayed andP can be phase-locked
to the theta rhythm.

When Ä<0, a stableTIP orbit is achieved if
b− b̄ > c̄+ d̄. In this case,wp(τTon+ σi p), and hence
w?, are chosen so that the trajectory ofP remains suf-
ficiently far from the fixed point at the intersection of
CPI and DP during τIon. The trajectory displayed in
Fig. 5 is representative of this case. Since cells evolve
faster onCPI than onCP, the timeb̄+ c̄+ d̄ can be
shorter than the timeb. This shows that inhibition can
be used to speed upP. Thus,P can be phase-locked
to the theta rhythm ifTP is greater thanTT , as long as
the periods are not too disparate.

Observe that (10) can also be rewritten as

Ä = τIon + d̄ − b. (11)

For fixedÄ, bothbandd̄ may increase asτIon increases.
An increase inb means thatP must feel inhibition at
higher values ofwP along the left branch ofCP. In turn,
this means that inTIP the phase difference betweenT
andP will be greater. Hence, the durationτIon controls
the phase difference betweenT andP in theTIP orbit.

In summary, theTIP orbit can be obtained whether
the differenceÄ= TT − TP is positive, negative, or
zero. The effect of the inhibition fromI to P depends

not on its durationτIon but on its timing during the cycle
of P. We note that while theTIP orbit can be achieved
with either positive or negativeÄ, independent of the
durationτIon, other results of our model—namely, ob-
taining thePIT orbit—require that for a short-lasting
τIon,Ä must be positive.

3.2.2. Within the Place Field, Both P and I Phase
Precess. Similar to above, we analyze thePIT orbit
by describing the trajectories ofP andI in their phase
planes. In the following analysis, we assume that near
the right branch ofCP, ∂gp

∂vp
= 0. Thus the speed at which

P evolves along the right-hand branches ofCP andCPI

will be the same. Our analysis continues to hold for
∂gp

∂vp
> 0 but sufficiently small. We also assume that near

the right branch ofCI ,
∂gi

∂vp
= 0.

For simplicity, we assume that the seed arrives at
τ = 0, so that bothT and P fire simultaneously. The
trajectory ofP jumps to the right branch ofCP. The I
cell receives inhibition fromT during the time interval
(0, τTon), but, atτ = σpi , I fires due to excitation from
P. At τ = σpi + σi p, P receives inhibition fromI and
falls to the right branch ofCPI . What happens next
is most strongly determined byτIon, the time length
over whichP feels inhibition fromI . The timeτIon,
however, is hard to define precisely as it changes during
each cycle of the phase precession (see Appendix A for
clarifications of this definition). We describe how the
PIT orbit is obtained in the cases whenτIon is short and
when it is long relative to the duration of the active state
of P.

First consider the case whenτIon is short, in partic-
ular, τIon <τP A, the duration of the active state of the
uncoupledP cell. At τ = σpi + σi p, let the distance
alongCPI from the position of the trajectory ofP to
the right knee be greater thanτIon. Then the inhibi-
tion to P shuts off beforeP jumps down from the right
knee ofCPI . So atτ = σpi + σi p + τIon, P returns to the
right branch ofCP and leaves the active state through
the right knee of its intrinsic cubicCP. In Fig. 6A, we
have drawn the trajectory thatP follows one cycle af-
ter the seed is given. It follows this trajectory until the
time at which the network returns to theTIP orbit. We
denote byTP̄ the period ofP during phase precession.
In this case,TP̄ = TP. Thus, a necessary condition for
phase precession in this scenario isTP < TT orÄ>0.
Here, the sole factor that drives the precession is the
differenceÄ in the intrinsic periods ofP andT .

It is instructive to contrast the phase portrait ofI with
that of P duringPIT. As opposed to the clean and
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unchanging trajectory ofP, the trajectory ofI changes
with each cycle of the precession. As we noticed in
Fig. 4, the inhibition fromT to I occurs at progressively
earlier phases duringPIT. In terms of the phase portrait
(see Fig. 6B), this means that the inhibition fromT to I
occurs at different places in phase space. In particular,
during the first cycle,T inhibits I when I is on the
right branch ofCI P and still far away from the right
knee. At the next cycle,T inhibits I while I is still
on the right branch but now closer to the right knee
at a higherwi value. Progressing in this manner, the
inhibition fromT eventually occurs whenI is back on
the left branch but still refractory. Ultimately,I receives
inhibition when it is close enough to the left knee of
CI to be captured intoTIP, thus ending precession and
signaling the end of the place field.

Phase precession occurs for a more complicated rea-
son whenτIon >τP A. In this case, we assume thatP
reaches the right knee ofCPI before the inhibition from
I shuts off. Note that the right knee ofCPI lies below
the right knee ofCP. So the length of timeP stays in its
active state during thePIT orbit is less than the length of
time it stays in its active state during theTIPorbit. This
decrease in time is the primary reason why, in this case,
phase precession occurs. This can be seen by consid-
ering the phase plane ofP. There are several subcases
depending on the time length ofτIon (see Appendix A
for details). In Fig. 6C, we have drawn the trajectory
that P follows one cycle after the seed is given for
one of these subcases. Letτ = τ1 be the timeP hits the
right knee ofCPI . ThenP jumps back to the left branch
of CPI and evolves downCPI until τ = τ1+ σpi + σi p.
We have denoted by lowercase letters various times of
evolution for the uncoupledP cell and the coupled pre-
cessingP cell. Note thatTP − TP̄ = kr + kl +m− m̄.
There are two sources of time reduction. The larger of
the two is the timekr + kl . This time is related to the
maximum conductance for the synaptic current fromI
to P, gip. If gip is small, then the cubicCPI will not
be too far belowCP, and thus the timekr + kl is small.
As gip increases, so doeskr + kl . The second source of
time reduction, and thus phase precession, arises due
to the differencem− m̄. This difference is controlled
by the magnitude of∂gP

∂vp
near the left branch ofCP. For

this case, phase precession in thePIT orbit is achieved
whetherÄ is positive, negative, or zero.

3.2.3. The Memory Seed Initiates Phase Precession.
Granule cells in the dentate gyrus make excitatory
synapses on CA3 pyramidal cells, and granule cells

have a spatially specific (Jung and McNaughton, 1993)
and theta rhythm phase specific (Skaggs et al., 1996)
firing pattern. In our model, the arrival time of the
excitatory input, representing the memory seed from
these granule cells, need not be so precise. In fact,
there exists an open interval of potential seed timings
(or phases) that result in phase precession. The seed
must be timed to arrive whenP is sufficiently close
to the left knee ofCP. To determine an expression
for the appropriate seed arrival timeτseed, let T fire
at τ = 0 and assume that the duration of the seed is
small. The seed excitation momentarily adds a cur-
rent of magnitudegdg[vp− vdg] to the current balance
equation for theP cell, wheregdg is the maximal con-
ductance. Phase precession occurs if the seed arrives at
τseed∈ (−δ, τTon+ σi p) whereδ >0. The lower bound
−δ is related to the parametergdg. For larger values of
gdg,−δ can be larger (in magnitude). The upper bound
on τseed is a sufficient condition for phase precession
since theP cell will certainly precess if it is excited
before it receives inhibition fromI . As this interval
for τseedgives only a sufficient condition, seeds that ar-
rive slightly afterτTon+ σi p may actually produce phase
precession.

3.2.4. The Total Amount of Phase Precession Depends
on the Phase of Memory Seed Arrival.In addition
to determining whether phase precession is initiated,
the timing or phase of the memory seed also affects
the total amount of phase change in theP cell dur-
ing its precession. Since bothP and I phase precess
and since, in theTIP orbit, both cells fire at different
fixed phases afterT , we need to consider the amount
of precession for each of these cells separately.

First considerP. If T fires atτ = 0, then during
the TIP orbit, P fires atτ = τTon + σi p + τIon. We
can translate these times of firing to phases of firing
by multiplying the times by 360◦/TT . The earlier the
seed arrives, with respect to the time ofP firing, the
smaller the amount thatP precesses. Letτadv= τTon+
σi p + τIon − τseedbe the amount of time (or phase) the
firing of P is advanced by the memory seed. The total
amount of phase precession is a decreasing function
of τadv. In particular, if the seed arrives in the interval
(−δ, 0) (that is, if τadv is large),P precesses through
less than 360 degrees. Whereas if the seed arrives close
toτ = τTon+ σi p (τadvsmall),P precesses through close
to 360 degrees, provided that the duration of inhibition
from I to P, τIon, is sufficiently short. Theoretically, the
P cell can only phase precess through a full 360 degrees
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Figure 7. Amount of phase traversed by theP cell during phase
precession in the Morris-Lecar-based network model. When zero
phase is defined by the peak of theT cell spike,P cell fires (burst
times indicated by circles, filled circles indicate Fig. 4 results) at
152 degrees duringTIP (first five bursts). Seeds arriving earlier (first
seed at 500 msec) result in less phase precession than seeds arriving
later (last seed at 550 msec). Note also that the number of cycles of
phase precession increases with later seed arrival.

in the limit τseed→ τTon+ σi p + τIon from below. For
τIon large, such a seed would fall well outside of the
interval described in Section 3.2.3 and thus would be
unlikely to produce phase precession. Thus, a lower
bound on the maximal amount of phase precession is
360◦(1− τIon

TT
).

An example of the effect of the seed timing on the
amount of phase precession is shown in Fig. 7 for the
Morris-Lecar-based network model. In the figure, the
filled circles indicate the phase of eachP cell burst
during theTIP andPIT orbits displayed in Fig. 4. Dur-
ing TIP, P fires at approximately 152 degrees (dashed
horizontal lines) when 0 degrees is defined by theT
spike. The memory seed advancesP cell firing to ap-
proximately 77 degrees and thenP precesses through
285 degrees until returning to theTIP orbit and re-
suming firing at 152 degrees. The open circles indicate
the phase ofP firing when the seed arrives at differ-
ent times. For the earliest seed arrival,P precesses
through approximately 170 degrees, and for the latest
seed,P precesses through roughly 340 degrees.

In contrast to the restriction on the amount of
phase precession of theP cell, the I cell can pre-
cess through the full 360 degrees. This is possible if
τseed∈ (τTon− σpi , τTon+ σi p). The lower bound occurs
if the seed arrives at such a time so that the excitation
from P to I arrives exactly at the momentT releases
I from inhibition.

3.2.5. The Number of Cycles of Phase Precession De-
pends on the Phasing of the Memory Seed and on the
Duration of the Inhibition from I to P. There are
two possible formulae for the number of cycles of pre-
cession. The duration of inhibition fromI to P, τIon,
determines which of the two formulae applies to a given
situation. In the caseÄ>0 (TP < TT ), either formula
may apply withτIon actually determining which one to
use. IfÄ<0 (TP > TT ), then only the second formula
can be used.

If τIon <τP A, recall from Section 3.2.2, that thePIT
orbit exists only forÄ>0. The number of cycles is
given simply by

n = TT − τadv

Ä
, (12)

wheren is the nearest integer to the ratio value. Here,
it is the difference between the intrinsic periods ofT
and P, together withτadv, that determines the num-
ber of cycles of precession. The network model that
displayed the results in Figs. 4 and 7 generates aPIT
orbit by satisfying these conditions onÄ andτIon and
the number of cycles of phase precession is accurately
predicted by (12), as shown in Table 2. The values
TT = 100.3 ms andTP = 87.4 ms were used.

If Ä is negative withτIon <τP A, then after the seed,
(12) predicts and simulations corroborate (not shown)
that theP and I cells phaserecessback to theTIP
periodic orbit.

If τIon > τP A, as described in Section 3.2.2, there is
no requirement on the sign ofÄ= TT − TP to obtain
the PIT orbit. In this case, the number of cycles of
phase precession is given by the following expression
where the times are defined in Fig. 6C:

n = TT − τadv

Ä+ kr + kl +m− m̄
. (13)

Recall that the quantitykr + kl +m− m̄ is positive,
which compensates for a potentially negativeÄ. The

Table 2. Number of cycles of phase precession predicted
by Eq. (12) and observed in simulations of Morris-Lecar-
based network (parameters as in Figs. 4 and 7) for different
arrival times of the memory seed.

τadv (ms) 54 39 29 19 14 9 3

npredicted 4 5 5 6 7 7 8

nobserved 4 5 6 7 7 8 8
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time m− m̄ is related to the magnitude of∂gp

∂vp
near

the left branch ofCP. The magnitude of the time
kr + kl is of the order ofgip and arises because the burst
width and interburst interval are longer for the isolated
P cell than in thePIT orbit. We ran several simula-
tions (not shown) of the Morris-Lecar-based network
model withTP > TT (specifically,TT = 100.3 ms and
TP = 102 ms). Withgip = 1.0, we foundn= 18, and
for gip = 1.5, n= 9, thus corroborating the strong de-
pendence of the number of cycles of phase precession
on gip.

Reiterating, ifÄ > 0, either (12) or (13) may hold
depending on the duration of the inhibition fromI to P.
By continuous dependence on parameters, there ex-
ists an intermediate value forτIon at which the network
switches from (12) to (13). Note that near this switch-
ing point, small changes in the active duration ofI
have large ramifications with respect to the occurrence
of precession and to the number of cycles of precession.

3.2.6. The Spatial Correlation of Phase Precession
Is a Speed-Corrected Temporal Phenomena.Other
models of phase precession rely explicitly on the as-
sumption that phase precession is a spatial phenomena.
We show here that the apparent spatial dependence of
phase precession can be accounted for by our tempo-
ral model. More precisely, if the interburst frequency
of the place cell and the frequency of the underlying
theta rhythm are linear functions of the animal’s speed,
then phase precession can be a temporal phenomenon
and also be more correlated with the animal’s location
than with the time that has passed since it entered the
place field.

Assume the linear relationshipfT = fB+ γ1v,
f P̄ = fB+ γ2v, where fT is the theta frequency,f P̄
is the frequency of the precessingP cell andγ2>γ1

are positive constants. The velocityv is set tov0+1v,
wherev0 is the minimum velocity needed for the theta
rhythm to exist, and1v is the positive deviation from
this baseline velocity. Without loss of generality, the
frequency fB is a common baseline for1v= 0. Let
γ = γ2− γ1, then f P̄ = fT + γ v, whereγ >0. The
time of thenth theta cycle peak isnTT , and the time of
thenth P cell burst,τn, is nTP̄ = nTT

1+ TTγ v
. The amount

of phase shift after thenth burstφn is the difference
nTT − nTP̄ divided by the period of the theta rhythm;
thusφn= 360◦ nTTγ v

1+ TTγ v
. The position of the rat at the

time of thenth burst isxn= vτn= vnTT
1+ TTγ v

. By in-
spection,φn= 360◦γ xn, or equivalently, the phase is
spatially correlated.

Figure 8. Phase shift ofP firing during each cycle of precession
changes linearly with changes in animal’s running speed, modeled
by changing intrinsic frequency ofP. In Morris-Lecar-based net-
work model, phase difference ofP bursts during precession (circles,
filled circle corresponds to Fig. 4 results) increased linearly as in-
trinsic period ofP was decreased, corresponding to an increase inÄ

(applied current toP, I p= 95, 98, 100, 103 and 105µA/cm2). The
periodTT = 100 ms was fixed throughout.

The phase shift at each cycle is given by1φ =
360◦ ÄTT

. Thus the phase shift is a linear function of
the difference in period, and for fixedTT it is a linear
function of TP. This linear relationship holds in our
Morris-Lecar-based network model as shown in Fig. 8.
The filled circle showing the largest phase shift dur-
ing each cycle of phase precession corresponds to the
parameter values in Figs. 4 and 7. To model a de-
crease in running speed, the intrinsic frequency of the
P cell was decreased. In response to this increase in
TP, corresponding to a decrease inÄ, the phase shift
1φ decreases linearly.

3.2.7. Suppression of Out-of-Place Field Firing.
The primary objective of our model is to illustrate a
mechanism for generating the phase precession of place
cells. In the model, phase precession only occurs in the
place field, but the out-of-place field firing is too high.
This implies that a downstream phase-based detector
could precisely determine the animal’s location at all
phases except for the phase-locked one.

Different complicated features could be added to the
model to reduce or remove the out-of-place field fir-
ing. For example, there are many types of interneu-
rons in the CA3 region that have a diverse pattern
of connections and an incompletely determined role
in network activity. In particular, some of the in-
terneurons make synaptic connections only on other
interneurons (Freund and Buzs´aki, 1996). By introduc-
ing one additional interneuron into our current model,
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Figure 9. The voltage traces for the three cell and pacemaker net-
work. Phase precession begins att roughly equal to 500 msec with
the arrival of the memory seed. The cellsP andI2 then phase precess
for the next 6 cycles. Outside of the place field, the longer lasting
inhibition from I1, which is periodically reinforced, forcesP to stay
below threshold.

the out-of-place field firing can be suppressed as shown
in Fig. 9. In this more complex modelT andP are as
before, but now there exist two interneurons,I1 andI2.
Both interneurons receive fast GABA-mediated inhi-
bition fromT and are capable of firing rebound spikes.
The interneuronI1 now provides a slowly decaying
GABA-mediated inhibitory current toP and receives
a similar current fromI2. The interneuronI2 receives
fast glutamatergic excitation fromP. As before,P
may also have a feedback connection fromI2 that can
either be a fast or slow inhibitory current. With this
network architecture, we require that the slow inhibi-
tion decay in roughly one theta cycle—that is, roughly
100 msec.

Outside of the place field,I1 and I2 fire by postin-
hibitory rebound in response toT . Note that the synap-
tic delay fromI2 to I1 allows the latter to rebound before

the inhibition from I2 can take effect. Moreover, this
slow inhibition decays away over one theta cycle thus
allowing I1 to again be in a position to fire by rebound.
The inhibition fromI1 to P, which lasts the entire theta
cycle is strong enough to preventP from firing during
the cycle. Since this inhibition is renewed at each cy-
cle, P never fires. We call this theT I1I2{P} orbit and
note thatT controls the dynamics of the network.

As in the simple model, the externally provided
memory seed firesP and interrupts theT I1I2{P} orbit.
Excitation from P causesI2 to fire. The subsequent
slowly decaying inhibition fromI2 to I1 now comes
before the fast inhibition fromT . Thus I1 is strongly
inhibited and initially will be unable to respond toT
input. In the reorganizedP I2{I1}T orbit, phase pre-
cession occurs withP controlling I2 directly, causing
it to fire with eachP burst and thus phase precess. In
this orbit,P also controlsI1, indirectly throughI2. As
in the simple model, the timing and effect of the in-
put from T to both I1 and I2 changes from cycle to
cycle. The effect onI2 is similar to that discussed
in Section 3.2.2 and shown in Fig. 6B. The inhibition
from T chasesI2 around its phase plane. WhenI2 has
precessed through up to 360 degrees, it can be recap-
tured byT . For precession to end, however,I1 must be
recaptured byT .

BecauseP and I2 are phase precessing, the inhibi-
tion from I2 to I1 comes at progressively earlier phases.
This means that at each cycle of theta, there exists pro-
gressively more time for this inhibition to decay before
the T input to I1 arrives. Similar to the basic model,
phase precession ends whenT recaptures control ofI1.
This occurs when the input fromI2 to I1 comes early
enough in theT cycle so that the inhibition decays
away sufficiently to allowI1 to rebound in response to
T input. Once this happens, the slow inhibition from
I1 to P is reinitiated, thus suppressingP. Moreover,
since P has been functionally removed from the cir-
cuit, I2 must now wait forT input to fire. As discussed
above, this input occurs at a phase that allowsI1 to fire
periodically.

The complex model described here operates in a fun-
damentally similar fashion to the basicTIP/PIT model.
As before, the role of inhibition differs inside and out-
side of the place field. Indeed, control of the network
of interneurons is again crucial for determining the
network output. Moreover, our analytical results in
Sections 3.2.2 through 3.2.6 carry over with little or
no modification. In this model, it appears thatI1 has
an “antiplace field” in that it fires everywhere except
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within the place field. In a less reduced and more re-
alistic network model, this may not be the case. As a
result, we do not intend our results to be interpreted as
predicting the existence of antiplace fields.

4. Discussion

We described a minimal biophysical model of the phase
precession of hippocampal place cells that is consis-
tent with the essential empirically determined proper-
ties of the phenomenon. We identified mechanisms
whereby temporal control of phase precession can oc-
cur. In particular, we proposed a mechanism for chang-
ing the firing pattern of place cells as the animal enters,
crosses, and then leaves the place field. This mecha-
nism of changing control of the interneuron fromT to
P switches the network from a stable state to a tran-
sient state. The precession of the interneurons pro-
vides a second mechanism to switch the control of the
interneuron back toT and thus return the network to a
stable state.

The initial form of the model accounts for most of the
empirical observations that were listed in the introduc-
tion. Namely, (1) since we provide the seed only when
the rat moves in one direction, place cells only fire in
one direction of motion; (2) all place cells, only the
singleP cell in our case, start firing at the same initial
phase; (3) the initial phase is the same on each entry of
the rat in the place field since the seed always occurs
at the same phase; (4) since the change in control in
the network occurs before 360 degrees of precession,
it is impossible for there to be more than this amount
of phase precession; (5) while the cells in the dentate
gyrus may undergo a small number of cycles of pre-
cession, our model requires only one cycle; additional
cycles would not change the results; (6) the model does
not account for the increase in firing rate (a less reduced
network model that accounts for individual spikes may
be able to include firing rate information; we believe
that the mechanisms we have uncovered for phase pre-
cession in our idealized bursting neurons would carry
over to neurons that instead exhibit bursts of spikes);
and (7) the linear dependence on frequency of pyra-
midal cell firing is used here to maintain a correlation
with location rather than time that has passed since the
animal entered the place field.

The initial model, however, had a high out-of-place
field firing rate. This out-of-place field activity would
result in a loss of spatial specificity if a downstream sys-
tem uses firing rate to determine the animal’s location

in the environment. However, the phase relationship
between place cell activity also provides information
on the location of the animal, and the background fir-
ing outside of the place field may not be a substantial
problem for a downstream system that uses phase to de-
termine the animal’s location. We presented a method
(not necessarily unique), using an additional interneu-
ron, to remove the out-of-place field firing without re-
quiring upstream information on the size and extent of
the place field.

From a mathematical point of view, this work shows
the importance of determining functionality of the sub-
pieces of the model. We have shown how control within
the network can be switched from one network member
to another and then back again. We have demonstrated
that geometric analysis is well suited to identify the
mechanisms that change control. Our work also high-
lights the changing and perhaps nonintuitive effects of
inhibition in the network. In particular, we have shown
how a faster oscillator can entrain a slower one using
only inhibition. This depends critically on the timing of
the inhibitory input from the faster oscillator, which is
consistent with the theme that timing is of fundamental
importance in temporal code generation. We have also
shown how the network can use inhibition to function-
ally enhance or remove the effects of a chosen member.

4.1. Related Work

Other models of phase precession differ from ours in
important ways. In prior work (Tsodyks et al., 1996;
Jensen and Lisman, 1996; Wallenstein and Hasselmo,
1997; Kamondi et al., 1998), phase precession is mod-
eled as a spatial phenomena. Each of these models in
some way utilizes external input that already encodes
for the phase precession. Thus none of the models truly
explains the genesis of phase precession. Namely, the
models do not address how a singleP cell behaves
both outside and inside its place field or what causes
the transition in behavior of the cell between these two
areas.

The above models require either a network of exci-
tatory cells or a highly parameterized description of the
neuron to achieve precession. In the work of Jensen and
Lisman (1996), a one-dimensional chain of pyramidal
cells is considered, and phase precession occurs due
to the local unidirectional excitatory synapses between
these cells. Selective excitation to a specific member
of the chain, occurring at each theta cycle, provides
phase-precessed input to the network. In the model of
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Tsodyks et al. (1996), strong excitatory connections
between place cells is also required. In this model,
precession is driven by asymmetric synaptic weights
between these cells. The total amount of excitatory in-
put a cell receives is at a maximum in the center of the
place field and decreases monotonically as the distance
from the center increases. Tsodyks et al. (1996) call
this “directional tuning.” A similar idea is employed
by Kamondi et al. (1998). There a ramplike depolariz-
ing current is provided to the place cell to mimic pas-
sage through the place field. Thus in these two models,
the running animal is given external information about
its position in space that is encoded in the spatially
dependent depolarization. Kamondi et al. (1998) and
Wallenstein and Hasselmo (1997) both use multicom-
partment descriptions of the place cells. Precession
in these models depends critically on a more com-
plex, multiparameter description of each neuron. More-
over, the model of Wallenstein and Hasselmo (1997)
also requires phase-precessed external input at each
theta cycle as in Jensen and Lisman (1996) to achieve
precession.

The present model takes an entirely different ap-
proach. First, we believe phase precession is a tem-
poral mechanism that, as demonstrated, can account
for changes in the rat’s running speed. Second, we do
not require any external precessed input to the network.
Instead, we simply need a one time dose of excitation
that mimics a memory seed and changes the network
from the TIP to the PIT orbit. We do not require a
network of excitatory cells or multicompartment mod-
els for the cells. Finally, our analysis gives a different
interpretation of the significance of phase precession
than all of the previous studies. Namely, in our model
the end of phase precession signals the end of the place
field. In the other studies, the end of the place field
signals the end of the precession. Thus our model pro-
vides an internal mechanism for determining the end of
the place field (via the end of precession), whereas the
other models require another external input to notify
the pyramidal cell that its place field has ended.

4.2. Experimental Support

Several studies have demonstrated that the mean phase
of activity of hippocampal interneurons is just prior to
the mean phase of pyramidal cell activity (Fox et al.,
1986; Buzs´aki and Eidelberg, 1982). This implies that
during the phase precession, the activity of a place cell
must pass through the phase of theta rhythm at which

interneurons are most strongly inhibiting pyramidal
cells. In the present model the pyramidal cell con-
trols the firing of the interneuron during the phase
precession process, and its activity is not adversely
inhibited by the interneuron.

In recent recordings of a larger number of pyra-
midal cells and interneurons (Csicsvari et al., 1998),
pyramidal cells were found that had large, significant
cross-correlation peaks at times on the scale of ten
milliseconds that preceded the activity of simultane-
ously recorded interneurons. These correlations find
that there is a tight coupling in the time at which pyra-
midal cells and interneurons are active and suggests
that the activity of a subset of the interneurons might
precess along with place cells. The experimental ev-
idence of the high level of correlation between place
cells and interneurons demonstrates that there exists
a sufficiently strong conductance between subsets of
these two types of neurons. These findings are consis-
tent with the predictions in the present model in which
the phase precession of interneurons may only occur in
a subset of interneurons and only when they are being
driven by a phase precessing place cell.

4.3. Consistency of Biophysical
and Functional Models

In a model of phase precession, there are several im-
portant larger goals and anatomical considerations that
should be taken into account. There is considerable
data that demonstrates that the hippocampus has a
role in episodic memory. We have proposed a func-
tional model that describes how the spatial and mem-
ory roles of the hippocampus can be combined (Recce
and Harris, 1996; Recce, 1999). In this view, when
a rat returns to a previously experienced environment,
the set of coactive place cells corresponds to the recall
of an egocentric map of the environment. The memory
recall is performed by a pattern completion process that
is controlled through the excitatory feedback pathway
in the CA3 region of the hippocampus. The seed for
this recall enters the CA3 region through the entorhi-
nal cortex to the dentate gyrus and then in the mossy
fiber projection from the dentate granule cells to the
CA3 pyramidal cells and interneurons. The temporal
control of the recall process, in this view, is provided
by the pacemaker input from the medial septum.

The feedback connections between CA3 pyramidal
cells are relatively sparse, which can limit the num-
ber of egocentric maps of space that can be stored if
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the region is modeled as an autoassociative memory.
However, Gardner-Medwin (1976) has demonstrated
that this limitation can be overcome if the recall pro-
cess is performed over a sequence of steps. Hirase
and Recce (1996) found that the optimal performance
in a multistep autoassociative memory model of the
CA3 region can be achieved if an interneuron network
controls the recall process by providing an inhibitory
input to the pyramidal cells that is a linear function of
the number of simultaneously active pyramidal cells.
Further, it has been proposed that the phase precession
corresponds to the multiple steps in this recall process
and that the phase precession suggests a method for
the concurrent recall of several egocentric memories
(Recce, 1999).

In the present work, we have begun the process
of systematically addressing these issues. The present
model for phase precession, while conceptually quite
simple, is not necessarily the one that most easily pro-
duces output that phase precesses. Instead, our mod-
eling is based on the larger considerations of identify-
ing mechanisms that can allow multiple memory recall
processes to be simultaneously performed. The basic
framework described above, which accounts for pre-
cession, is compatible with a functional model of the
spatial and episodic memory roles of CA3 place cells.

Appendix A. Analysis: Existence and Stability
of TIP Periodic Orbit

Outside the place field, the network is in theTIPconfig-
uration. We show that there is a unique, stable periodic
orbit to which the cells are attracted. Assume thatT
fires atτ = 0. We will locate an initial condition for
P and show that whenT fires again atτ = TT , P has
returned exactly to this initial condition. The analysis
will be in terms of a time metric that will measure the
times of evolution ofP on various parts of its orbit in
phase space. These times depend on various biophys-
ical parameters that are related to both intrinsic and
synaptic properties of the cells and the network.

Theorem 1. There exists a locally unique asymptoti-
cally stable TIP periodic orbit with a period O(ε) close
to TT .

Proof The analysis below occurs atε= 0, but using
the work of Mischenko and Rozov (1980), the results
actually hold forε >0 and sufficiently small. Consider
the left branch ofCP betweenwRK andwLK . Associ-
ated to each point on this curve, denotedwp, is the time

1(wp) it takesP to reachwLK starting fromwp. In
particular,1(wRK)= τP R and1(wLK)= 0. It is clear
that1 is a monotone decreasing function ofwp. The
description of theTIP network given earlier shows that
there is a one-dimensional map5 that takes the initial
position ofP at τ = 0 along the left branch ofCP and
returns the position ofP at τ = TT .

Proposition 1. The map5 defines a uniform con-
traction on a subinterval(wlo,whi ) of (wLK,wRK). If
w? is the resulting locally unique asymptotically stable
fixed point, then the network possesses a locally unique
asymptotically stable singular TIP periodic orbit with
period TT , wherewp(0)=w?.
Proof We prove the existence of a fixed point by com-
paring the behavior of the uncoupledP cell to its cou-
pled counterpart. SinceTT = TP +Ä, we can compare
the period of the coupledP cell to TT . First we locate
a suitablewhi . Associated with it is a timeThi from
whi towLK on CP. At τ = τTon+ σi p, P receives inhi-
bition and jumps back toCPI . At τ = τTon+ σi p + τIon,
the inhibition toP shuts off. We choosewhi such that
wp(τTon+ σi p + τIon)=wLK . Next let us consider the
evolution of theP cell, solely onCP in the absence of
any synaptic input. Since∂gp

∂vp
> 0 near the left branch

of CP andCPI , the P cell moves downCP at a slower
rate than onCPI . In other words,P takes a longer
time to cover the same Euclidean distance onCP than
onCPI . Thus atτ = τTon+ σi p + τIon, the uncoupledP
cell will be abovewLK . It is seen that inhibition ac-
tually shortens the time distance to the knee for this
initial condition. This is very similar to, but timewise
the opposite of, the idea of virtual delay of Kopell and
Somers (1995). There they showed that excitation had
the opposite effect of increasing the time to the knee.
The coupled and uncoupled versions ofP follow the
same trajectory in the active state.

Assume momentarily thatÄ= 0. For the uncoupled
P cell,1(5(whi ))= Thi . But for the coupledP cell,
1(5(whi ))< Thi . Thus the time it takes for the coupled
P cell to return to its initial positionwhi is Tpc< TP. If
Ä is sufficiently small, thenTpc< TP +Ä = TT . Note
that Thi > τTon + σi p + τIon. How big the difference
between these times needs to be depends on the size of
∂gp

∂vp
, which determines the difference in the rates along

CP andCPI . Thus we have located an initial condition
whose time distance to the knee compresses over one
oscillation.

We next locate an initial condition whose time dis-
tance to the knee expands. Now letwlo = wp(0) such
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that for the uncoupledP cell wP(τTon+ σi p)=wLK .
Assume that the initial conditions forT andI are iden-
tical to the above case. Thus at the momentP were
to fire, it receives inhibition fromI . It will thus fall
back toCPI and move down this cubic toward the fixed
point onCPI for a timeτIon. At τ = τTon+ σi p + τIon,
P is released from inhibition and jumps to the right
branch. Thew value of the point to where it jumps lies
belowwLK . On the the right branch, let the time be-
tween this point andwLK be denoted byτD. OnceP
passes throughwp=wLK on the right branch ofCP, it
will follow the same orbit as the uncoupledP cell. The
coupledP cell has been delayed by a timeτIon+ τD.
So it will return to its initial position at a timeTpc> TP,
if Ä= 0. Thus ifÄ is sufficiently small,Tpc> TT . For
this initial condition, the time distance to the knee has
been expanded—that is,1(5(wlo))>1(wlo).

Therefore, we have located a set of initial conditions
such that the lower and upper boundaries of the set
are mapped into the interior of the set by the map5.
By continuous dependence on initial conditions, this
implies that there exists at least one element of the set
that remains fixed under the map5. To prove that this
point is unique and attracting, we need to show that
5 is a contraction mapping. We follow two different
versions of theP cell, denotedP1 andP2, and show that
the dynamics of theTIPnetwork bring these cells closer
together after one iterate of5. Let w1<w2 denote
any two points in(wlo, whi ) such thatwp1(0)=w1 and
wp2(0)=w2. The cellsP1 andP2 do not interact with
one another but receive common inhibition from the
sameI cell.

Lemma 1. There existsλ ∈ (0,1) such that|5(w2)

−5(w1)|<λ|w2−w1|.
Proof: From the above analysis, it is clear that in the
TIP network, P1 and P2 will jump to the active state
from a point onCPI that lies below the left knee ofCP.
This occurs atτ = τTon+ τIon+ σi p. Let δ denote the
time between the cells atτ = 0. As the cells evolve
along the left branch ofCP and thenCPI , the time be-
tween them remains invariant. However, the Euclidean
distance between the cells decreases. This is a standard
fact for two cells that are evolving along the same one-
dimensional curve toward a fixed point. The longer
the cells spend near the critical point formed by the in-
tersection ofCPI andDP, the more the Euclidean dis-
tance is compressed. Atτ = τTon+ τIon+ σi p, the cells
are released from inhibition and jump horizontally to
the right branch ofCP. The same mechanism that fos-

ters synchrony due to fast threshold modulation (see
Somers and Kopell, 1993) implies that there is com-
pression across the jump. The rational is the follow-
ing. Across the jump, the Euclidean distance does not
change. However, the rate of evolution of the cells on
the left branch is much slower due to the fact that these
cells are evolving near a critical point. On the right
branch the cells are very far way from thew-nullcline
Dp, so the rate of evolution is much faster. Thus the
cells travel through the same Euclidean distance in a
much shorter time. Thus the new time between cells
is less thanδ. Since the cells always satisfy the same
differential equation, the time between them remains
invariant on the right branch ofCP. Moreover, since
they both jump down from the right knee of theCP,
the time is invariant across the down jump. WhenP1

andP2 return to the left branch ofCP, P2 will lie below
P1. So whenP2 returns to the initial position ofP1 at
w1, the time between the cells will be less than when
they started, so the Euclidean distance between them
must have compressed. This proves that5 is a con-
traction. The constantλ can roughly be approximated
by the ratio of the speed at the jump on point on the
right branch to the speed at the jump off point on the
left branch (Somers and Kopell, 1993).

We have made some implicit assumptions about the
behavior ofI . Namely, we have not proved thatI ac-
tually returns to its initial position atτ = TT . We are
assuming that the time on the left branch ofCI from
w=wRK of CI to a neighborhood of the fixed point
on CI is bounded from below and above. The upper
bound arises from the fact that we wantI to be able to
respond toT at τ = TT . The lower bound comes from
the fact that we do not wantI to fire for the time period
τP A+ σi p. Provided these conditions are met, the ex-
istence of an asymptotically stable fixed point implies
the existence of an asymptotically stable singular peri-
odic orbit. It is now fairly standard to show that the map
5 perturbs smoothly forε >0, but sufficiently small,
thus yielding the actualTIP periodic orbit (Mischenko
and Rozov, 1980). 2

Let us now address more carefully what we mean by
the active state of the interneuron. InPIT, it is not pos-
sible to locate the precise place from whichI jumps up.
Thus the precise location at which it reaches the right
branch is not determinable, and therefore we cannot
precisely define its active duration. To give an esti-
mate first on the jump up point we need to define two
more cubics. One isCI P , which occurs whensP I = 1
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andsT I = 0. The second isCI PT , which occurs when
bothsP I = 1 andsT I = 1. Note thatCI PT lies between
CI P andCIT . Depending on the parametersgpi , gti , vpi ,
andvt i , it may lie above or belowCI . For this argument
assume it lies aboveCI . Then the maximumw value
to which I can jump is thew value of the left knee of
CI P , call it wi M . The minimum value is thew value of
the intersection ofCI andDI , call itwim. Since∂gi

∂vi
= 0

near the right branches, the speeds of evolution along
all the right branches are identical. For this argument
the ordering of the right knees of the relevant cubics is
RIT < RI < RI PT < RI P , where the notation should be
clear. So, by a long active phase of the interneuron, we
mean the time fromwi M to RIT is longer thenτP AI . By
a short active phase we mean the time fromwim to RI P is
less thanτP AI . Note that these times are simply bounds
for the length of the active phase. They do not imply
that I necessarily jumps down from a specific knee.
Indeed,I ’s jump down point may change each cycle
depending on the timing of inhibition fromT . Finally,
if the length of the active state ofI is too long—for
example, if the timewi M to RI is much longer than
τP AI + σpi , then the analysis presented above breaks
down. This is becauseI will not be in a position to
respond to the next bout of excitation fromP.

Appendix B. Model Equations
and Parameter Values

We have numerically implemented our two cell and
pacemaker network using the Morris-Lecar equations
(1981) to model the neurons. The current balance equa-
tions for the P and I cells are

Cm
dvp

dt
=−gCam∞(vp)(vp− vCa)− gKwp(vp− vK )

−gL(vp − vL)− sipgIP(vp − vIP)+ I p,

Cm
dvi

dt
=−gCam∞(vi )(vi − vCa)− gKwi (vi − vK )

− gL(vi − vL)− spi gP I (vi − vPI)

− sti gTI(vi − vTI)+ Ii ,

where vX (in mV) is the membrane voltage in the
pyramidal cell (X= p) and the interneuron (X= i ).
The maximal conductances for the calcium and potas-
sium currents in the cells are the same (gCa= 4.4,
gK = 8.0). The reversal potentials for the ionic cur-
rents areVCa= 120 mV andVK = −84 mV. The leak
conductance density in each cell isgL = 2mS/cm2, and

the leak reversal potential isVL = −60 mV. The mem-
brane capacitance isCm= 20 µF/cm2. The applied
current values (inµA/cm2) areI p= 105 andIi = 120.
In our implementation of the model, theT cell is mod-
eled by the same equations as an isolatedP cell, except
applied current is set to 92µA/cm2. In order to ob-
tain frequencies in the theta range, time was scaled by
4.5. The model equations were numerically integrated
using XPP (information on the program available at
http://www.pitt.edu/∼phase).

The gating kinetics of the potassium conductances
in each cell (X= p and i ) are governed by equations
of the following form:

dwX

dt
= φw∞,X(v)− wX

τw,X(v)
,

whereφ= 0.005 corresponds toε in the general form
of the equations. The steady-state activation and inac-
tivation functions and the voltage-dependent time con-
stant functions for the calcium and potassium currents
in each cell (X= p andi ) are given by

m∞(v) = 1

2

[
1+ tanh

(
v − v1

v2

)]
,

w∞,X(v) = 1

2

[
1+ tanh

(
v − v3,X

v4,X

)]
,

τw,X(v) = 1

sech[(v − v3,X)/2v4,X]
.

The half-activation voltages for the gating functions are
(in mV) v1,p= v1,t = − 1.2, v3,p= 2, andv3,i =−25.
The activation and inactivation sensitivities for the gat-
ing functions are (in mV)v2,p= v2,i = 18, v4,p= 30,
andv4,i = 10.

The synaptic currents in each cell are governed by
the variablesXY whereX indicates the presynaptic cell
andY indicates the postsynaptic cell. These variables
satisfy equations of the form

s′XY = α(1− sXY)
1

2

(
1+ tanh

(
vX − v5

v6

))
− β sXY,

where the Heaviside function in the general form of the
equations forsXY is replaced by a sigmoidlike function
that depends on the presynaptic voltage (half-activation
v5= 0 and activation sensitivityv6= 10). For the three
synaptic currents in the model, governed byspi , sip,
and sti , the rise and decay rates of the synapse are
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the same (α= 2, β = 1). In the current balance equa-
tions, the effect of the synapse is determined by the
reversal potentials of the synaptic currents (vpi = 80,
vi p = vt i =−80), and the maximal conductances of
the synaptic currents are all equal (gpi = gip = gti = 1).
We tookσi p = σpi = 0 in the simulations, thus showing
that the existence of delays are not crucial for the above
results.

For the simulation in Fig. 9, the following parame-
ters were used:I p= 118, Ii1 = 80, Ii2 = 80,gi2i1 = 0.5,
αi2i1 = 5, βi2i1 = 0.005,vi2i1 =−95, gpi2 = 1, αpi2 = 2,
βpi2 = 1, vpi2 = 80, gi1 p= 0.8, αi1 p= 3, βi1 p= 0.001,
vi1 p=−95, gti1 = 2.5, αt i1 = 2, βt i1 = 2, vt i1 =−80,
gti2 = 2.5,αt i2 = 2,βt i2 = 2, andvt i2 =−80.
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Buzsáki G, Eidelberg E (1982) Direct afferent excitation and long
term potentiation of hippocampal interneurons.J. Neurophysiol.
48:597–607.

Csicsvari J, Hirase H, Czurko A, Buzsaki G (1998) Reliability and
state-dependence of pyramidal cell-interneuron synapses in the
hippocampus: An ensemble approach in the behaving rat.Neuron
21:179–189.

Ermentrout GB, Kopell N (1998) Fine structure of neural spiking
and synchronization in the presence of conduction delays.Proc.
Natl. Acad. Sci.95:1259–1264.

Fox SE, Ranck JB (1975) Localization and anatomical identification
of theta and complex spike cells in dorsal hippocampal formation
of rats.Exp. Neurol.49:299–313.

Fox SE, Wolfson S, Ranck JB (1986) Hippocampal theta rhythm
and the firing of neurons in walking and urethane anesthetized
rats.Exp. Brain Res.62:495–500.

Freund TF, Antal M (1988) GABA-containing neurons in the sep-
tum control inhibitory interneurons in the hippocampus.Nature
336:170–173.

Freund TF, Buzs´aki G (1996) Interneurons of the hippocampus.
Hippocampus6:347–470.

Gardner-Medwin AR (1976) The recall of events through the learning
of associations between their parts.Proc. R. Soc. Lond. B194:375–
402.

Gibson WG, Robinson J (1992) Statistical analysis of the dynamics
of a sparse associative memory.Neural Networks5:645–661.

Green J, Arduini A (1954) Hippocampal electrical activity in arousal.
J. Neurophysiol.17:533–557.

Hirase H, Recce M (1996) A search for the optimal thresholding
sequence in an associative memory.Network7:741–756.

Jensen O, Lisman JE (1996) Hippocampal CA3 region predicts mem-
ory sequences: Accounting for the phase advance of place cells.
Learn. Mem.3:257–263.

Jung MW, McNaughton BL (1993) Spatial selectivity of unit activity
in the hippocampal granular layer.Hippocampus3:165–182.

Kamondi A, Acsady L, Wang X, Buzsaki G (1998) Theta oscilla-
tions in somata and dendrites of hippocampal pyramidal cells in
vivo: Activity-dependent phase-precession of action potentials.
Hippocampus8:244–261.

King C, Recce M, O’Keefe J (1998) The rhythmicity of cells of the
medial septum/diagonal band of broca in the awake freely moving
rat: Relationship with behaviour and hippocampal theta.Eur. J.
Neurosci.10:464–467.

Kopell N, Somers D (1995) Anti-phase solutions in relaxation
oscillators coupled through excitatory interactions.J. Math. Biol.
33:261–280.

Marr D (1971) Simple memory: A theory for archicortex.Phil. Trans.
R. Soc. Lond. B176:23–81.

Mishchenko EF, Rozov NK (1980) Differential Equations with Small
Parameters and Relaxation Oscillators. Plenum Press, New York.

Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant
muscle fiber.Biophys. J.35:193–213.

Muller RU, Kubie JL, Bostock EM, Taube JS, Quirk G (1987) Spatial
firing correlates of neurons in the hippocampal formation of freely
moving rats.J. Neurosci.7:1951–1968.

Nadim F, Manor Y, Nussbaum P, Marder E (1998) Frequency reg-
ulation of a slow rhythm by a fast periodic input.J. Neurosci.
18:5053–5067.

O’Keefe J (1976) Place units in the hippocampus of the freely moving
rat.Exp. Neurol.51:78–109.

O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map:
Preliminary evidence from unit activity in the freely moving rat.
Brain Research34:171–175.

O’Keefe J, Recce ML (1993) Phase relationship between hippocam-
pal place units and the EEG theta rhythm.Hippocampus3:317–
330.

Recce M (1994) The representation of space in the rat hippocampus.
Ph.D. thesis, University College London.

Recce M (1999) Encoding information in neuronal activity. In:
Maass W, Bishop C, eds. Pulsed Neural Networks. MIT Press,
Cambridge, MA. pp. 111–131.

Recce M, Harris KD (1996) Memory for places: A navigational
model in support of Marr’s theory of hippocampal function.
Hippocampus6:735–748.

Rieke F, Warland D, de Ruyter van Steveninck D, Bialek W (1997)
Spikes-Exploring the Neural Code. MIT Press, Cambridge, MA.

Rinzel J, Ermentrout G (1998) In: Koch C, Segev I, eds. Methods
in Neuronal Modeling: From analysis of Neural Excibability and
Oscillations to Networks. 2nd edition. MIT Press, Cambridge,
MA. pp. 251–291.

Rubin J, Terman D (2000) Geometric analysis of population rhythms
in synaptically coupled neuronal networks.Neur. Comp., 12:597–
645.

Skaggs WE, McNaughton BL, Wilson MA, Barnes CA (1996) Theta-
phase precession in hippocampal neuronal populations and the
compression of temporal sequences.Hippocampus6:149–172.



30 Bose et al.

Somers D, Kopell N (1993) Rapid synchronization through fast
threshold modulation.Biol. Cyber.68:393–407.

Terman D, Kopell N, Bose A (1998) Dynamics of two mutually
coupled slow inhibitory neurons.Physica D117:241–275.

Terman D, Lee E (1997) Partial synchronization in a network of
neural oscillators.SIAM J. Appl. Math.57:252–293.

Treves A, Rolls ET (1994) A computational analysis of the
role of the hippocampus in memory.Hippocampus4:373–
391.

Tsodyks MV, Skaggs WE, Sejnowski TJ, McNaughton BL (1996)
Population dynamics and theta rhythm phase precession of

hippocampal place cell firing: A spiking neuron model.Hip-
pocampus6:271–280.

van Vreeswijk C, Abbott L, Ermentrout GB (1994) When inhibi-
tion, not excitation synchronizes neural firing.J. Comp. Neurosci.
1:313–321.

Wallenstein GV, Hasselmo ME (1997) GABAergic modulation of
hippocampal population activity: Sequence learning, place field
development, and the phase precession effect.J. Neurophysiol.
78:393–408.

Wang XJ, Rinzel J (1992) Alternating and synchronous rhythms in
reciprocally inhibitory neuron models.Neural Comp.4:84–97.


