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Abstract. The phase relationship between the activity of hippocampal place cells and the hippocampal theta
rhythm systematically precesses as the animal runs through the region in an environment cadladetlield

of the cell. We present a minimal biophysical model of the phase precession of place cells in region CA3 of the
hippocampus. The model describes the dynamics of two coupled point neurons—namely, a pyramidal cell and an
interneuron, the latter of which is driven by a pacemaker input. Outside of the place field, the network displays a
stable, background firing pattern that is locked to the theta rhythm. The pacemaker input drives the interneuron,
which in turn activates the pyramidal cell. A single stimulus to the pyramidal cell from the dentate gyrus, simulating
entrance into the place field, reorganizes the functional roles of the cells in the network for a number of cycles of the
theta rhythm. In the reorganized network, the pyramidal cell drives the interneuron at a higher frequency than the
theta frequency, thus causing a systematic precession relative to the theta input. The frequency of the pyramidal cell
can vary to account for changes in the animal’s running speed. The transient dynamics end after up to 360 degrees
of phase precession when the pacemaker input to the interneuron occurs at a phase to return the network to the
stable background firing pattern, thus signaling the end of the place field. Our model, in contrast to others, reports
that phase precession is a temporally, and not spatially, controlled process. We also predict that like pyramidal cells,
interneurons phase precess. Our model provides a mechanism for shutting off place cell firing after the animal has
crossed the place field, and it explains the observed nearly 360 degrees of phase precession. We also describe how
this model is consistent with a proposed autoassociative memory role of the CA3 region.

Keywords: phase precession, minimal biophysical model, place cells, theta rhythm

1. Introduction group of neurons in region CA3 of the hippocampus
of freely moving rats can generate a spatially encoded
There is considerable current interest in the ways in output, callephase precessiounsing only limited and
which the temporal firing pattern of neurons may pro- spatially nonspecific inputs.
vide additional information that is not conveyed by the It has been proposed that hippocampal place cells
averaged firing rate alone. This interest has led to a provide information for downstream neurons through
search for ways in which temporal firing properties the phase relationship between neuronal activity and
of neurons are generated and detected in the centralthe hippocampal EEG (O’Keefe and Recce, 1993).
nervous system (for a review, see Rieke et al., 1997; Place cells were first described in the CA1 region of
Recce, 1999). The main goal of this article is to use freely moving rats (O’Keefe and Dostrovsky, 1971),
minimal biophysical modeling to demonstrate how a and the activity of these putative pyramidal cells (Fox
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Figure L  Extraction of the firing phase shift for each spike during a single run through the place field of a place cell on the linear runway. A:
Each action potential from cell 3 during the one second of data shown in the figure is marked with a vertical line. B: The phase of each spike
relative to the hippocampal theta rhythm. C: Hippocampal theta activity recorded at the same time as the hippocampal unit. D: Half sine wave
fit to the theta rhythm that was used to find the beginning of each theta cycle (shown with vertical ticks above and below the theta rhythm).
Reprinted from O’Keefe and Recce (1993).

and Ranck, 1975) is highly correlated with the rat's lo- firing rate of the cell alone. A downstream system that
cation in an environment (O’Keefe, 1976; Mulleretal., measures the phase of place cell activity would then
1987). The preferred firing location of a place cell is have more information about the location of the an-
called itsplace field imal in the environment and may be able to ignore
During locomotor activity, the hippocampal EEG out of place field firing that occurs preferentially at
has a characteristic 6 to 12 Hertz sinusoidal form called a phase that is different from the range found in the
the theta rhythm(Green and Arduini, 1954), and the place field. Place cells in both the CAl region and
phase and frequency of this rhythm is highly correlated the upstream CA3 region are found to undergo phase
across the CA1 region of the hippocampus (Bullock precession (O’'Keefe and Recce, 1993).
etal., 1990). As the rat runs through a place field,ona  Skaggs and coworkers (1996) confirmed this find-
linear runway, the phase of the theta rhythm at which ing and additionally found that the initial phase was
a place cell fires systematically precesses. Each timeconsistent among a large number of place cells in the
the animal enters the place field, the firing begins at CA1l region. They also found that dentate granule cells
the same phase, and over the next five to ten cyclesthat project to CA3 undergo a small number of cy-
of the theta rhythm it undergoes up to 360 degrees of cles of phase precession and therefore provide a syn-
phase precession (O’Keefe and Recce, 1993; Skaggschronized, timed excitation to the CA3 pyramidal cells.
et al.,, 1996). The maximum observed phase preces-Marr (1971) proposed that this input from the dentate
sion was 355 degrees (O’Keefe and Recce, 1993). So,granule cells provides a seed input for a memory re-
by the phrase “up to 360 degrees of phase precessiontrieval and pattern completion process that is driven
we mean strictly less than but in a neighborhood of by the excitatory feedback among pyramidal cells in
360 degrees. An example of the phase precession of athe CA3 region (Treves and Rolls, 1994; Gibson and
place cell is shown in Fig. 1. During the run along the Robinson, 1992; Hirase and Recce, 1996). The phase
track, the phase of hippocampal place cell firing is more precession of place cells may be an essential part of
correlated with the animal’s location within the place this pattern completion process.
field than with the time that has passed since it entered The hippocampal regions also contain a variety
the place field (O’'Keefe and Recce, 1993). This sug- of interneurons that contribute to the generation of
gests that the phase of place cell activity provides more hippocampal oscillations. These interneurons project
information on the location than is available from the to place cells as well as to other interneurons (Freund
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and Buzski, 1996). Skaggs and coworkers (1996) coworkers (1998) have proposed a model for phase pre-
measured the phase of interneuron firing in the CA1 re- cession in the CA1 region that does not depend on pre-
gion and found that on average the interneurons do notcisely timed inputs, but instead the phase is a result
phase shift. On the other hand, Csicsvari and cowork- of the total amount of depolarization of the place cells.
ers (1998) found a large, significant cross-correlation In this model, the total amount of phase shift is much
between pyramidal cell and interneuron pairs, where less than 360 degrees.
the pyramidal cell firing precedes interneuron firing by In this article, we describe a minimal biophysical
tens of milliseconds. This implied high synaptic con- temporal model for phase precession in the CA3 region
ductance from pyramidal cells to interneurons suggests of the hippocampus. It differs from prior models in
that interneurons could phase precess. This suggesthat (1) it generates the spatial correlation of the phase
tion may not be inconsistent with the experimentally precession from a single spatial input and from infor-
observed average properties of interneurons (Skaggsmation about the animal’s running speed; (2) it does
et al., 1996) if only a subset is shown to transiently not require phase precession in the upstream projec-
phase precess. tion cells; (3) it does not require a spatially dependent
The medial septum s alsoinvolved in modulating the depolarization of place cells; (4) it provides a mecha-
temporal firing patterns of hippocampal place cells and nism for determining the end of the place field; (5) it
interneurons. The projection fromthe medial septumto provides a mechanism for up to 360 degrees of phase
the hippocampus is both GABAergic and Cholinergic shift; and (6) it is consistent with associative memory
(Freund and Antal, 1988), and it provides a pacemaker models for the CA3 region.
to drive the theta rhythm (Green and Arduini, 1954).  Alternatively, our model does not include a mecha-
We have shown that the interburst frequency of some of nism to account for the firing rate of place cells. The
the neuronsinthe medial septumis alinear function of a activity of place cells includes both rate and timing in-
rat’s running speed on a linear track (King et al., 1998). formation. Inthe presentmodel, we are only concerned
In summary, the observed properties of the phase with the timing properties.
precession phenomenon include the following: (1)  This minimal model, which is composed of two neu-
place cells fire in only one direction of motion dur- rons (one pyramidal cell and one interneuron) and a
ing running on a linear track; (2) all place cells start pacemaker input, can explain the onset, occurrence,
firing at the same initial phase; (3) the initial phase is and end-of-phase precession. The network has two im-
the same on each entry of the rat into the place field of a portant dynamic patterns. The firstis a stable attracting
place cell; (4) the total amount of phase precession is al- state, which mimics the behavior of CA3 outside of the
ways less than 360 degrees; (5) the cells in the dentateplace field. The second dynamic pattern is a transient
gyrus that project to CA3 undergo a smaller number state that encodes the behavior of CA3 within the place
of cycles of phase precession; (6) in one-dimensional field. The main difference between the two states is the
environments, the phase plus firing rate provide more input that controls the firing pattern of the interneuron.
information of the rat’s location than the firing rate of In the stable state, the pacemaker input controls in-
a place cell; (7) phase is more correlated with the ani- terneuron firing, while in the transient state, excitation
mal’s location in a place field than with the time since from the pyramidal cell does. The seed from the den-
the animal entered the place field; and (8) background tate gyrus switches control from the pacemaker to the
firing of place cells outside of the place field occurs place cell to initiate phase precession, and the duration
at a fixed phase that is closest to the initial phase that of phase precession is determined by the duration of the
occurs when the animal enters the place field. transient dynamics as the network returns to the stable
Several models have been proposed to explain the state.
neural basis of the phase precession phenomenon. The The transient place cell firing in the place field is a
model proposed by Tsodyks and coworkers (1996) pro- temporal process in which the phase of firing of the cell
vides an environment-driven phase precession, which in each cycle of the theta rhythm strictly depends on
is certain to be more correlated with position than time. the phase in the prior cycle of the theta rhythm. This
Other models of environment-driven phase preces- is in contrast to all other models of phase precession
sion have been proposed by Wallenstein and Hasselmoin which the phase of firing of place cells depends on
(1997) and Jensen and Lisman (1996). In these mod-the external inputs arriving at that cycle and not on
els, the phase correlationin CA1 pyramidal cellsresults the phase in other cycles of the theta rhythm. For this
from CA3input thatis phase precessing. Kamondiand reason, to account for the spatial correlation of phase
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precession, the present model requires that the amounts as spatially precise as the phase precessing output.
of phase change during a theta cycle depends linearly Another prediction, which is easier to address experi-
on changes in the animal’s running speed. Neurons in mentally, is that a subset of the interneurons transiently
the medial septum have been found to have an inter- phase precesses. The model also strongly depends on,
burst frequency that is a linear function of the running and thus predicts, continued evidence for a linear fre-
speed of a rat (King et al., 1998). Also, the theta fre- quency dependence of pyramidal cells in CA3 and pro-
quency in the hippocampus of rats running on a linear jection cells in the medial septum on running speed of
track has been found to be highly correlated with the the animal.

rat's speed (Recce, 1994). Since the phase-precession
data includes a range of running speeds (O’Keefe and
Recce, 1993), this implies the interburst frequency of
place cells is also a function of the animal’s running

speed. These data provide a mechanism to maintain a2-1-  Model
spatially correlated phase precession in the proposed
temporal model.

Model and Methods

Our minimal biophysical model for phase precession
The model generates two different types of spatial N CA3 consists of a pyramidal or place cell, an in-
terneuron, and a pacemaker input, dend®etl, andT,

information. First, it determines the length of the place ; !
field. The place field ends when phase precession ends€SPectively. The pacemaker inplitmay be thought

which occurs when the pacemaker regains control of Of @ an individual cell or perhaps a conglomeration
the interneuron from the place cell. Second, the model ©f inPuts that produce the theta rhythm. The synap-
determines the location of the animal within the place ¢ connections amon@, |, and T reflect the net-
field. Note that these two types of spatial information WOrk architecture of CA3 (see Fig. 2). Specifically,
are generated from the seed, a single location specifict® Pyramidal cellP receives fast, GABA-mediated

input, and the velocity of the animal, a nonspatially inhibition from the interneuron and projects tol
specific input.

via fast, glutamatergic excitation. The pacemaker input
Our model supports two themes that have arisen in

other neural modeling studies. The firstis that the con-
trol of the dynamics in a network may switch among
different neurons over time. These switches can occur
in the absence of any synaptic changes. Instead, dy-
namics are governed by the timing of events relative
to one another (Ermentrout and Kopell, 1998; Nadim
et al., 1998). The second theme concerns the role of
inhibition in networks of neurons. In recent studies
(Terman et al., 1998; Rubin and Terman, 1999; van
Vreeswijk et al., 1994), it is shown that inhibition may
have counterintuitive effects on the network, such as
synchronizing mutually coupled inhibitory cells. In the
present study, we use inhibition $peed uphe oscil-
lations of the pyramidal cell.

The primary prediction of this model is that phase
precession s a spatially specific output that results from
an integration of a spatial signal from the dentate gyrus
at a single point and a nonspatial velocity coded signal
originating from the medial septum. We predict that no
upstream physiological signal exists that contains as
much information about the animal’s spatial location . . )

. . . pyramidal or place cell (P), an interneuron (1), and a pacemaker input
as the phase of hippocampal place cell firing in CA3. (T). Synaptic connections reflect CA3 network architecture (arrow
This prediction differentiates our model from all other indicates excitatory and filled circle indicates inhibitory synaptic
models of phase precession that require an input thatconnections).

Figure 2 Two cell and pacemaker network model consisting of a
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T projects only tol through fast, GABA-mediated between 0 and 1, with a peridg in the theta range.
inhibition. When the value off exceeds a prescribed threshold,
Our analysis does not depend on a specific model for then we assume thatfires, and we measure the dura-
the individual neurons; hence, we use ageneral formfor tion of its “spike” as the time spent above the threshold.
the model equations for each cell. The few restrictions  Forthe network model, appropriate synaptic currents
we require on the model properties (outlined below) are are added to the individual cell models. In the synap-
satisfied by a large class of neural oscillators, including tic current variables and parameters, the first subscript
the Morris-Lecar (Morris and Lecar, 1981) equations, denotes the presynaptic cell and the second subscript
which have been successfully used in numerous mod- denotes the postsynaptic cell. The network equations

eling studies (Rinzel and Ermentrout, 1997; Somers
and Kopell, 1993; Terman et al., 1998; Terman and
Lee, 1997), and which we use for our simulations (see
Appendix B).

The P cellis a general neural oscillator, modeled by
equations of the following form:

vp = fp(vp, wp) n

w/p = Egp(vp’ wp)v

where’ denotes the derivative with respect to tite
The variablev, represents the membrane voltage of
the place cell and the functiofy, is composed of the
sum of the ionic and leakage currents found in the cell
as well as an applied current. We consiéketo have
bursting behavior and the variahlgto model the burst
envelope and not to account for individual, fast spikes
occurring during the active phase of the burst. In this
general class of neural models, the variablemod-
els the activation gating variable of an outward, ionic
current, usually potassium-mediated, and the function
gp governs the activation gate dynamics of this con-
ductance. The parametercontrols the time scale of
thew, dynamics. Our analysis assumes i small
(e « 1), so that this general neural oscillator behaves
as a relaxation oscillator.

The model for the interneurohalso has a general
form, but we considel to be an excitable cell, rather
than oscillatory. The model equations are

v/= fi(vi, wi)
()

wi= €Gi (vi, wi),

wherev; represents the membrane voltage @indw;
represents the activation gating variable of an outward,
ionic current. As described below in terms of its phase
plane, we require that it is able to fire in response to
either excitation received frof or inhibition received
fromT.

The equations for the pacemakBrare completely
general. In fact, we simply assume thatoscillates

for P are

!/

Vp = fp(Up, wp) — GipSp(t — Uip)[vp - Uip],
wy, = €gp(vp, wp).

For 1, the network equations are

vi = fi(vi, wi) — GpiSpi (t — opi)[vi — vpil

— O Si (Vi — vii),

w = €g; (vi, wy).

(4)

This form of the synaptic currents has been used in
other modeling studies (Ermentrout and Kopell, 1998;
Wang and Rinzel, 1992). The variabkgs, spi, ands;
govern the dynamics of the synaptic currents, and each
satisfies an equation of the form

S = aHy(v —v9)(1—9) — Bs, (5)
wherea and B are the rise and decay rates of the
synapse, andy is the synaptic activation threshold.
The Heaviside step functioH,, acts as an activation
switch for the synapsdd.,(v — vy) is O if v < vy and
is 1if v>vy. The parametergy;, g, andg;p are the
maximal conductances of these synaptic currents, and
vpi, Vi, andvjp are the reversal potentials. In particu-
lar, vip andvy; are set to make the associated currents
outward, whilevy; is set to make the synaptic current
inward. Finally, the parametetg, andop; represent
a synaptic delay fronh to P andP to I, respectively.
Without loss of generality, we assume there is no delay
betweenT andl .

2.2. Phase Plane Methods

In this section, we describe the phase plane methods
we use to analyze the model. We first explain how the
behavior of each cell when isolated from the network
can be studied in the phase plane and then describe
the effect of network interactions. An important aspect
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of our analysis that is worth mentioning at this initial by rescaling time using =€t in (1) and then setting

stage is that we often compare behavior of uncoupled € =0:

and coupled versions d?. By the former, we mean

the intrinsic P cell oscillation in isolation from the 0= fp(vp, wp)

network. By the latter, we mean the oscillation of the Wp = Jp(vp, wp),

sameP cell when it must now interact witii and |

in the network. One of the important conclusions of where' denotes the derivative with respect to the slow

our analysis is that the network dynamics can evolve time variabler. To mathematically construct the os-

in dramatically different ways, depending on the firing cillation cycle, we denote the left and right knees of

sequence of the cells. the nullclineCp by (v.k, wik) and(vgk, wrk) respec-
The oscillatory behavior of the isolat&dcell can be tively. Results by Mishchenko and Rozov (1980) imply

analyzed in the, — w, phase plane where the trajec- that fore sufficiently small, an actual periodic orbit lies

tory of the cell is determined by the nuliclines of each O(e) close to a so-called singular periodic orbit. The

(8)

equation (see Fig. 3). The,-nulicline, denotedCp, singular periodic orbit consists of four pieces, all of
is a cubic-shaped or N-shaped curve found by solving which are constructed with= 0. The firstis a solution
fp(vp, wp) =0forwp. Thewp-nulicline, denotedp, of (7) that connecté k , w k) to some pointvg, wik)

is a sigmoidal-shaped, nondecreasing curve found by on the right branch o€ (rising edge of burst). The
solving gp(vp, wp) =0. To ensure that the isolatdd next piece is a solution of (8) that conne¢ig, wik)
cellis oscillatory, parameters in the functiofysandg,, to (vrk, wrk) (active phase of burst). The third piece is

are chosen so thélp andDp intersect uniquely along  a solution of (7) that connectsgk, wrk) t0 (v, Wrk)
the middle branch o€p. As in prior models (Somers  (falling edge of burst). The final piece is a solution of
andKopell, 1993; Terman and Lee, 1997; Termanetal., (8) that connectsv,, wrk) back to(v.k, wik) (silent

1998), we require that the following condition o phase). Note that with respect to the slow time scale
holds near the left branch @fp: 7, the jumps between the active and silent states of the
burst are instantaneous. We denote the period of the
99 - 0. (6) singular periodic orbit bylp.
dvp The nuliclines for the model interneuron with ex-

citable behavior have the same qualitative shape as
those for theP cell, except model parameters are ad-
justed so that the cubic-shapednulicline, denoted
C,, and the sigmoidab;-nulicline, Dy, intersect along
the leftbranch o€, . The intersection point of the null-
clines is a stable fixed point along the left-hand resting
branch ofC,, that ensures that the isolatédcell is
unable to oscillate on its own. This change in the null-
clines can be obtained, for example, by shifting the
half-activation voltage of the outward current to lower
voltage levels. A property we assume for the intersec-
tion point of the nullclines is that this point be close
to the left knee of the nullclin€,, thus allowing the
interneuron to fire either in response to excitation from
the P cell or via rebound following inhibition from the
pacemakeil . As with P, we assume that near the left
branch ofC,,

Following standard analysis of relaxation oscillators,
in the limite =0, the burst trajectory of the cell can
be traced in the phase plane. As displayed in Fig. 3,
the silent phase of the burst occurs as the trajectory
travels down the left-hand branch of the cubic-shaped
nullclineCp, while during the active phase of the burst,
the trajectory travels up the right-hand branchCef.
The transitions between the active and silent phases of
the oscillation occur when the trajectory reaches the
knees of the nullcline. One cycle of the burst oscil-
lation is obtained by tracing along the four different
“pieces” of the trajectory. Specifically, settiag=0 in
(1), we obtain the following, fast equations governing
the transitions of th® cell between its active and silent
states:

v, = fy(vp, wp)
/p pi¥p p (7)
wy, = 0. g

™ > 0. 9)

In this casew, acts as a parameter in thg equa-

tion, which is simply a scalar equation and thus easy In our geometric analysis in the phase plane, the
to analyze. The equations governing the slow variation general effect of introducing a synaptic current is to
of vy during its active and silent states are obtained either raise or lower the cubic-shaped nullcline of
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the postsynaptic cell without qualitatively changing workthroughoutin the appropriate= 0 limitand then

its shape, as long as the maximum synaptic conduc- use results of Mischenko and Rozov (1980) to obtain
tance is not too large relative to the maximum ionic thee small result. Our proofs depend on the use of a
conductances. Since (5) contains no factok pthe time metric that allows us to define times between cells
synapses turn on and off on the fast time scale gov- and also times over which relevant behavior occurs. It
erned byt; thus they are instantaneous with respect turns out that we can relate many of the times associ-
to the slow flow of the trajectories governed by ated with the network model back to times associated
To examine the effects of the synaptic currents on the with the isolated cells.

P cell in our network model, we denote the solution

curve of fp(vp, wp) — Sp(t — oip)Gip[vp —vip] = 0 3. Results

by Cp,. Since P receives inhibitionCp, lies below

Cp (see Fig. 3). We assume that the nuliclibe and 3.1. System Properties

Cp, intersect somewhere along the left branciCef.

This intersection point will be a stable fixed point for  We first present an overview of our results that provides
the inhibitedP cell, with the result that the inhibiteld a qualitative description of how and why the model
cell will not spontaneously oscillate. Further note that generates phase precession. In the second part of this

this intersection point will lie below the left knee G section, we provide the analysis of our model and spe-

because of our restriction (§%—p >0 (see Somers and cific analytical results.

Kopell, 1993). ’ There exist two different, important firing patterns
The effect onl of the excitatory synaptic current for the simple network. The first firing pattern repre-

from P and the inhibitory synaptic current from is sents network behavior when the rat is outside of the

that its cubic-shaped nulicline can be raised or lowered place field. The second represents network behavior
depending on the activation sf; ands;. For any pos- when the rat is inside the place field. The difference
sible case, we assume that thenulicline D, contin- between these two behaviors is directly correlated to
ues to intersect the synaptically perturbeahuliclines whetherT or P controls the firing ofl . An important
along their left branches, thus ensuring thaemains aspect of our analysis is to identify mechanisms that al-
excitable. As noted previously, we require thabe low the control of firing to be shifted betwe@nandP.
able to fire due to either excitation received frd As described below, the first change in control frdm
or via rebound from inhibition received frof. For to P requires a brief external input to the network oc-
example, assume thhts sufficiently close to the inter-  curring when the rat first enters the place field. The
section point of the nullclines when it receives synap- second change in control frofd back toT is deter-
tic input. If the input is excitatory fronP, the cubic- mined internally by the network and signals that the
shaped nullcline of thé cell is instantaneously raised  place field has ended.
releasing the trajectory from its left branch. The tra-  The firing pattern representing out-of-place field be-
jectory is then attracted to the right branch of the raised havior is a stable periodic state that we call TH@
nullcline, thus initiating an action potential. Ifthe input orbit. In this stable pattern, the pacemakecontrols
is inhibitory fromT, the cubic-shaped nullcline is low-  the firing of I, which fires via postinhibitory rebound.
ered and the trajectory moves left toward the new stable In turn, | modulates the firing oP, so that it fires
fixed point at the intersection of the perturbed nulicline phase-locked to the underlying theta rhythm. The ef-
andD,. For sufficiently strong inhibition, because of fect of the inhibition froml is to either delay or ad-
our restriction (9), the new fixed point will lie below  vance the firing oP, depending on where iR’s cycle
the left knee ofC,. When the synaptic inhibition shuts  the inhibition occurs. ThusP is phase-locked to the
off, the nullcline rises back again towaft], and the theta rhythm and does not phase precess whether its
trajectory is attracted to the right branch, initiating an intrinsic frequency is higher or lower than theta (see
action potential via postinhibitory rebound. The ability Section 3.2.1). Moreove® can only fire when re-
of thel cell to fire due to these two different stimuliis  leased from inhibition front .
critical to our analysis. Simulation results from the simple network where
The mathematical analysis for this article, as well each cell is modeled with Morris-Lecar equations are
as the specific equations used in the simulations, canshown in Fig. 4. During the first five bursts of the P cell
be found in Appendices A and B, respectively. We (top trace), the network is in the stafil&P orbit. The
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this model is to generate the spatial phase correlation
from less spatially specific upstream information. Fol-
lowing the description of the properties of the simple
model, we show in Section 3.2.7 how to completely
suppress the out-of-place field firing, without resorting
to additional upstream spatial information (see Fig. 9).
The second firing pattern, representing behavior
within the place field, is a transient state that we call
thePIT orbit. ThePIT orbit is initiated by a brief, soli-
tary dose of excitation td?, representing a memory
seed externally provided from the dentate gyrus. The
seed causeR to fire earlier than it would have in the
TIP orbit and thereby allow® to seize control of ’s
firing. The P cell is able to fire via its intrinsic oscilla-
tory mechanisms for as long as it controlsThus, the
seed has the effect of switching controllofrom T to
P. During thePIT orbit, the period ofP firing, Tp, is
less than the period @f, Tt, regardless of the intrinsic
period of P, provided thaflp and T+ are not too dis-
parate. The reason phase precession occurs iRlihe
orbitis somewhat subtle and depends both on the intrin-
sic periods ofP andT and also on the time duration of
inhibitionfrom| to P. Ifthisinhibitionis short-lasting,

orbit is initiated by the arrival of the memory seed (heavy arrow at then duringPlT P fires at its intrinsic frequency Thus

535 msec, which lasts for 3 msec) and phase precession occurs over.

the next 7 cycles (under heavy bar). The network returns to the stable
TIP orbit for the remainder of the simulation. The model equations
and parameter values are given in Appendix B.

sequence of cell firing witfT firing first (not explic-
itly shown; time of peak indicated by dotted vertical
lines), followed byl (lower trace) and thei® is evi-
dent. During theT spike, | is inhibited as seen by the
hyperpolarization in thd voltage trace immediately
following the peak ofT. During thel spike (after its
release from inhibition fronT), P is inhibited as seen
by the hyperpolarization in the voltage trace imme-
diately preceding the spike.

Clearly, the out-of-place field firing rate in tHdP
orbitis higher than experimentally observed. This high
out-of-place field firing leads to a loss of spatial speci-
ficity to a downstream detector of firing rate but has
minimal effect on a downstream detector that uses the
phase of firing to determine the spatial location of the
animal. The simplest way to reduce or remove the out-
of-place field firing is to have a spatial inhibitory signal
that provides inhibition at all points outside of the place
field. This approach is not taken here because it relies
on spatial information upstream from the hippocampus
about the size and extent of the place field. The goal of

if Tp < Ty, itis clear that precession will occur. Al-
ternatively, if the inhibition is long-lasting, then during
PIT, P fires at a substantially faster rate than its in-
trinsic frequency. Counterintuitively, this increase in
firing rate is most strongly dependent on the strength
of the inhibitory synaptic conductance framo P. In
Section 3.2.2, we clarify how inhibition may speed up
the firing rate ofP. For this case, precession occurs
whether the intrinsic periodr is less than, greater than
or equal toTt. In either case, sincB controls the fir-
ing of | in thePIT orbit, forcing! to fire with everyP
burst,| also phase precesses.

Figure 4 illustrates th@IT orbit and phase preces-
sion for the Morris-Lecar model network. Arrival of
the memory seed t® is modeled by a brief, excita-
tory, applied current pulse (heavy arrow) that causes
the early firing of P and the interruption of th&IP
orbit. Due to the excitation fron®, | overcomes the
inhibition from T and fires withP, as seen by the slight
hyperpolarization in the peak of thie burst. Over the
next six cycles (under the heavy baB,and| phase
precess relative td. The firing of P due to intrinsic
oscillatory mechanisms is evidenced by the smooth rise
to threshold displayed by its voltage trace.

The phase precessionloprovides an internal mech-
anismthatreturnsthe network to thi> orbit. Namely,
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in PIT, | continues to receive inhibition with eadh that most strongly affect this network behavior. In

spike, but the timing or phasing of the inhibition is such Section 3.2.6, we show how experimentally supported
that postinhibitory rebound does not occur at each cy- data relating running speed to interburst frequency of
cle. For example, during the first two spikes of phase the pyramidal cells can be used to achieve a spatial cor-

precession, the inhibition frorm arrives during thd relation in thistemporal model. Finally in Section 3.2.7,
spike, as seen by the lower spike heights, and reboundwe introduce a modification to the simple network that
does not occur. Over the next three cyclesnhibits suppresses out-of-place field firing.

| during early portions of its afterhyperpolarization
when rebound is not possible. But by the last spike 3.2. Analysis
of phase precessiom,is inhibited sufficiently late in
its afterhyperpolarization, resulting in a rebound spike 3.2.1. The Network Oscillates at Theta Frequency
that interrupts théIT orbit, returning the network to  Outside of the Place Field. The trajectories oP and
the stableTIP orbit. The recapture of by T signals | intheTIP orbit can be traced along nullclines in their
the end of the place field and occurs wheand! have phase planes. We may assume that at O, T fires,
precessed through up to 360 degrees of phase, which ighe trajectory ofP lies on the left branch ofp with
consistent with experimental data (O’Keefe and Recce, wp(0) = w* and the trajectory of lies somewhere
1993). Thus, the precession ofis necessary for  along the left branch of,. In response to the inhibi-
determining the end of the place field. tion received fronT, | falls back toC,; and is released
The brief dose of excitation in the form of the mem- from inhibition atr = zr,,. We assume tha; (0) is
ory seed reorganizes the functional roles of the cells in such thatw; (z7,,) lies below the left knee of,. Thus
theTIPandPIT orbits. Namely, the excitation switches att = 7, , | fires by postinhibitory rebound. Allow-
the control ofl from T to P. T is able to regain control  ing for synaptic delay fronh to P, att = tr,, +gip, P
of I only whenP and| have precessed through up to feels inhibition froml and as a result falls back @, .
360 degrees. Note that this functional reorganization At t = t1,, 4+ 0ip + 11,,, P is released from inhibition.
occurs without any changes in the coupling or intrin- We show in Appendix A thatv* can be chosen such
sic properties of the cells. We emphasize that, in the thatwp(r,, + oip + 71,,) < wik. With this condition,
model, phase precession is a transient phenomena thatvhen P is released from inhibition, it will fire. De-
ceases with no further input to the network. Thus, the pending on the position of the trajectory Bfon the
length of time over which the pyramidal cell precesses, left branch ofCp when the inhibition from arrives, at
or alternatively, the length in space over which preces- t = t1,, + 0jp, the firing of P has either been delayed
sion occurs, completely determines the spatial extent or advanced relative to its intrinsic frequency. We also
of the place field. In this way, the network generates show in Appendix A that whef fires again at = T,
the temporal code embodied in phase precession. wp(Tr) = w*, thus ensuring that this cycle of firing
In the following analytic results section, we provide repeats, and we show that thE° orbit is stable. Note
mathematical justification for the qualitative observa- that for P to fire, it must be released from inhibition;
tions described here (see Table 1 for a list of relevant it is unable to take advantage of the fact that it is an
symbols). In particular, in Section 3.2.1, we discuss the oscillatory cell.
existence of th&'IP orbit. In Sections 3.2.2 to 3.2.5, In Fig. 5, we superimpose the phase portrait of the
we focus on thePIT orbit and determine parameters coupledP cell onto that of the uncouple® cell to

Table 1 List of relevant symbols.

Tr = intrinsic period of the pacemaker input Cp = intrinsic P cell cubic
Tp = intrinsic period of theP cell C| = intrinsic | cell cubic
Q=T -Tp Cp, = P cell cubic withgp =1
Tpc = period of P cell in TIP network Ci, = | cell cubic withsp; =1
T = period of P cell in PIT network Ci; = | cell cubic withs; = 1.
71,, = duration of the inhibition fronT to | 71, = duration of inhibition froml to P
7p o= duration of the active state of the intrindiccell pr = duration of the silent phase of the intrindtccell
aip = Synaptic delay froni to P opj = synaptic delay fronP to |

Note: All times are measured at=0 in slow time scale .



15

Phase Precession of Hippocampal Place Cells

"D Jo Youeld 1B By Jo Led pausep au) JBAO [eres) 01 Saxe) 11 S syl Sfenbs pawnayL * 90 Jo youelq 1918y Jo Led pausep sy Buofe Sanjo/e [jd
d paidnod au Teuy s Buiurews ayi senbe 9 awnay L *'4D Jo Yyaueld 1Je| 8u Jo 1ed paysep syl U g ‘soUeISID [e211BA SLLES L) JoA09 01 |19 d Pa|dnod L sexel 11 Wi 8yl si g awi
8y "dD Josauy 18] 8yl Ydesl 0} |PI d dIsulhul 8y} 4oy 42 uo ed pelop 8y} A0 swiayl senbe gawnayL ‘|9 d d1suliulay) 0} aul| paxiop ayl pue ‘B2 d padnod ay} 03 Spuodsa.iod
BUI| pausep 8y "apIouInd Sa1I0198 fes) 0M) asayl aeym adeds aseyd Ui sade|d 1uasaidal SSAIND Plog P1OS 8Y L “UMOUS 3 |9 d 8y} Jo sali01afe pajdnooun pue pajdnodo syl ‘G ainbi4

A
d
M
K10303fe1] [[92-d JIL
P ‘oo
|\ oty o sisuay <K/ v
\
> vooq
\\ ’ —_—
\
ANN
T “
d
a
d Iy



16 Bose et al.

clarify the differences in their trajectories. In the fig-

noton its duratior;, but on its timing during the cycle

ure, we have used lowercase letters to denote timesof P. We note that while th&IP orbit can be achieved

that these cells spend in parts of their orbit where their
trajectories differ. The letters with bar superscripts cor-
respond to the coupleR cell. Note thafTpc — Tp =
¢+ d— (b —Db). SinceTpc = Tr, a necessary con-
dition for theTIP orbit to exist is that the difference in
intrinsic periods oP andT, 2 = Tt —Tp, must satisfy
Q=¢C¢+d—(b—b). (10)
The differencé — b > 0is related to the magnitude of
g%z. Sinceg%’ > 0, cells evolve through the same Eu-
clidean distance o8p more slowly than oi€p,. Thus
b — b measures the additional time that the uncoupled
P cell must spend to cover the same Euclidean dis-
tance along the left branch &fp that the coupled®
cell covers orCp,.

Inthe case whef > 0, a stabldIP orbit is obtained
if C+d>b—Db. This can be achieved by choosing
wp(tT,, + 0ip), and hencev*, such that the trajectory
of P enters a neighborhood of the stable fixed point
at the intersection o€p, and Dp within the duration
of 7,,,. The trajectory of® will remain near the fixed
point until P is released from inhibition. In this way,
the firing of P is delayed and® can be phase-locked
to the theta rhythm.

When Q <0, a stableTIP orbit is achieved if
b—b > ¢+d. Inthis casewp(zr,, +0ip), and hence
w*, are chosen so that the trajectory®pfemains suf-
ficiently far from the fixed point at the intersection of
Cp, and Dp during 7,,. The trajectory displayed in

Fig. 5 is representative of this case. Since cells evolve

faster onCp, than onCp, the timeb + ¢ + d can be
shorter than the timb. This shows that inhibition can
be used to speed up. Thus,P can be phase-locked
to the theta rhythm iflp is greater thafit, as long as
the periods are not too disparate.

Observe that (10) can also be rewritten as

Q=r1,+d-b. (11)

For fixedS2, bothb andd may increase as,, increases.
An increase irb means thaP must feel inhibition at
highervalues ofvp along the leftbranch &@p. Inturn,
this means that ifIP the phase difference betwe@&n
andP will be greater. Hence, the duratief), controls
the phase difference betwe&randP in theTIP orbit.

In summary, thel'IP orbit can be obtained whether
the differenceQ2 =Ty — Tp is positive, negative, or
zero. The effect of the inhibition frorhto P depends

with either positive or negative, independent of the

durationr,_,, other results of our model—namely, ob-
taining thePIT orbit—require that for a short-lasting
71,,» £ Must be positive.

3.2.2. Within the Place Field, Both P and | Phase
Precess. Similar to above, we analyze tH8T orbit

by describing the trajectories & and| in their phase
planes. In the following analysis, we assume that near
therightbranch o€p, % =0. Thusthe speed atwhich

P evolves along the rigﬁt-hand branche€gfandCp,

will be the same. Our analysis continues to hold for
%% -0 but sufficiently small. We also assume that near

vy
3G _
s =0.

the right branch o€, ,

For simplicity, we assume that the seed arrives at
=0, so that bothl and P fire simultaneously. The
trajectory of P jumps to the right branch &p. Thel
cell receives inhibition fronT during the time interval
(0, t7,,), but, atr = oy, | fires due to excitation from
P. At t =0y + oip, P receives inhibition from and
falls to the right branch oCp . What happens next
is most strongly determined by, the time length
over which P feels inhibition froml. The timer,_,,
however, is hard to define precisely as it changes during
each cycle of the phase precession (see Appendix A for
clarifications of this definition). We describe how the
PIT orbit is obtained in the cases whey) is short and
when itis long relative to the duration of the active state
of P.

First consider the case wher, is short, in partic-
ular, 7;,, < pa, the duration of the active state of the
uncoupledP cell. At r =0y + 0oip, let the distance
alongCp, from the position of the trajectory d? to
the right knee be greater thaf),. Then the inhibi-
tion to P shuts off beford® jumps down from the right
knee ofCp,. So atr = oy + oip + 11, P returnstothe
right branch ofCp and leaves the active state through
the right knee of its intrinsic cubiCp. In Fig. 6A, we
have drawn the trajectory th& follows one cycle af-
ter the seed is given. It follows this trajectory until the
time at which the network returns to tiéP orbit. We
denote byTs the period ofP during phase precession.
In this caseTs = Tp. Thus, a necessary condition for
phase precession in this scenaridis< Tr or Q > 0.
Here, the sole factor that drives the precession is the
difference2 in the intrinsic periods oP andT.

Itis instructive to contrast the phase portrait afith
that of P duringPIT. As opposed to the clean and
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unchanging trajectory d®, the trajectory of changes have a spatially specific (Jung and McNaughton, 1993)
with each cycle of the precession. As we noticed in and theta rhythm phase specific (Skaggs et al., 1996)
Fig. 4, the inhibition fronT to | occurs atprogressively  firing pattern. In our model, the arrival time of the
earlier phasesduririgT. Interms of the phase portrait ~ excitatory input, representing the memory seed from
(see Fig. 6B), this means that the inhibition frdnto | these granule cells, need not be so precise. In fact,
occurs at different places in phase space. In particular, there exists an open interval of potential seed timings
during the first cycle,T inhibits | when is on the (or phases) that result in phase precession. The seed
right branch ofC,, and still far away from the right  must be timed to arrive wheR is sufficiently close
knee. At the next cycleT inhibits | while | is still to the left knee ofCp. To determine an expression
on the right branch but now closer to the right knee for the appropriate seed arrival timg.eq let T fire
at a higherw; value. Progressing in this manner, the at =0 and assume that the duration of the seed is
inhibition from T eventually occurs whehis back on small. The seed excitation momentarily adds a cur-
the leftbranch but still refractory. Ultimatellyreceives rent of magnitudeyg[vp — vag] to the current balance
inhibition when it is close enough to the left knee of equation for theP cell, wheregyg is the maximal con-
C, to be captured int@ 1P, thus ending precession and ductance. Phase precession occurs if the seed arrives at
signaling the end of the place field. Tseed € (=8, TT,, + 0ip) Wheres > 0. The lower bound
Phase precession occurs for a more complicated rea-—§ is related to the parametggy. For larger values of
son wheng;, > tpa. INn this case, we assume that Odg, —8 can be larger (in magnitude). The upper bound
reaches the right knee @i, before the inhibition from 0N TseeqiS @ sufficient condition for phase precession
| shuts off. Note that the right knee 6%, lies below since theP cell will certainly precess if it is excited
the rightknee o€p. Sothe length of tim® stays in its before it receives inhibition fromi. As this interval
active state during thelT orbitis lessthanthelengthof  for tseeggives only a sufficient condition, seeds that ar-
time it stays in its active state during th&P orbit. This rive slightly aftercr,, + o, may actually produce phase
decrease intime is the primary reason why, in this case, precession.
phase precession occurs. This can be seen by consid-
ering the phase plane &. There are several subcases ]
depending on the time length of, (see Appendix A 3.2.4. The Total Amount of Phase Precession Depends

for details). In Fig. 6C, we have drawn the trajectory ©ON the Phase of Memory Seed Arrival.In addition
that P follows one cycle after the seed is given for © determining whether phase precession is initiated,

one of these subcases. lret 7; be the timeP hitsthe ~ the timing or phase of the memory seed also affects
rightknee ofCp, . ThenP jumps back tothe leftbranch ~ the total amount of phase change in thecell dur-

of Cp, and evolves dowfCp, until T =13 + op; + oip. ing its precession. Since bothand| phase precess
We have denoted by lowercase letters various times of 2d since, in thd1P orbit, both cells fire at different
evolution for the uncouple® cell and the coupled pre- ~ fixed phases after, we need to consider the amount
cessingP cell. Note thafTp — Ts =k, +k +m— . of precession for each of these cells separately.
There are two sources of time reduction. The larger of  First considerP. If T fires atz = 0, then during

the two is the timek, + k. This time is related to the ~ the TIP orbit, P fires atr = zr,, + oip + 7,,,. We
maximum conductance for the synaptic current fiom ~ €an translate these times of firing to phases of firing

to P, gip. If gip is small, then the cubi€p, will not by multiplying the times by 360 Ty. The earlier the

be too far belowCp, and thus the timk, -+ k; is small. seed arrives, with respect to the timePffiring, the

As g, increases, so do&s+ k. The second source of ~ Smaller the amount tha precesses. Letay = v, +

time reduction, and thus phase precession, arises dugip + Tlo, — Tseedb® the amount of time (or phase) the

to the differencen — . This difference is controlled  firing of P is advanced by the memory seed. The total

by the magnitudeo%ﬁ near the left branch &p. For amount of phase precession is a decreasing function
v

this case, phase pre@ession in 1@ orbit is achieved of Tagw. IN particglar, if. the seed arrives in the interval
whetherQ is positive, negative, or zero. (=6, 0) (that is, if taqy is large), P precesses through
less than 360 degrees. Whereas if the seed arrives close

tot = t7,, + oip (ragvSMall), P precesses through close
3.2.3. The Memory Seed Initiates Phase Precession. to 360 degrees, provided that the duration of inhibition
Granule cells in the dentate gyrus make excitatory froml to P, 7, is sufficiently short. Theoretically, the
synapses on CA3 pyramidal cells, and granule cells P cellcanonly phase precessthrough afull 360 degrees
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240 3.2.5. The Number of Cycles of Phase Precession De-
pends on the Phasing of the Memory Seed and on the

120 - Duration of the Inhibition from | to P. There are
7 two possible formulae for the number of cycles of pre-
%’.J, 360 cession. The duration of inhibition fromto P, 7, ,,
2 determines which of the two formulae appliesto a given
g 240 situation. In the cas® > 0 (Tp < Tt), either formula
= o o o may apply withr, , actually determining which one to
120 | use. IfQ <0 (Tp > Tt), then only the second formula
can be used.
% 200 300 1200 1600 If 71, < Tpa, recall from Section 3.2.2, that tHiT
time (msec) orbit exists only for > 0. The number of cycles is
given simply by
Figure 7. Amount of phase traversed by ttRecell during phase
precession in the Morris-Lecar-based network model. When zero Tr — Tadv
phase is defined by the peak of thecell spike,P cell fires (burst n=—, (12)

times indicated by circles, filled circles indicate Fig. 4 results) at Y

152 degrees durlnTjIP(ﬂrs_t five bursts). Seeds arriving earlier (flrst_ _ wheren is the nearest integer to the ratio value. Here,

seed at 500 msec) result in less phase precession than seeds arriving, . : . .

later (last seed at 550 msec). Note also that the number of cycles of It is the difference between the intrinsic periodsTof

phase precession increases with later seed arrival. and P, together withraq, that determines the num-
ber of cycles of precession. The network model that

displayed the results in Figs. 4 and 7 generatB$Ta

in the limit seeq— 1, + 0ip + 71, from below. For orbit by satisfying these conditions ghandz,_, and
7, large, such a seed would fall well outside of the the number of cycles of phase precession is accurately
interval described in Section 3.2.3 and thus would be Predicted by (12), as shown in Table 2. The values
unlikely to produce phase precession. Thus, a lower Tt =1003 ms andTp =87.4 ms were used.
bound on the maximal amount of phase precession is If € is negative with,,, < zp a, then after the seed,
360°(1— Zen). (12) predicts and simulations corroborate (not shown)

An exarrT]p|e of the effect of the seed t|m|ng on the that theP and| cells phaSHeceSSbaCk to theTIP
amount of phase precession is shown in Fig. 7 for the Periodic orbit.
Morris-Lecar-based network model. In the figure, the  !If 7i,, > Tpa, @s described in Section 3.2.2, there is
filled circles indicate the phase of eaghcell burst o requirement on the sign 6f=Tr — Tp to obtain
during theTIP andPIT orbits displayed in Fig. 4. Dur-  the PIT orbit. In this case, the number of cycles of
ing TIP, P fires at approximately 152 degrees (dashed Phase precession is given by the following expression
horizontal lines) when 0 degrees is defined by The ~ Where the times are defined in Fig. 6C:
spike. The memory seed advandesell firing to ap-
proximately 77 degrees and thénprecesses through n= .
285 degrees until returning to thEP orbit and re- Q+k+k+m-—m

suming firing at 152 degrees. The open circles indicate Recall that the quantitk, +k +m—m is positive,

the phase oP firing whgn the seed arrives at differ- which compensates for a potentially negatfve The
ent times. For the earliest seed arrivBl,precesses

through approximately 170 degrees, and for the latest

seed,P precesses through roughly 340 degrees_ Table 2 Number of cycles of phase precession predicted
In contrast to the restriction on the amount of by Ed. (12) and observed in simulations of Morris-Lecar-

phase precession of the cell, the | cell can pre- based rptwork(parametersasm Figs. 4 and 7)fordifferent

.. . . arrival times of the memory seed.

cess through the full 360 degrees. This is possible if

Tseed€ (TT,, — Opi, TT,, + 0ip). The lower bound occurs Tagv (MS) 54 39 29 19 14 9 3

if the seed arrives at such a time so that the excitation Noredicted 4

from P to | arrives exactly at the momeiit releases

| from inhibition.

Tr — Tadv ( 1 3)

Nobserved 4 5 6 7 7 8 8
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time m—m is related to the magnitude ¢ near 50.0

the left branch ofCp. The magnitude of the time 40.0
k- + ki is of the order ofji, and arises because the burst

width and interburst interval are longer for the isolated 300 -
P cell than in thePIT orbit. We ran several simula- 3

tions (not shown) of the Morris-Lecar-based network 20.0 1
model withTp > Tt (specifically, Ty =100.3 ms and 100 -
Tp =102 ms). Withg;, = 1.0, we foundn=18, and
for gip = 1.5, n=9, thus corroborating the strong de—_ 0~00.0 210 4_‘0 60 80 10‘_0 120 140
pendence of the number of cycles of phase precession Q=T,-T,
ondip.
Reiterating, ifQ2 > 0, either (12) or (13) may hold Figure 8 Phase shift o firing during each cycle of precession
depending on the duration of the inhibition frdrto P. changes linearly with changes in animal’'s running speed, modeled

B . by changing intrinsic frequency d®. In Morris-Lecar-based net-

. y Con.tmuous erendence on pargmeters, there ex_Work model, phase difference &fbursts during precession (circles,
ists an intermediate value fer,, at which the network fjjeq circle corresponds to Fig. 4 results) increased linearly as in-
switches from (12) to (13). Note that near this switch- trinsic period ofP was decreased, corresponding to an increae in
ing point, small changes in the active durationlof  (applied current d®, I, =95, 98,100 103 and 103.A/cn). The
have large ramifications with respect to the occurrence PeriodTr = 100 ms was fixed throughout.

of precession and to the number of cycles of precession.

The phase shift at each cycle is given hy =

3.2.6. The Spatial Correlation of Phase Precession o ol ) _
360°-. Thus the phase shift is a linear function of

Is a Speed-Corrected Temporal Phenomenather T
P P the difference in period, and for fixel it is a linear

models of phase precession rely explicitly on the as- ¢ ) ¢ his [ lationshio holds |
sumption that phase precession is a spatial phenomenal!nction of Te. This linear Le atlonls P hOdS.m our
We show here that the apparent spatial dependence ofY10ITiS-Lecar-based network model as shown in Fig. 8.

phase precession can be accounted for by our tempo-_The filled circle showing the largest phase shift dur-

ral model. More precisely, if the interburst frequency N9 €ach cycle of phase precession corresponds to the
of the place cell and the frequency of the underlying parame.ter Va"ﬂes in Figs. 4 ,a”‘?' 7: To model a de-
theta rhythm are linear functions of the animal's speed, C'€as€ in running speed, the intrinsic frequency of the
then phase precession can be a temporal phenomenoﬂp cell was decreased. In response to this increase in
and also be more correlated with the animal's location |P+ corresponding to a decreasesi the phase shift

than with the time that has passed since it entered the 2% decreases linearly.

place field.
Assume the linear relationshipft = fg + 1, 3.2.7. Suppression of Out-of-Place Field Firing.
fs = fs + y2v, where fr is the theta frequencyfs The primary objective of our model is to illustrate a
is the frequency of the precessifycell andy, > y1 mechanism for generating the phase precession of place
are positive constants. The velocitys set tovg + Av, cells. Inthe model, phase precession only occurs in the

whereuyg is the minimum velocity needed for the theta place field, but the out-of-place field firing is too high.
rhythm to exist, and\v is the positive deviation from  This implies that a downstream phase-based detector
this baseline velocity. Without loss of generality, the could precisely determine the animal’s location at all
frequency fg is a common baseline fokv =0. Let phases except for the phase-locked one.

y =y2—p, then fs = fr 4+ yv, wherey >0. The Different complicated features could be added to the
time of thenth theta cycle peak isTr, and the time of ~ model to reduce or remove the out-of-place field fir-
thenth P cell burst,z,, isnTs = H”TTIVU. Theamount  ing. For example, there are many types of interneu-
of phase shift after thath burst¢, is the difference  rons in the CA3 region that have a diverse pattern
nTr —nT; divided by the period of the theta rhythm;  of connections and an incompletely determined role
thus ¢, =360’ {7222 The position of the rat at the in network activity. In particular, some of the in-
time of thenth burst isx, =vr,= 1i“TITyv. By in- terneurons make synaptic connections only on other
spection,¢g, =360’y xn, or equivalently, the phase is interneurons (Freund and Buzs, 1996). By introduc-

spatially correlated. ing one additional interneuron into our current model,
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Figure 9. The voltage traces for the three cell and pacemaker net-
work. Phase precession beging abughly equal to 500 msec with
the arrival of the memory seed. The céflsindl, then phase precess
for the next 6 cycles. Outside of the place field, the longer lasting
inhibition from |1, which is periodically reinforced, force® to stay
below threshold.
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the inhibition froml, can take effect. Moreover, this
slow inhibition decays away over one theta cycle thus
allowing 11 to again be in a position to fire by rebound.
The inhibition froml; to P, which lasts the entire theta
cycle is strong enough to preveRtfrom firing during
the cycle. Since this inhibition is renewed at each cy-
cle, P never fires. We call this th€ I,1,{ P} orbit and
note thafT controls the dynamics of the network.

As in the simple model, the externally provided
memory seed fireB and interrupts th& 1, 1,{ P} orbit.
Excitation from P caused, to fire. The subsequent
slowly decaying inhibition froml, to 1; nhow comes
before the fast inhibition fronT. Thusl; is strongly
inhibited and initially will be unable to respond
input. In the reorganize® I,{I,}T orbit, phase pre-
cession occurs with? controlling I, directly, causing
it to fire with eachP burst and thus phase precess. In
this orbit, P also controld,, indirectly throughl,. As
in the simple model, the timing and effect of the in-
put from T to bothI; and |, changes from cycle to
cycle. The effect onl, is similar to that discussed
in Section 3.2.2 and shown in Fig. 6B. The inhibition
from T chased, around its phase plane. Whénhas
precessed through up to 360 degrees, it can be recap-
tured byT. For precession to end, howevermust be
recaptured byl .

BecauseP andl, are phase precessing, the inhibi-
tionfroml,to I, comes at progressively earlier phases.
This means that at each cycle of theta, there exists pro-
gressively more time for this inhibition to decay before
theT input to I, arrives. Similar to the basic model,
phase precession ends wherecaptures control df;.
This occurs when the input fror3 to 1, comes early

the out-of-place field firing can be suppressed as shownenough in theT cycle so that the inhibition decays

in Fig. 9. In this more complex modé&l and P are as
before, but now there exist two interneurohsand|.
Both interneurons receive fast GABA-mediated inhi-
bition from T and are capable of firing rebound spikes.
The interneuronl; now provides a slowly decaying
GABA-mediated inhibitory current t& and receives
a similar current fronl,. The interneuror, receives
fast glutamatergic excitation fror®. As before, P
may also have a feedback connection fronthat can
either be a fast or slow inhibitory current. With this
network architecture, we require that the slow inhibi-
tion decay in roughly one theta cycle—that is, roughly
100 msec.

Outside of the place field; and | fire by postin-
hibitory rebound in response Ta Note that the synap-
ticdelay froml, to 1 allows the latter to rebound before

away sufficiently to allowl; to rebound in response to
T input. Once this happens, the slow inhibition from
I, to P is reinitiated, thus suppressiriy Moreover,
since P has been functionally removed from the cir-
cuit, I, must now wait forT input to fire. As discussed
above, this input occurs at a phase that allbyte fire
periodically.

The complex model described here operatesin a fun-
damentally similar fashion to the bagitP/PIT model.
As before, the role of inhibition differs inside and out-
side of the place field. Indeed, control of the network
of interneurons is again crucial for determining the
network output. Moreover, our analytical results in
Sections 3.2.2 through 3.2.6 carry over with little or
no modification. In this model, it appears tHathas
an “antiplace field” in that it fires everywhere except
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within the place field. In a less reduced and more re- in the environment. However, the phase relationship
alistic network model, this may not be the case. As a between place cell activity also provides information
result, we do not intend our results to be interpreted as on the location of the animal, and the background fir-
predicting the existence of antiplace fields. ing outside of the place field may not be a substantial
problem for a downstream system that uses phase to de-
termine the animal’s location. We presented a method
(not necessarily unique), using an additional interneu-

) o ) ) ron, to remove the out-of-place field firing without re-
We described aminimal biophysical model of the phase q,iring upstream information on the size and extent of
precession of hippocampal place cells that is consis- e place field.

tent with the essential empirically determined proper-  rrom a mathematical point of view, this work shows
ties of the phenomenon. We identified mechanisms he importance of determining functionality of the sub-
whereby temporal control of phase precession can oc- piaces ofthe model. We have shown how control within
cur. In particular, we proposed amechanism for chang- the network can be switched from one network member
ing the firing pattern of place cells as the animal enters, {5 another and then back again. We have demonstrated
crosses, and then leaves the place field. This mecha-y,4¢ geometric analysis is well suited to identify the
nism of changing control of the interneuron frafrto mechanisms that change control. Our work also high-
P switches the network from a stable state to a tran- lights the changing and perhaps nonintuitive effects of

sient state. The precession of the interneurons pro-npipition in the network. In particular, we have shown
vides a second mechanism to switch the control of the o\ a faster oscillator can entrain a slower one using

interneuron back td and thus return the networkto & oy inhibition. This depends critically on the timing of

stable state. the inhibitory input from the faster oscillator, which is
The initial form of the model accounts formostofthe - -qngistent with the theme that timing is of fundamental

empirical observations that were listed in the introduc- importance in temporal code generation. We have also

tion. Namely, (1) since we provide the seed only when gpq\wn how the network can use inhibition to function-

the rat moves in one direction, place cells only fire in 51y enhance or remove the effects of a chosen member.
one direction of motion; (2) all place cells, only the

single P cell in our case, start firing at the same initial
phase; (3) the initial phase is the same on each entry of4.1. Related Work
the rat in the place field since the seed always occurs
at the same phase; (4) since the change in control in Other models of phase precession differ from ours in
the network occurs before 360 degrees of precession,important ways. In prior work (Tsodyks et al., 1996;
it is impossible for there to be more than this amount Jensen and Lisman, 1996; Wallenstein and Hasselmo,
of phase precession; (5) while the cells in the dentate 1997; Kamondi et al., 1998), phase precession is mod-
gyrus may undergo a small number of cycles of pre- eled as a spatial phenomena. Each of these models in
cession, our model requires only one cycle; additional some way utilizes external input that already encodes
cycles would not change the results; (6) the model does for the phase precession. Thus none of the models truly
notaccount for the increase in firing rate (aless reduced explains the genesis of phase precession. Namely, the
network model that accounts for individual spikes may models do not address how a sind?ecell behaves
be able to include firing rate information; we believe both outside and inside its place field or what causes
that the mechanisms we have uncovered for phase pre-the transition in behavior of the cell between these two
cession in our idealized bursting neurons would carry areas.
over to neurons that instead exhibit bursts of spikes); The above models require either a network of exci-
and (7) the linear dependence on frequency of pyra- tatory cells or a highly parameterized description of the
midal cell firing is used here to maintain a correlation neuronto achieve precession. Inthe work of Jensenand
with location rather than time that has passed since the Lisman (1996), a one-dimensional chain of pyramidal
animal entered the place field. cells is considered, and phase precession occurs due
The initial model, however, had a high out-of-place to the local unidirectional excitatory synapses between
field firing rate. This out-of-place field activity would these cells. Selective excitation to a specific member
resultin aloss of spatial specificity if a downstream sys- of the chain, occurring at each theta cycle, provides
tem uses firing rate to determine the animal’s location phase-precessed input to the network. In the model of

4. Discussion
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Tsodyks et al. (1996), strong excitatory connections interneurons are most strongly inhibiting pyramidal
between place cells is also required. In this model, cells. In the present model the pyramidal cell con-
precession is driven by asymmetric synaptic weights trols the firing of the interneuron during the phase
between these cells. The total amount of excitatory in- precession process, and its activity is not adversely
put a cell receives is at a maximum in the center of the inhibited by the interneuron.
place field and decreases monotonically as the distance In recent recordings of a larger number of pyra-
from the center increases. Tsodyks et al. (1996) call midal cells and interneurons (Csicsvari et al., 1998),
this “directional tuning.” A similar idea is employed pyramidal cells were found that had large, significant
by Kamondi et al. (1998). There aramplike depolariz- cross-correlation peaks at times on the scale of ten
ing current is provided to the place cell to mimic pas- milliseconds that preceded the activity of simultane-
sage through the place field. Thus in these two models, ously recorded interneurons. These correlations find
the running animal is given external information about that there is a tight coupling in the time at which pyra-
its position in space that is encoded in the spatially midal cells and interneurons are active and suggests
dependent depolarization. Kamondi et al. (1998) and that the activity of a subset of the interneurons might
Wallenstein and Hasselmo (1997) both use multicom- precess along with place cells. The experimental ev-
partment descriptions of the place cells. Precessionidence of the high level of correlation between place
in these models depends critically on a more com- cells and interneurons demonstrates that there exists
plex, multiparameter description of each neuron. More- a sufficiently strong conductance between subsets of
over, the model of Wallenstein and Hasselmo (1997) these two types of neurons. These findings are consis-
also requires phase-precessed external input at eachent with the predictions in the present model in which
theta cycle as in Jensen and Lisman (1996) to achievethe phase precession of interneurons may only occur in
precession. a subset of interneurons and only when they are being
The present model takes an entirely different ap- driven by a phase precessing place cell.
proach. First, we believe phase precession is a tem-
poral mechanism that, as demonstrated, can account ) . .
for changes in the rat's running speed. Second, we do4-3-  Consistency of Biophysical
not require any external precessed input to the network. and Functional Models
Instead, we simply need a one time dose of excitation ) )
that mimics a memory seed and changes the network N @ model of phase precession, there are several im-
from the TIP to the PIT orbit. We do not require a portant larger goals and anatomical considerations that

network of excitatory cells or multicompartment mod- should be taken into account. There is considerable
els for the cells. Finally, our analysis gives a different data that demonstrates that the hippocampus has a
interpretation of the significance of phase precession r0l€ in episodic memory. We have proposed a func-
than all of the previous studies. Namely, in our model tional model that describes how the spatial and mem-
the end of phase precession signals the end of the place®'Y roles of the hippocampus can be combined (Recce
field. In the other studies, the end of the place field @nd Harris, 1996; Recce, 1999). In this view, when
signals the end of the precession. Thus our model pro- & fatreturns to a previously experienced environment,
vides an internal mechanism for determining the end of the set of coactive place cells corresponds to the recall
the place field (via the end of precession), whereas the Of @n €gocentric map of the environment. The memory
other models require another external input to notify recall is performed by a pattern completion process that

the pyramidal cell that its place field has ended. is controlled through the excitatory feedback pathway
in the CAS3 region of the hippocampus. The seed for

this recall enters the CA3 region through the entorhi-
4.2. Experimental Support nal cortex to the dentate gyrus and then in the mossy

fiber projection from the dentate granule cells to the
Several studies have demonstrated that the mean phas€A3 pyramidal cells and interneurons. The temporal
of activity of hippocampal interneurons is just prior to  control of the recall process, in this view, is provided
the mean phase of pyramidal cell activity (Fox et al., by the pacemaker input from the medial septum.
1986; Buzski and Eidelberg, 1982). This implies that The feedback connections between CA3 pyramidal
during the phase precession, the activity of a place cell cells are relatively sparse, which can limit the num-
must pass through the phase of theta rhythm at which ber of egocentric maps of space that can be stored if
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the region is modeled as an autoassociative memory. A(wy) it takes P to reachw k starting fromwp. In
However, Gardner-Medwin (1976) has demonstrated particular,A(wgrk) = tpr andA(w k) =0. Itis clear
that this limitation can be overcome if the recall pro- thatA is a monotone decreasing functionwf. The
cess is performed over a sequence of steps. Hirasedescription of th&'IP network given earlier shows that
and Recce (1996) found that the optimal performance there is a one-dimensional mépthat takes the initial
in a multistep autoassociative memory model of the position of P atz =0 along the left branch € and
CAZ3 region can be achieved if an interneuron network returns the position oP att = Tr.
controls the recall process by providing an inhibitory
input to the pyramidal cells that is a linear function of Proposition 1. The mapIl defines a uniform con-
the number of simultaneously active pyramidal cells. traction on a subinterva{wo,wn;) of (wik,wrk). If
Further, it has been proposed that the phase precession* is the resulting locally unique asymptotically stable
corresponds to the multiple steps in this recall process fixed point then the network possesses alocally unique
and that the phase precession suggests a method foasymptotically stable singular TIP periodic orbit with
the concurrent recall of several egocentric memories period T, wherew(0) = w*.
(Recce, 1999). i i i
In the present work, we have begun the process Pro.of We prove_the existence of afixed p0|_ntbycom—
of systematically addressing these issues. The presenfaring the behavior of the uncouplédcell to its cou-
model for phase precession, while conceptually quite Péd counterpart. Sincg = Tp + €2, we can compare
simple, is not necessarily the one that most easily pro- th€ Period of the coupled cell to Tr. First we locate
duces output that phase precesses. Instead, our mod2 suitablewn;. Associated with itis a timdp fr.om_
eling is based on the larger considerations of identify- Whi 0 wik 0nCp. At 7 =11, +0ip, P receives inhi-
ing mechanisms that can allow multiple memory recall Pition and jumps back (@p, . At 7 = zr,, +0ip + 7i,,,
processes to be simultaneously performed. The basicth® inhibition toP shuts off. We choosen; such that
framework described above, which accounts for pre- ¥p(%Tw +0ip +7i,,) = wik. Next let us consider the
cession, is compatible with a functional model of the €volution of theP cell, solely onCp in the absence of
spatial and episodic memory roles of CA3 place cells. any synaptic input. Smc%f;’—g >0 near the left branch
of Cp andCp,, the P cell moves dowrCp at a slower
Appendix A.  Analysis: Existence and Stability rate than orCp,. In other V\_/ords,P_takes a longer
of TIP Periodic Orbit time to cover the same Euclidean distanceCgnthan
onCp,. Thus atr = 11, + 0ip + 71, the uncoupled
cell will be abovew k. It is seen that inhibition ac-
tually shortens the time distance to the knee for this
initial condition. This is very similar to, but timewise
the opposite of, the idea of virtual delay of Kopell and
Somers (1995). There they showed that excitation had
the opposite effect of increasing the time to the knee.
The coupled and uncoupled versionsRfollow the

Outside the place field, the network is in A€ config-
uration. We show that there is a unique, stable periodic
orbit to which the cells are attracted. Assume that
fires att =0. We will locate an initial condition for

P and show that wheil fires again at = Tr, P has
returned exactly to this initial condition. The analysis
will be in terms of a time metric that will measure the X ) X
times of evolution ofP on various parts of its orbitin ~ S&Me trajectory in the active state.

phase space. These times depend on various biophys- ASSume momentarily that = 0. For the uncoupled
ical parameters that are related to both intrinsic and P cell, A(TI(whi)) = Thi- But fo_r the coupledP cell,
synaptic properties of the cells and the network. A(I(wh)) < Thi. Thus the time it takes for the coupled
P cellto return to its initial positiomp; is Tpe < Tp. If
Theorem 1. There exists a locally unique asymptoti- €2 is sufficiently small, thefTpc < Tp + 2 = Tr. Note

cally stable TIP periodic orbit with a period @) close ~ thatThi > r,, + aip + 71,,. How big the difference
to Tr. between these times needs to be depends on the size of

2%, which determines the difference in the rates along
Proof The analysis below occurs at=0, but using C; andCp,. Thus we have located an initial condition
the work of Mischenko and Rozov (1980), the results whose time distance to the knee compresses over one
actually hold fore > 0 and sufficiently small. Consider  oscillation.
the left branch ofCp betweenwgk andw k. AsSSoci- We next locate an initial condition whose time dis-
ated to each point on this curve, denoted is the time tance to the knee expands. Nowigt = wp(0) such



that for the uncoupled cell wp(zr,, + 0ip) = wWik.
Assume that the initial conditions fdrand| are iden-
tical to the above case. Thus at the momEnivere
to fire, it receives inhibition from . It will thus fall
back toCp, and move down this cubic toward the fixed
point onCp, for atimer,,,. At t = o, + gip + T,
P is released from inhibition and jumps to the right
branch. Thew value of the point to where it jumps lies
below w k. On the the right branch, let the time be-
tween this point andv x be denoted byp. OnceP
passes througly, = w k on the right branch ofp, it
will follow the same orbit as the uncoupl&lcell. The
coupledP cell has been delayed by a timg, + tp.
Soitwill return to its initial position at a tim@pe > Tp,
if @ =0. Thus ifQ2 is sufficiently small,Tc > Tt. For
this initial condition, the time distance to the knee has
been expanded—that ia,(TT(wo)) > A(wo).
Therefore, we have located a set of initial conditions
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ters synchrony due to fast threshold modulation (see
Somers and Kopell, 1993) implies that there is com-
pression across the jump. The rational is the follow-
ing. Across the jump, the Euclidean distance does not
change. However, the rate of evolution of the cells on
the left branch is much slower due to the fact that these
cells are evolving near a critical point. On the right
branch the cells are very far way from thenullcline

Dy, so the rate of evolution is much faster. Thus the
cells travel through the same Euclidean distance in a
much shorter time. Thus the new time between cells
is less thars. Since the cells always satisfy the same
differential equation, the time between them remains
invariant on the right branch &@p. Moreover, since
they both jump down from the right knee of tigp,

the time is invariant across the down jump. WHe&n
andP; return to the left branch & p, P, will lie below

P:. So whenP; returns to the initial position oP; at

such that the lower and upper boundaries of the set wj, the time between the cells will be less than when

are mapped into the interior of the set by the niap
By continuous dependence on initial conditions, this

they started, so the Euclidean distance between them
must have compressed. This proves thais a con-

implies that there exists at least one element of the settraction. The constarit can roughly be approximated

that remains fixed under the maép To prove that this
point is unique and attracting, we need to show that
I1 is a contraction mapping. We follow two different
versions of theP cell, denotedP; andP,, and show that
the dynamics of th&IP network bring these cells closer
together after one iterate @1. Let w; < w, denote
any two points inwie, whi) such thatvp, (0) = w; and
wp,(0) = w,. The cellsP; and P, do not interact with
one another but receive common inhibition from the
samel cell.

Lemma 1. There exists. € (0,1) such that|IT(w;)
— M(wy)| < Awz — wy|.

Proof: From the above analysis, itis clear that in the
TIP network, P; and P, will jump to the active state
from a point orCp, that lies below the left knee @p.
This occurs atr = t1,, + 71, + 0ip. Let s denote the
time between the cells at=0. As the cells evolve
along the left branch o€ and therCp,, the time be-
tween them remains invariant. However, the Euclidean

by the ratio of the speed at the jump on point on the
right branch to the speed at the jump off point on the
left branch (Somers and Kopell, 1993).

We have made some implicit assumptions about the
behavior ofl . Namely, we have not proved thhtac-
tually returns to its initial position at =Tt. We are
assuming that the time on the left branch@f from
w =wgrk Of C| to a neighborhood of the fixed point
on C, is bounded from below and above. The upper
bound arises from the fact that we wdnib be able to
respond tol att = Tt. The lower bound comes from
the fact that we do not waihtto fire for the time period
Tpa+oip. Provided these conditions are met, the ex-
istence of an asymptotically stable fixed point implies
the existence of an asymptotically stable singular peri-
odic orbit. Itis now fairly standard to show that the map
[T perturbs smoothly foe > 0, but sufficiently small,
thus yielding the actudllP periodic orbit (Mischenko
and Rozov, 1980). m|

distance between the cells decreases. Thisis astandard Letus now address more carefully what we mean by

fact for two cells that are evolving along the same one-
dimensional curve toward a fixed point. The longer
the cells spend near the critical point formed by the in-
tersection ofCp, andDp, the more the Euclidean dis-
tance is compressed. At= t7,, + 71,, + 0ip, the cells
are released from inhibition and jump horizontally to
the right branch o€p. The same mechanism that fos-

the active state of the interneuron.RiiT, it is not pos-
sible to locate the precise place from whicjumps up.
Thus the precise location at which it reaches the right
branch is not determinable, and therefore we cannot
precisely define its active duration. To give an esti-
mate first on the jump up point we need to define two
more cubics. One i€,,, which occurs whesp, =1
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andsr; =0. The second i€, .., which occurs when
bothsp; =1 andsr; = 1. Note thatC, ., lies between
C,, andC,,. Depending on the parameters, o, vpi,
andvy;, it may lie above or below, . For this argument
assume it lies abov€,. Then the maximunw value

to which | can jump is thew value of the left knee of
Ci,, call it w;,,. The minimum value is the value of

the intersection o€, andD, call it wj,,. Sinceg—g: =0
near the right branches, the speeds of evolution along
all the right branches are identical. For this argument
the ordering of the right knees of the relevant cubics is
Ri; < R < Ri,; <Ry, where the notation should be
clear. So, by along active phase of the interneuron, we
mean the time fromw;,, to Ry, is longer thertp 5 . By
ashort active phase we mean the time figmto R, is

less tharp 5, . Note that these times are simply bounds
for the length of the active phase. They do not imply
that | necessarily jumps down from a specific knee.
Indeed,|’s jump down point may change each cycle
depending on the timing of inhibition fro. Finally,

if the length of the active state df is too long—for
example, if the timew;,, to R, is much longer than

Tp A +0pi, then the analysis presented above breaks
down. This is becausk will not be in a position to
respond to the next bout of excitation frae

Appendix B. Model Equations
and Parameter Values

We have numerically implemented our two cell and
pacemaker network using the Morris-Lecar equations
(1981) tomodelthe neurons. The currentbalance equa-
tions for the P and | cells are

dvp
mgr = —0caMe (vp) (Vp — vca) — Gk wp(vp — vk )
—0L(vp —vL) — SpOip(vp — vip) + Ip,
dv;
Cmd—tI = —0caMoo (Vi) (Vi — vca) — Ik wi (Vi — vk)

— 0L (vi —vL) — Spigp1 (Vi — vp1)
=& gn( —vn) + 1,

where vy (in mV) is the membrane voltage in the
pyramidal cell K= p) and the interneuronX=i).
The maximal conductances for the calcium and potas-
sium currents in the cells are the sange(=4.4,

gk =8.0). The reversal potentials for the ionic cur-
rents aré/ca =120 mV andvk = — 84 mV. The leak
conductance density in each celjis= 2m S/cn?, and

the leak reversal potentiali§ = —60 mV. The mem-
brane capacitance B, =20 uF/cnm?. The applied
current values (imA/cn¥) arel , = 105 andl; = 120.
In our implementation of the model, tiecell is mod-
eled by the same equations as an isol®eell, except
applied current is set to 92A/cn?. In order to ob-
tain frequencies in the theta range, time was scaled by
4.5. The model equations were numerically integrated
using XPP (information on the program available at
http://www.pitt.edut-phase).

The gating Kinetics of the potassium conductances
in each cell K= p andi) are governed by equations
of the following form:

dwx _
dt

Woo,x (V) — wx
Tw,X(v)

where¢ = 0.005 corresponds te in the general form

of the equations. The steady-state activation and inac-
tivation functions and the voltage-dependent time con-
stant functions for the calcium and potassium currents
in each cell X = p andi) are given by

Moo (V) = }[1+tam’<v — vl)},
2 U2
l[ I’(U . U3X>]
Weo,x (V) = z| 1+ tan ,
2 V4, X

1
sechfv — v3 x)/2vsx]

7:w.X(U) =

The half-activation voltages for the gating functions are
(in mV) Vi p=UV1t= — 1.2, V3 p= 2, andvg,i =—-25.
The activation and inactivation sensitivities for the gat-
ing functions are (in MVyy p =v2; =18, vs , =30,
andv,; = 10.

The synaptic currents in each cell are governed by
the variablesxy whereX indicates the presynaptic cell
andY indicates the postsynaptic cell. These variables
satisfy equations of the form

1 _
Sxy = a(l—sxv)3 (1 + tanr<vxv—6v5)) — Bsxy,

where the Heaviside function in the general form of the
equations fosyxy is replaced by a sigmoidlike function
that depends on the presynaptic voltage (half-activation
vs = 0 and activation sensitivitys = 10). For the three
synaptic currents in the model, governeddy, s,

and s;, the rise and decay rates of the synapse are



the samedq =2, B =1). In the current balance equa-

tions, the effect of the synapse is determined by the

reversal potentials of the synaptic currenig; & 80,

vip = v = —80), and the maximal conductances of
the synaptic currents are all equap{= gip = G = 1).
We tookaip = opi = 0 in the simulations, thus showing
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results.

For the simulation in Fig. 9, the following parame-
ters were usedt, =118,1;, =80, |;, =80, g;,i, = 0.5,
Uj,i, = 5, ,3i2i1 = 0.005, Viyi, = —95, gpi2 = 1, A pi, = 2,
,Bpiz =1, Vpi, = 80, Oi,p= 0.8, Ui p = 3, /3i1p =0.001,
Visp = —95, Gii, = 2.5, Otj;, = 2, ,Btil =2, Vtj, = —-80,
Gii, = 2.5, Otj, = 2, ,Btiz =2, andvtiz =—80.
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