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According to the temporal coding hypothesis1, neurons encode
information by the exact timing of spikes. An example of
temporal coding is the hippocampal phase precession phenom-
enon, in which the timing of pyramidal cell spikes relative to the
theta rhythm shows a unidirectional forward precession during
spatial behaviour2,3. Here we show that phase precession occurs
in both spatial and non-spatial behaviours. We found that spike
phase correlated with instantaneous discharge rate, and pre-
cessed unidirectionally at high rates, regardless of behaviour.
The spatial phase precession phenomenon is therefore a mani-
festation of a more fundamental principle governing the timing
of pyramidal cell discharge. We suggest that intrinsic properties
of pyramidal cells have a key role in determining spike times, and
that the interplay between the magnitude of dendritic excitation
and rhythmic inhibition of the somatic region is responsible for
the phase assignment of spikes4,5.

Two competing frameworks have been suggested for the rep-
resentation of information in the brain: rate coding and temporal
coding. Rate coding suggests that information is represented by
discharge rates over a group of neurons6. Temporal coding models,
on the other hand, argue that the temporal relationship of spikes is
more critical for information transfer7–11. During spatial beha-
viours, hippocampal pyramidal neurons discharge specifically at

certain locations in the environment (the ‘place field’), implying
that hippocampal neurons ‘code’ for spatial information12. Further-
more, phase assignment of spikes with respect to the theta rhythm
shows a unidirectional advancement as the animal crosses the place
field2,3. Because spike phase shows a monotonic relation to position,
whereas firing rate increases and decreases as the animal enters and
leaves the place field, it was suggested that this ‘temporal code’
might be a reliable mechanism for representing space2,13.

Figure 1 Relation between theta phase and instantaneous firing rate in pyramidal cells.

a, Mean firing rate as a function of position, for an illustrative CA1 pyramidal cell (‘place

map’). b, Mean firing phase as a function of position for the same cell (‘phase map’).

c, Spike phase advancement during a wheel running episode. The cell fired sparsely at

constant phase until 5 s into the trial, when an intense period of firing occurred,

accompanied by phase precession, although the rat’s head remained stationary (,3 cm).

Top panel, phase and time of spikes. Bottom panel, instantaneous head position (red and

green: X and Y coordinates). d, Rate versus phase relationship during four types of

behaviour. For each spike, instantaneous rate was estimated by the number of spikes in

the 7208 interval centred on it. Graph shows circular mean and 95% confidence interval23

of all spikes in the database, grouped by instantaneous rate. Phase 0 corresponds to the

positive peak of CA1 pyramidal layer theta. The database consisted of 28, 181, 23 and

253 cells from 3, 5, 7 and 15 rats in the linear, open field, wheel and REM behaviours.
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A critical issue is whether phase precession is explicitly tied to
spatial computations, or arises from a more general mechanism. We
suggest that hippocampal phase advancement has a cellular origin,
owing to a dependence of preferred phase on the strength of
dendritic depolarization4,5. If this is the case, phase precession
effects should be seen in both spatial and non-spatial behaviours.
Here we address this issue by investigating the relation of phase to
spike train dynamics, independent of continuing behaviour.

Figure 1a and b shows the two-dimensional place field and ‘phase
field’ of a representative pyramidal cell during spatial exploration in
an open field, showing the firing rate and mean phase of firing with
respect to CA1 pyramidal layer theta at each point in space. In
agreement with previous investigations2,3, both firing rate and phase
correlated with the spatial coordinates of the animal. In agreement
with the depolarization hypothesis, the spatial dependence of firing
phase largely mirrored that of firing rate, with mean phase in the
centre of the place field being advanced compared to the periphery.
An example of phase precession during a non-spatial behaviour
(wheel running) is shown in Fig. 1c, where again phase precession
was seen at times of high firing rate.

To investigate the phase–firing rate relationship quantitatively
and independently of the spatial position of the rat (Fig. 1d), we
examined the phase of spikes during linear track running (n ¼ 28
cells), open field exploration (n ¼ 181), wheel running with
stationary head (n ¼ 23), and REM sleep (n ¼ 253). Instantaneous
firing rate was quantified for each spike by counting the number of
spikes up to 3608 of theta before and after the spike whose rate was
to be quantified. For each behavioural category, the effect of firing
rate on phase was significant (P , 0.001; circular analysis of

variance (ANOVA) on all spikes for each behaviour; see Supplemen-
tary Information). Mean phase, averaged over all behaviours,
shifted from 2958 ^ 78 (circular mean ^ 95% confidence interval)
at low instantaneous rates (1 spike per 2 cycles; ,4 Hz) to 1418 ^ 98

for high rates ($10 spikes per 2 cycles; ,40 Hz). CA3 pyramidal
cells recorded in linear track running (n ¼ 54) and open field
(n ¼ 74) showed a similar relationship, although the phase of firing
(relative to CA1 pyramidal layer theta) was earlier at both low and
high firing rates (overall mean 2588 ^ 158 and 968 ^ 258). As a
further test of the proposed depolarization–phase relationship, we
examined the relationship of spike phase on extracellular ampli-
tude, which has been observed to decrease at times of strong
activity14,15. In each behavioural category, spike phase advanced
robustly as the amplitude decreased (Supplementary Information).

A phase–firing rate correlation therefore exists in both spatial and
non-spatial behaviours. Nevertheless, this correlation may not fully
summarize the phase dynamics of pyramidal cells. In spatial
behaviours, phase shift occurs unidirectionally over multiple theta
cycles2,3. Do spike trains in non-spatial behaviours show a similar
tendency? Unidirectional phase advancement implies that the phase
of spikes advances between the onset and the cessation (‘offset’) of
periods of firing. On a linear track, firing onset and offset reliably
occur in distinct spatial locations, and unidirectional advancement
may therefore be detected by correlating phase with position.
However, this analysis cannot be used in other behaviours. We
therefore classified spikes as corresponding to firing onset and offset
directly. Spikes were classified as belonging to an accelerating spike
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Figure 2 Unidirectional nature of the phase shift. a–c, Subsets of spikes were selected as

occurring at the onset (red) or offset (blue) of activity (see text). Most spikes (black) met

neither criterion. The graphs show the results of the selection process on example spike

trains from three single units. Out of a grand total of 301,693 spikes, 7,750 were selected

as onset and 7,277 as offset. Vertical lines, successive theta cycles. d, For each

behaviour, the circular mean phase and 95% confidence interval was calculated for all

spikes in the database classified as onset (red) or offset (blue). For CA1, number of cells

and rats same as Fig. 1. For CA3, 54 and 74 cells from 1 rat in the linear track and open

field behaviour.

Figure 3 Mean phase as a function of instantaneous rate and its temporal derivative.

a, Calculation of rate derivative. Top, theta oscillation (blue) and spike times (red ticks) in

an example data segment. Scale bar, 100 ms. Bottom, the temporal derivative of

discharge rate for each cycle was calculated by linear regression of spike count (blue bars)

against cycle number in a seven-cycle window (red line). b, Pseudo-colour plots showing

phase as a function of instantaneous rate and its derivative, averaged over all spikes in the

database, for each behaviour. Rate derivative begins to influence spike phase at rates .1

spike per theta cycle (,8 Hz). Number of cells and rats same as Fig. 1.
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train (onset) if the previous 8 theta cycles contained at most 4
spikes, and the following 8 contained at least 16 (an increase from
,4 Hz to .16 Hz, assuming 8-Hz theta), and to a decelerating train
(offset) if the previous 8 cycles contained at least 16, and the next at
most 4 (Fig. 2a–c). The mean phase was significantly earlier for
spikes in decelerating patterns than for accelerating patterns in all
four behaviours (Fig. 2d; P , 0.001; Mardia-Watson-Wheeler test;
Supplementary Information).

Is the unidirectional nature of phase precession explained simply
by lower firing rates at activity onset, or can it occur even in the
absence of firing rate change? To address this question, we con-
sidered the dependence of phase on both rate and its instantaneous
temporal derivative (Fig. 3a, b). At low firing rates (#0.25 spikes per
cycle, ,2 Hz), there was little effect of rate derivative (mean of all
spikes in combined behaviours ^95% confidence interval:
3178 ^ 128; green on Fig. 3b). At higher rates (.1 spike per cycle,
,8 Hz), mean spike phase depended on the combined effect of rate
and the derivative of rate, advancing further as acceleration (mean
of all spikes with derivative $1 spike per cycle2, 2678 ^ 288; yellow),

turned to deceleration (mean of all spikes with derivative ,1 spike
per cycle2, 928 ^ 268; mauve). The example of Fig. 1c is therefore
illustrative of mean behaviour: at low rates, phase is constant, and
unidirectional advancement occurs only at times of intense
activity16.

The finding that phase advancement occurs only at times of high
firing rate supports the hypothesis that phase precession is a
function of excitation strength. According to this hypothesis,
phase modulation occurs due to an ‘interference’ effect between
rhythmic somatic inhibition and dendritic excitation (soma-den-
dritic interference or SDI model)4,5. At times of weak drive,
inhibition dominates, and the cell fires when it is least inhibited
(the positive phase). At times of strong drive, excitation dominates,
and the cell fires when it is most excited (the negative phase). This
interference mechanism may also explain the unidirectional nature
of phase precession, given a further assumption that, owing to
adaptation, the firing rate begins to decrease before the strength of
dendritic excitation has reached its peak. Under this assumption,
the onset of spiking activity will occur at the same time as the onset
of excitation, but the offset of spiking will occur before the offset of
excitation. Accordingly, dendritic depolarization will be larger at the
offset of spiking than at the onset, and phase will be advanced.

This hypothesis was investigated in two ways. First, temporally
symmetric current ramps were injected into CA1 and CA3 pyr-
amidal cells of anaesthetized rats (n ¼ 18; Fig. 4a, b). The resulting
spike trains showed 2.6 ^ 0.7 times more spikes on the ascending
than the descending part of the ramp, supporting the hypothesis
that firing rate begins to decline before the offset of excitation.
Furthermore, the degree of asymmetry increased with increasing
amount of depolarization. Second, a compartmental model pyr-
amidal cell (Fig. 4c; see Methods) was subjected to a sinusoidal
somatic Cl2 conductance together with a sinusoidal dendritic Naþ

conductance. The latter was modulated by a symmetrical ramp
function, simulating a place field traversal. The model exhibited a
dependence of preferred phase on excitation strength. In addition,
because of adaptation, firing offset occurred before excitation offset,
and a unidirectional phase advance was seen, similar to place field
traversals in vivo2,3.

In summary, in both spatial and non-spatial behaviours, timing
of hippocampal pyramidal cells within the theta cycle shows a
correlation with instantaneous firing rate, and exhibits uni-
directional phase precession at rates exceeding one spike per cycle.
Similar phase precession was produced by a SDI model, in which
phase was determined by the relative magnitude of oscillatory
inhibitory somatic and excitatory dendritic inputs. We propose
that the SDI mechanism has an important role in coordinating the
timing of hippocampal cell populations, and that this temporal
organization is fundamental to processing of both spatial and non-
spatial information in the hippocampus. A

Methods
Fifteen male rats were implanted with movable tetrodes. Before implantation, seven rats
were trained to run continuously in a running wheel for water reinforcement available in
an adjacent box. The remaining eight animals were recorded either while exploring in a
large rectangular box (1.2 m £ 1.2 m £ 0.5 m high) or walking on an elevated square track
(65 cm side length; 8.5 cm wide ‘linear’ track) for chocolate reward. An infrared LED was
attached to the head stage to track the position of the animal. Sleep recordings were carried
out in the home cage of the rat. To ensure stationarity, the first and last seconds of wheel
running epochs were excluded. Electrode placement was localized histologically17.
Extracellular spikes were extracted from the traces by previously described methods18,19.
Only sufficiently well-isolated units were considered for analysis (isolation distance
$20)15. Theta activity was detected by calculating the ratio of the Fourier components of
the theta (5–10 Hz) and delta (2–4 Hz) frequency band20. Intracellular experiments were
performed in urethane anaesthetized rats21, with intracellular injection of symmetrical
triangular or sinusoid waveforms (3 s long).

Local field potentials recorded in the CA1 pyramidal layer were digitally filtered for
theta (4–10 Hz). Spike phase was calculated using a Hilbert transform. ‘Phase fields’ were
calculated by a locally weighted circular mean using a gaussian smoothing function of
width 7.5 cm. To compute the derivative of firing rate, a linear regression was performed
for the number of spikes per cycle as a function of cycle number, using the central and three

Figure 4 Proposed role of adaptation in unidirectional phase precession. a, Symmetrical

ramp currents (green line), were injected into the soma of hippocampal pyramidal neurons

of anaesthetized rats. More spikes occurred on the ascending than descending part of the

ramp, and peak firing preceded the depolarization peak. b, The forward shift between

peak firing rate and maximum depolarization increased with the amount of depolarization.

Each point shows mean and standard error of 50 repetitions from one cell. c, Soma-

dendritic interference (SDI) model of phase precession. A compartmental model pyramidal

cell experienced a sinusoidal Cl2 conductance at the soma (mimicking GABAA receptor-

mediated inhibition), and a sinusoidal dendritic Naþ conductance (mimicking glutamate

excitation, Glu), modulated by a symmetrical drive function. The graph shows phase

versus time for the overlaid spikes of 100 model runs. Owing to adaptation, the model

ceased firing before the offset of excitation, and showed unidirectional phase advance.
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neighbouring cycles on each side. The derivative and instantaneous firing rate were
estimated as the slope of the fit line, and its intercept in the central cycle. Circular ANOVA
was performed using the test statistic

i

P
cosðvi 2 �vgðiÞÞ; where v̄ g(i) is the circular mean

for the group to which observation i is assigned. The null distribution was computed by
1,000-fold random reassignment of groups.

Computational simulations were performed in NEURON (http://
www.neuron.yale.edu) using a two-compartment model of a hippocampal pyramidal
cell. Conductance and calcium dynamics were as described by Migliore22. Compartment
geometry: soma length 50 mm, diameter 40 mm, dendrite length 50 mm, diameter 3.3 mm.
Somatic peak channel conductances (S cm22): G Na 0.015; G K(DR) (delayed rectifier)
0.009; GK(A) (A-type) 0.0001; G K(M) (M-type) 0.00002; GK(AHP) (after-
hyperpolarization) 0.004; GCa(L) (L-type) 0.0025; G Ca(N) (N-type) 0.0025; GCa(T) (T-
type) 0.00025; dendritic same without GNa. 10-Hz sinusoidal conductances were added to
the soma (Cl2, peak 20 nS at 1208, phase modulation 50%) and dendrite (Naþ, peak 15 nS
at 1808, phase modulation 30%). Modulation depth and preferred phase were based on
extracellular recordings of interneurons and pyramidal cells in vivo20. The dendritic
current was further modulated by a gaussian function of time (width 500 ms). Synaptic
noise was added at the dendrite (Naþ, Poisson process, mean rate 1 kHz, peak conductance
5 nS).
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In the vast majority of brain areas, the firing rates of neurons,
averaged over several hundred milliseconds to several seconds,
can be strongly modulated by, and provide accurate information
about, properties of their inputs. This is referred to as the rate
code. However, the biophysical laws of synaptic plasticity require
precise timing of spikes over short timescales (<10 ms)1,2. Hence
it is critical to understand the physiological mechanisms that can
generate precise spike timing in vivo, and the relationship
between such a temporal code and a rate code. Here we propose
a mechanism by which a temporal code can be generated through
an interaction between an asymmetric rate code and oscillatory
inhibition. Consistent with the predictions of our model, the
rate3,4 and temporal5–7 codes of hippocampal pyramidal neurons
are highly correlated. Furthermore, the temporal code becomes
more robust with experience. The resulting spike timing satisfies
the temporal order constraints of hebbian learning. Thus, oscil-
lations and receptive field asymmetry may have a critical role in
temporal sequence learning.

We recorded the activity of pyramidal neurons from the dorsal
CA1 region of the hippocampus in awake, behaving rats (see
Methods). The firing rate of these neurons depends on the spatial
location of the rat3, and hence these neurons are referred to as ‘place
cells’. The mean firing rates (averaged over .200 ms) of about 100
neurons can provide an accurate estimate of the rat’s spatial
location4. This is the hippocampal rate code.

In addition to this spatial parameter, hippocampal activity during
active exploration is strongly modulated by a temporal parameter,
namely the 8-Hz theta rhythm. In a classic study, O’Keefe and Recce
showed that5,6 the phase of the theta rhythm at which a place cell
fires a spike steadily precesses to lower values as the rat moves
further along the place field (Fig. 1a). Consistent with this, phase
was highly (negatively) correlated with position (r ¼ 20.50 ^ 0.01,
P , 0.0001) across 171 recorded place fields (henceforth referred to
as the ‘population’). Normalizing by occupancy (see Methods)
yields the firing rate as a function of position and phase—that is,
the spatio-temporal receptive field (STRF, Fig. 1b). The firing rate
increases as phase decreases (from 3608 to 1808) and position
increases, reaching a maximal value at a position beyond the centre
(white line) of the place field and at 2008 (red arrow) towards the
end of the place field: that is, the firing rate is an inseparable
function of high phases (1808 , phase , 3608) and position. The
firing rate at low phases (08 , phase , 1808) shows a weaker
dependence on phase and position.

The vast majority of neurons have a similar spatio-temporal
structure (as Fig. 1b), in which the firing rate shows a significant
increase as the mean phase decreases and the distance within the
place field increases (population average, Fig. 1c, d). Thus, there is
spatial information in the precise timing of spikes (accurate up to
10 ms) with respect to the theta rhythm5–7. This is the hippocampal
temporal code, which has several advantages over the rate code,
such as insensitivity to the rat’s running speed5 and scale invar-
iance7.

Several computational models have been proposed to explain the
origin of this temporal code5,8–11. These models were based upon the
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