
neighbouring cycles on each side. The derivative and instantaneous firing rate were
estimated as the slope of the fit line, and its intercept in the central cycle. Circular ANOVA
was performed using the test statistic

i

P
cosðvi 2 �vgðiÞÞ; where v̄ g(i) is the circular mean

for the group to which observation i is assigned. The null distribution was computed by
1,000-fold random reassignment of groups.

Computational simulations were performed in NEURON (http://
www.neuron.yale.edu) using a two-compartment model of a hippocampal pyramidal
cell. Conductance and calcium dynamics were as described by Migliore22. Compartment
geometry: soma length 50 mm, diameter 40 mm, dendrite length 50 mm, diameter 3.3 mm.
Somatic peak channel conductances (S cm22): G Na 0.015; G K(DR) (delayed rectifier)
0.009; GK(A) (A-type) 0.0001; G K(M) (M-type) 0.00002; GK(AHP) (after-
hyperpolarization) 0.004; GCa(L) (L-type) 0.0025; G Ca(N) (N-type) 0.0025; GCa(T) (T-
type) 0.00025; dendritic same without GNa. 10-Hz sinusoidal conductances were added to
the soma (Cl2, peak 20 nS at 1208, phase modulation 50%) and dendrite (Naþ, peak 15 nS
at 1808, phase modulation 30%). Modulation depth and preferred phase were based on
extracellular recordings of interneurons and pyramidal cells in vivo20. The dendritic
current was further modulated by a gaussian function of time (width 500 ms). Synaptic
noise was added at the dendrite (Naþ, Poisson process, mean rate 1 kHz, peak conductance
5 nS).
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In the vast majority of brain areas, the firing rates of neurons,
averaged over several hundred milliseconds to several seconds,
can be strongly modulated by, and provide accurate information
about, properties of their inputs. This is referred to as the rate
code. However, the biophysical laws of synaptic plasticity require
precise timing of spikes over short timescales (<10 ms)1,2. Hence
it is critical to understand the physiological mechanisms that can
generate precise spike timing in vivo, and the relationship
between such a temporal code and a rate code. Here we propose
a mechanism by which a temporal code can be generated through
an interaction between an asymmetric rate code and oscillatory
inhibition. Consistent with the predictions of our model, the
rate3,4 and temporal5–7 codes of hippocampal pyramidal neurons
are highly correlated. Furthermore, the temporal code becomes
more robust with experience. The resulting spike timing satisfies
the temporal order constraints of hebbian learning. Thus, oscil-
lations and receptive field asymmetry may have a critical role in
temporal sequence learning.

We recorded the activity of pyramidal neurons from the dorsal
CA1 region of the hippocampus in awake, behaving rats (see
Methods). The firing rate of these neurons depends on the spatial
location of the rat3, and hence these neurons are referred to as ‘place
cells’. The mean firing rates (averaged over .200 ms) of about 100
neurons can provide an accurate estimate of the rat’s spatial
location4. This is the hippocampal rate code.

In addition to this spatial parameter, hippocampal activity during
active exploration is strongly modulated by a temporal parameter,
namely the 8-Hz theta rhythm. In a classic study, O’Keefe and Recce
showed that5,6 the phase of the theta rhythm at which a place cell
fires a spike steadily precesses to lower values as the rat moves
further along the place field (Fig. 1a). Consistent with this, phase
was highly (negatively) correlated with position (r ¼ 20.50 ^ 0.01,
P , 0.0001) across 171 recorded place fields (henceforth referred to
as the ‘population’). Normalizing by occupancy (see Methods)
yields the firing rate as a function of position and phase—that is,
the spatio-temporal receptive field (STRF, Fig. 1b). The firing rate
increases as phase decreases (from 3608 to 1808) and position
increases, reaching a maximal value at a position beyond the centre
(white line) of the place field and at 2008 (red arrow) towards the
end of the place field: that is, the firing rate is an inseparable
function of high phases (1808 , phase , 3608) and position. The
firing rate at low phases (08 , phase , 1808) shows a weaker
dependence on phase and position.

The vast majority of neurons have a similar spatio-temporal
structure (as Fig. 1b), in which the firing rate shows a significant
increase as the mean phase decreases and the distance within the
place field increases (population average, Fig. 1c, d). Thus, there is
spatial information in the precise timing of spikes (accurate up to
10 ms) with respect to the theta rhythm5–7. This is the hippocampal
temporal code, which has several advantages over the rate code,
such as insensitivity to the rat’s running speed5 and scale invar-
iance7.

Several computational models have been proposed to explain the
origin of this temporal code5,8–11. These models were based upon the
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observation that whereas the place field firing rate is a symmetric
function of position, phase is not, suggesting that phase and rate are
governed by separate mechanisms. However, recent results have
demonstrated that place fields become asymmetric in an experi-
ence-dependent fashion12, raising the possibility that rate and phase
codes may be more directly coupled. Place field firing rate distri-
butions in the present study were also asymmetric (skewness,
20.42 ^ 0.05; P , 0.0001), such that the firing rate was low at
the beginning of a place field, but was high at the end. On the basis of
this observation we sought to test a hypothesized mechanism of the
origin of the temporal code (Fig. 2), in which CA1 neurons receive
theta rhythmic inhibitory input13, as well as asymmetric excitatory
input12,14,15. Under this model, the relationship between phase and
rate is established by assuming that at the beginning of a place field
excitation is low, and hence the latency with which a neuron comes
out of inhibition and fires a spike, that is, spike phase, is high (3608).
As the rat moves further along the place field, excitation increases,
resulting in shorter latency to spiking (smaller phases), and higher
rates. Such a mechanism, when applied to groups of overlapping
place cells, will faithfully reproduce the temporal order of activation
of place cells on short (,10 ms) timescales.

This mechanism makes the basic prediction that regions of high
firing rate should have a lower mean phase, and vice versa. Indeed,
mean phase was negatively correlated with mean firing rate both for
individual cells (Fig. 3a, b) and across the population of neurons
(Fig. 3c).

A second prediction of the model is that as the excitatory input
increases with distance along the place field, the fraction of theta
cycle during which excitation exceeds inhibition will also increase
(blue bars, Fig. 2a), resulting in a wider phase distribution. Con-
sistent with this prediction, we found an increase in the width of the
phase distribution as a function of both distance (Fig. 3a, d) and rate
(r ¼ 0.13 ^ 0.02, P , 0.0001). Thus the temporal code was highly
asymmetric, becoming less precise as the rat’s position in the place
field increased.

Further, excitation would be an increasing function of position in
the first half of the place field, but initially increasing and then
slightly decreasing function of position in the last half (Fig. 2). This
predicts that the phase will be a more consistently decreasing
function of position in the first half of the place field, compared
to the last half. Thus the temporal code should be more robust in the
first half of the place field than in the last half. Consistent with this,
for the cell in Fig. 3a the phase is 6.2 times more strongly correlated
with distance for spikes in the first half of the place field, compared
with spikes in the last half of the place field. Similar results were true
for the population of cells (Fig. 3e).

If the theta rhythm is purely sinusoidal, increasing levels of
excitation will result in phase advancement from 3608 at the trough
of the theta cycle to 1808 at the peak of the theta cycle. Beyond this
point, the excitation exceeds inhibition throughout the theta cycle,
resulting in a broader distribution of spikes. Thus, according to this
model, the high phases should be more strongly correlated with

Figure 1 Hippocampal spatio-temporal receptive fields. a, The rat ran from left to right.

Each point represents the phase of the theta rhythm (see Methods) and the rat’s position

at the time of occurrence of a spike from an isolated CA1 pyramidal neuron. Phase is

highly correlated with position (r ¼ 20.8). b, The firing rate for the neuron in a plotted as

a function of position and phase (the spatio-temporal receptive field, STRF; see Methods).

The centre of the place field (247 cm) is indicated by a white line. Phase (2008)

corresponding to maximal firing rate is indicated by a red arrow. c, Population-averaged

STRF. Each place field was re-scaled to be 100 pixels (66 cm) wide. The centres of the

re-scaled STRFs were aligned at the origin. The average value of firing rate in each spatio-

temporal bin is plotted. Phase (2208) corresponding to maximal firing rate is indicated by a

red arrow. d. The standard error of firing rate was computed for the re-scaled population-

averaged STRF (c), and plotted as a function of phase and position, showing that the firing

rate modulations in c are highly significant.
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position than the low phases. Indeed, the spikes at high phases for
the cell in Fig. 3a are 7.4 times more strongly correlated with
position than spikes at low phases. As a population, the correlation
with position was 2.5 times stronger for high phases than low phases
(Fig. 3f). The residual precession at low phases could arise because
the theta rhythm is not purely sinusoidal16.

The above results describe phase precession under the condition
of an asymmetric receptive field. However, previous work has
shown that place fields do not have a clear asymmetry during
early exposure to an environment (Fig. 2b)12. In this condition, the
rate will not be an increasing function of space, and hence phase will
be poorly correlated with position. Thus, if the phase was indeed
determined by the above mechanism, the temporal code should be
less robust during this early period of exposure (Fig. 4a). Consistent
with this prediction, we found that on average the population of
place cells had a 2.1 times stronger correlation of phase with
position after experience, compared to before (Fig. 4b,
P , 0.0001). The time course of this evolution of the temporal
code was also comparable to the time course of evolution of place
field firing rate asymmetry12.

In order to infer the precise effect of experience on firing rate as a
function of position and phase, we computed the population-
averaged STRF (Fig. 1c) for each lap. The resulting STRF shows a
significant 2.2 times stronger correlation (P , 0.00001, paired t-
test) of phase with position later during experience (sixteenth lap,
Fig. 4d) than earlier (first lap, Fig. 4c). Whereas the correlation
between firing rate and position, and between phase and position,
becomes stronger with experience, the model predicts that there
should be no change in the correlation between rate and phase.
Consistent with this, the rate and phase were significantly correlated
in both the first (r ¼ 20.10 ^ 0.03, P , 0.01) and the sixteenth
(r ¼ 20.07 ^ 0.03, P , 0.01) laps, and there was no significant
change in this correlation with experience (P . 0.8).

In three out of seven sessions, the rat’s running velocity showed a
significant change with experience (see Supplementary Infor-
mation). Hence, we restricted the analysis to 67 place fields obtained
from the remainder of four sessions where there was no significant
change in the rat’s running velocity throughout the first seventeen
laps. The magnitude and time course of the experience dependence
of the temporal code in these restricted data were virtually identical
(see Supplementary Information) with the results presented in
Fig. 4b. Thus the lap-specific changes in the temporal code could
not arise from changes in the rat’s behaviour.

Finally, if the phase precession is indeed restricted to mostly high
phase spikes and is a result of the asymmetric nature of the firing
rate distribution, the lap-by-lap fluctuation in these two parameters
should be correlated. Indeed, averaged across the population, the
firing rate asymmetry in a given lap was highly significantly
correlated with the correlation of high phase spikes with position
(r ¼ 0.13 ^ 0.02, P , 0.0001).

Thus, our model suggests that the phase of spikes at a given
location is largely determined by the net excitatory input at that
location: a CA1 pyramidal neuron fires a spike when feed-forward
excitation exceeds periodic inhibition. This simple mechanism
would be modified in the presence of recurrent inhibition as follows.
A pyramidal neuronal spike would activate recurrent inhibition
within CA1, resulting in a suppression of subsequent pyramidal
neuronal activity in that theta cycle. The suppression would have
two complementary effects on the rate and the temporal codes.
First, the pyramidal activity would be restricted to a small part of the
theta cycle, thereby making the temporal code sharper. Second, the
suppression would be strongest at higher rates, found towards the
end of the place field. Therefore, the firing rate asymmetry would
provide an underestimate of the asymmetry of the excitatory drive
on a pyramidal neuron. Hence, the spike phase would become a
better estimator than spike rate of the strength of feed-forward

Figure 2 A mechanism that can generate a temporal code from a rate code. a, Each CA1

cell receives an asymmetric excitatory input (blue curve12) and periodic inhibitory input

(red curve). The minima of inhibition correspond to 08 or 3608, and the maxima to 1808.

The neuron will commence firing only when the excitation exceeds inhibition (green dots).

Recurrent inhibition would then quickly terminate the activity. As the rat moves deeper into

the place field, the excitation increases, phase decreases, and the neuron is active for a

larger fraction of the theta cycle (blue bars) b, Before experience, the excitatory inputs to

the CA1 neuron do not have a significant asymmetry (blue curve12, this does not

necessarily mean that individual place fields are symmetric). Therefore, the firing rate, and

hence the phase, will be poorly correlated with position.
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excitation and hence of the rat’s spatial location. This could explain
the observed stronger correlation between phase and position than
between phase and rate, and the stronger correlation between phase
and position than between rate and position. This model does not
explicitly incorporate other elements of the hippocampal system,
and hence it does not rule out the potential contribution of other
sequence-retrieval-based models of phase precession8,9,17,18.

Although previous experimental studies of place fields on linear
tracks5,6 did not explicitly investigate a relationship between the rate
and phase, our results are in broad agreement with previous work19

on a non-spatial wheel running task where the mean firing rate of a
cell was negatively correlated with the mean phase of that cell.
Recent experiments have suggested that NMDA (N-methyl-D-
aspartate) antagonists do not eliminate phase precession. These
experiments showed an increased rate of phase precession20 with
NMDA antagonists, which is consistent with our data (larger rate of
precession before experience than after). The lack of direct measure-

ment of the asymmetry of individual place fields and the correlation
of phase with position and with rate in that study prevents direct
comparison of their data with our model.

Recent in vitro experiments have shown that increasing amounts
of current injection, coupled with theta-like oscillations, indeed
result in phase advancement21. Consistent with our results12,14, these
in vitro experiments also obtained a clear relationship between the
amplitude of injected current and phase in only a restricted part of
the phase space. A similar relationship between rate and latency has
also been observed in the STRF of direction selective neurons in V1
(see ref. 22 for a recent review), suggesting that similar mechanisms
may be involved12,14,15,23,24. The phase coding of orientation selec-
tivity25 can also be explained by a similar mechanism. An optimally
oriented bar would excite a cell maximally, resulting in spiking at the
peaks of the gamma rhythm, whereas a sub-optimally tuned bar
would correspond to lesser excitatory drive, resulting in a phase lag.

In its most general form, our model suggests that when a stimulus

Figure 3 Relationship between hippocampal rate and temporal codes. The mean phase at

a spatial location (a) is highly correlated with the mean firing rate (b) at that spatial location

(r ¼ 20.6). The place field centre is indicated by a red arrow. c, A histogram of

correlation between rate and phase (see Methods) for the population of 171 cells shows

that phase is negatively correlated with rate (r ¼ 20.30 ^ 0.02, P , 0.0001). d, The

width of phase distribution is larger at the end than at the beginning of the place field.

Population-averaged value of the correlation of width of the phase distribution with

position was r ¼ 0.50 ^ 0.03, P , 0.0001. e, Histograms of correlation of phase with

position in the first half of the place field (blue line, r ¼ 20.33 ^ 0.02) is 1.7 times

stronger than that in the last half (red line, r ¼ 20.20 ^ 0.02, P , 0.0001). f,

Histograms of correlation of spikes at high phases (f ¼ 180–3608, blue line) and low

phases (f ¼ 0–1808, red line). The high phases are 2.5 times more correlated with

position (r ¼ 20.34 ^ 0.01) than the low phases (r ¼ 20.13 ^ 0.01, P , 0.0001).
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is turned on, the latency to first spike fired by a neuron would be
inversely proportional to the subsequent firing rate of the neuron.
Thus the latency of the first spike could provide rapid information
about the stimulus. In the presence of oscillations this information
would be repeated in each cycle.

One of the critical tasks of the central nervous system is to learn
the causal relationships between events12,15,26,27. For example, spatial
navigation may require formation of memory for the temporal
order of activation of spatially selective cells12,15,27–29. But whereas
the receptive fields are activated in a given sequence on a behaviour-
ally relevant timescale (.1,000 ms), the biophysical laws of plas-
ticity1,2 require that the same sequence of events be replayed on
short (,10 ms) timescales. This will not occur consistently if the
neurons fired purely in a rate-varying Poisson fashion. However, in
the presence of oscillations and asymmetric excitation, two place
cells that are sequentially activated several hundred milliseconds
apart will be activated in the same temporal sequence within tens of
milliseconds, resulting in a replay (that is, binding) of the sequence
within one theta cycle, and hence rapid learning of temporal
sequences.

Thus oscillations can transform an asymmetric rate code into a
temporal code. This can have a critical role in temporal sequence
learning by compressing and replaying the behaviourally relevant
temporal order of events occurring on long, physiological timescales
into short timescales5,6,27 relevant for synaptic plasticity. A

Methods
Three Long–Evans rats were trained to run on linear tracks (see refs 12 and 29 for details),
and single unit data were recorded from the CA1 region of the dorsal hippocampus using
tetrodes12 according to NIH guidelines. Local field potentials (sampled at 2 kHz, filtered
between 0.1 Hz and 900 Hz) and spike data (sampled at 31 kHz and filtered between
300 Hz to 9 kHz) were recorded from the same tetrodes in the pyramidal layer, along with
the rat’s position (spatial resolution 0.66 cm, sampling rate 30 Hz) and head direction. A
total of 238 cells were active during behaviour, and were recorded in 3 rats in 7 sessions.
Data from 158 of these cells were used in a previous study12. The tracks were ‘linearized’ for
the purpose of analysis such that the distance increased along the rat’s direction of motion
through the place field. Data from goal locations were not used12,29. 171 place fields
obtained from 140 place cells were used for the analyses.

The local field potential was bandpass-filtered off-line in the theta band (between 4 and
14 Hz), and the peaks and troughs of the theta rhythm were detected. Spike phase was
computed with respect to the troughs of the filtered local field potential with the highest
theta modulation (Fig. 2), with a phase offset that provided the highest correlation
between phase and position5. A large proportion (82%) of neurons exhibited strongest
phase precession with a negative phase offset (population average, 2308). All the
subsequent analyses were carried out with respect to this ideal phase origin for each
neuron.

Calculations involving mean and standard deviation of phases were done using circular
statistics30. Thus, the value of width of a phase distribution30 ranged between 0 and

ffiffiffi
2
p
:

Correlation of phase and position was computed using linear statistics. Mean values were
computed over the entire population of 171 place fields, and their significance was
estimated with Student’s t-test. In order to compute the relationship between the rate and
phase, spikes were arranged in ascending order of location. Mean position, mean rate,
mean phase and the width of phase distribution, normalized by occupancy, were
calculated for successive blocks of 5% of spikes. The last bin therefore had a variable
number of spikes (between 0 and 5%) and hence was not used for the subsequent analyses.
Relationships between these variables were obtained by computing the correlation
coefficient across the blocks of data.

Hippocampal spatio-temporal receptive fields were computed by dividing the number

Figure 4 Experience dependence of the temporal code. a, All the spikes fired by a neuron

(same as in Fig. 1a) during the first lap (red dots) through the place field and during the last

(thirty-first) lap (blue dots). Although the phase is positively correlated with position in the

first lap (r ¼ 0.6), it is more strongly and negatively correlated with position after

experience (r ¼ 20.9). b, Correlation of phase with position was calculated for each cell

for each lap in which the cell fired more than two spikes. The mean value of the correlation

of phase with position, averaged across the population of place cells, is plotted as a

function of experience. The phase is 2.1 times more strongly correlated with position in

the sixteenth lap (mean r ¼ 20.50) compared to the first lap (mean r ¼ 20.24,

P , 0.0001). c, d, Population-averaged STRF (see Methods) is plotted for the first lap (c)

and the sixteenth lap (d). The mean phase is 2 times more strongly correlated with

position in the sixteenth lap than in the first lap, and the mean phase is larger. The mean

value of the phase of all the spikes in a given lap increased with experience from 1718

before experience to 1858 after experience, and the distribution of phases became wider

with experience.

letters to nature

NATURE | VOL 417 | 13 JUNE 2002 | www.nature.com/nature 745© 2002        Nature  Publishing Group



of spikes fired by a neuron in each spatio-temporal bin (spatial width 1 pixel ¼ 0.66 cm,
temporal width 18 < 0.35 ms) by the total time spent by the rat in that bin. The result was
smoothed by convolution with a two-dimensional gaussian (spatial width 2.4 cm,
temporal width 128 < 4.2 ms).
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Enterococci are members of the healthy human intestinal flora,
but are also leading causes of highly antibiotic-resistant, hospi-
tal-acquired infection1. We examined the genomes of a strain of
Enterococcus faecalis that caused an infectious outbreak in a
hospital ward in the mid-1980s (ref. 2), and a strain that was
identified as the first vancomycin-resistant isolate in the United
States3, and found that virulence determinants were clustered on
a large pathogenicity island, a genetic element previously
unknown in this genus. The pathogenicity island, which varies
only subtly between strains, is approximately 150 kilobases in
size, has a lower G 1 C content than the rest of the genome, and
is flanked by terminal repeats. Here we show that subtle vari-
ations within the structure of the pathogenicity island enable
strains harbouring the element to modulate virulence, and that
these variations occur at high frequency. Moreover, the entero-
coccal pathogenicity island, in addition to coding for most
known auxiliary traits that enhance virulence of the organism,
includes a number of additional, previously unstudied genes that
are rare in non-infection-derived isolates, identifying a class of
new targets associated with disease which are not essential for the
commensal behaviour of the organism.

In a study of a hospital ward epidemic in the mid-1980s, one E.
faecalis strain resistant to many different antibiotics was identified
as having caused over 30 infections (typified by isolate MMH594)
and carried a fivefold increased risk of death within 3 weeks
of isolation2. Several years later, the first vancomycin-resistant
enterococcal isolate in the United States was identified approxi-
mately 400 miles away, and serial isolates (V583 and V586) were
obtained from a chronically infected patient3. The vancomycin-
resistance determinant has been characterized in molecular detail4,
and strain V583 was provided for genome analysis (for strain
V583 genome data see http://www.tigr.org/tigr-scripts/CMR2/
GenomePage3.spl?database ¼ gef).

We and others have analysed a number of virulence factors in E.
faecalis, including a structurally novel toxin, the cytolysin5–7, and a
surface protein, Esp8, which contributes to colonization of the
bladder in a model of urinary tract infection9. Esp confers biofilm
production capability to enterococci10, and a highly conserved Esp
variant is common among clinical vancomycin-resistant and van-
comycin-sensitive E. faecium strains11–13. Enterococcus faecalis
strains V583 and V586 were isolated from a patient 11 days
apart3, and initial studies failed to identify differences between
these isolates as they exhibited what appeared to be identical
DNA fingerprint patterns. However, subsequent experiments
designed to localize genes coding for both Esp and cytolysin
found them on the chromosome of V586, but not V583. The
difference was localized to a relatively small deletion within a
roughly 315 kilobase (kb) SfiI fragment in V583 (Fig. 1), which
suggested that cyl and esp are closely linked.

Alignment and comparison of nucleotide sequences coding for
the cytolysin operon, esp and surrounding regions of the V586
genome (Espþ, Cyl2), and the point of deletion of these functions in
the genome of V583 (Esp2, Cyl2), (see http://www.tigr.org/tigr-
scripts/CMR2/GenomePage3.spl?database ¼ gef), revealed a
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