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Hippocampal Long-Term Potentiation Preserves the Fidelity of
Postsynaptic Responses to Presynaptic Bursts

David K. Selig,’ Roger A. Nicoll,23 and Robert C. Malenka':2
Departments of 1Psychiatry, 2Physiology, and 3Cellular and Molecular Pharmacology, University of California,

San Francisco, California 94143

Hippocampal cells often fire prolonged bursts of action poten-
tials, resulting in dynamic modulation of postsynaptic respons-
es; yet long-term potentiation (LTP) has routinely been studied
using only single presynaptic stimuli given at low frequency.
Recent work on neocortical synapses has suggested that LTP
may cause a “redistribution of synaptic strength” in which
synaptic responses to the first stimulus of a presynaptic burst
of action potentials are potentiated with later responses de-
pressed. We have examined whether this redistribution occurs
at hippocampal synapses during LTP. Using prolonged bursts
that result in maximal short-term depression of later responses
within the burst, we found that LTP resulted in a uniform po-
tentiation of individual responses throughout the burst rather

than a redistribution of synaptic strength. This occurred both at
Schaffer collateral-CA1 synapses and at CA3-CA3 synapses,
the latter being activated and monitored using paired record-
ings. Thus in the hippocampus, LTP preserves the fidelity of
postsynaptic responses to presynaptic bursts by a uniform
increase rather than a redistribution of synaptic strength, a
finding that suggests there are important differences between
neocortex and hippocampus in how long-term changes in syn-
aptic strength are used to encode new information.

Key words: long-term potentiation; redistribution of synaptic
strength; short-term synaptic depression; short-term synaptic
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The normal firing pattern of many neurons in the CNS consists of
bursts of action potentials (Ranck, 1973; O’Keefe, 1976; Wilson
and McNaughton, 1993), leading to synaptic responses that may
undergo both facilitation and depression, often in sequence (Do-
brunz and Stevens, 1997; Brenowitz et al., 1998). Facilitation may
be essential for the conversion of a temporal into a spatial code
(Buonomano and Merzenich, 1995) and may also play a role in
increasing the reliability of synaptic transmission (Dobrunz and
Stevens, 1997), enabling bursts to function as the most basic
element of the neural code (Lisman, 1997). Depression may be
caused by depletion of synaptic vesicles, activation of inhibitory
presynaptic autoreceptors, failure of action potential propagation,
desensitization of postsynaptic receptors, or a combination of
these (Luscher et al., 1994; Dobrunz and Stevens, 1997; Brenow-
itz et al., 1998) and may serve to control synaptic gain by atten-
uating responses to afferents with statically elevated firing rates
(Abbott et al., 1997; Tsodyks and Markram, 1997)

In the hippocampus, bursts of action potentials are commonly
observed during in vivo recordings (Ranck, 1973; O’Keefe, 1976;
Wilson and McNaughton, 1993). In fact, hippocampal CA3 pyra-
midal cells have an intrinsic bursting capability (Kandel and
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Spencer, 1961; Wong and Prince, 1981). Excitatory synapses
made by CA3 cells onto other CA3 pyramidal cells and onto CA1
pyramidal cells are notable for exhibiting long-term potentiation
(LTP), paired-pulse facilitation, and, with longer stimulus trains,
short-term depression (Dobrunz and Stevens, 1997).

Although most studies of LTP have monitored synaptic
strength using single presynaptic stimuli, a recent study has dem-
onstrated the importance of examining the effects of LTP with
more prolonged, complex stimuli (Markram and Tsodyks, 1996).
Temporally pairing action potentials in synaptically connected
pairs of layer 5 pyramidal cells in the somatosensory cortex
resulted in LTP, as measured with the response to the first action
potential in presynaptic bursts. However, there was no net change
in synaptic strength when all of the responses to the presynaptic
bursts were considered; the responses to the early stimuli in the
bursts were potentiated, whereas the responses to the later stimuli
were depressed. This shift in the synaptic response pattern was
termed a “redistribution of synaptic strength” (Markram and
Tsodyks, 1996).

An important question is whether this redistribution of synap-
tic strength during LTP is a general feature of all excitatory
synapses in the mammalian brain (Zador and Dobrunz, 1997).
Because the excitatory synapses onto CA1 pyramidal cells in the
hippocampus have provided the most detailed information cur-
rently available on the mechanisms of LTP (Bliss and Col-
lingridge, 1993; Nicoll and Malenka, 1995), we decided to address
this question at these synapses. We used patterns of presynaptic
bursts causing both facilitation and depression of the synaptic
responses but found no evidence of a redistribution of synaptic
strength during LTP. Instead, we found that the fidelity of the
synaptic responses was preserved by a uniform potentiation to all
stimuli in the bursts. We therefore conclude that LTP at hip-
pocampal synapses and LTP at neocortical synapses involve dis-
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Figure 1. Example of synaptic re-
sponse to short presynaptic bursts after
LTP. A, Averages of 20 consecutive
traces in response to short-burst stimu-
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tinct mechanisms with distinct functional implications for the
ways in which these two structures encode new information.

MATERIALS AND METHODS

We prepared and recorded from transverse hippocampal slices using
standard procedures (Selig et al., 1995). Slices (500—600 wm) from 13- to
18-d-old Sprague Dawley rats were allowed to recover for a minimum of
1.5 hr before being transferred to a submerged recording chamber where
they were superfused with artificial CSF (ACSF) maintained at 24-26°C
and saturated with 95% O,/5% CO,. Our standard ACSF for these
experiments contained 119 mm NaCl, 2.5 mm KCl, 4.0 mm CaCl,, 1.0
mM MgSO,, 1.0 mm NaH,PO,, 26.2 mm NaHCO3;, 11 mm glucose, and
0.1 mMm picrotoxin, pH 7.4. Some of the experiments (see Figs. 1, 2) were
conducted in 4.0 mm MgSO,. When recording from CA3, we found it
necessary to double the concentration of divalents in our standard ACSF
(to 8.0 mm CacCl, and 2.0 mm MgSO,) to prevent spontaneous bursting
(Frankenhaeuser and Hodgkin, 1957; Miles and Wong, 1983, 1987).
When recording from the CA1 region, we made two cuts perpendicular
to the pyramidal cell layer to prevent propagation of epileptiform activity
from the CA3 and subicular regions. Perforated-patch recordings (Rae et
al., 1991) were made using pipettes (1-2 M{) filled with a solution
containing 130 mm CsMeSOs;, 8.0 mm NaCl, 10 mm HEPES, and 0.2 mm
EGTA, pH 7.2 with CsOH (290-300 mOsm). Amphotericin B (1.2
mg/ml; Sigma, St. Louis, MO) dissolved in DMSO (0.6% final concen-
tration) was added to this solution, triturated, and used to backfill
pipettes. Experiments were begun only after the access resistance had
stabilized (typically 12-20 MQ). Cells were voltage clamped at —60 mV
without correction for the liquid junction potential. For some experi-
ments (see Fig. 8), whole-cell recordings from the presynaptic cell were
obtained in current clamp (—60 mV) using pipettes (2-4 MQ) filled with
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indicted by the letters a-d in B. Calibra-
tion: 100 pA, 50 msec. B, Typical exper-
iment in which pairing presynaptic
stimulation with postsynaptic depolar-
ization ( filled arrow) results in a stable
increase in the amplitude of the re-
sponse to the first (B,) as well as the
seventh (B,) stimulus in the burst.
Adenosine (1 um) was perfused during
the time indicated by the horizontal bar.
After wash, the amplitude of both the
first and seventh response was aug-
mented. C, Average amplitudes of the
first and seventh responses immediately
before pairing (Baseline), 20 min after
pairing (LTP), during adenosine (Aden-
osine), and immediately after wash of
adenosine (Wash). Absolute response
amplitudes (C,) and the first and sev-
enth response amplitudes normalized
=, 4 to their respective baseline amplitudes
o;% % (C,) are shown. All values are repre-
sented as the mean = SEM. All panels
illustrate data from the same cell.
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a solution containing 130 mM Kgluconate, 8.0 mM NaCl, 10 mm HEPES,
0.2 mm EGTA, 4 mm Mg ATP, and 1 mm NaGTP, pH 7.2 with KOH
(290-300 mOsm). D-AP-5 (50 um) was obtained from Tocris. Adenosine
(1-2 w™m) and kynurenic acid (250 um) were obtained from Sigma.
6-Nitro-7-sulfamoylbenzo(f)quinoxaline-2,3-dione (NBQX; 5 um) was
obtained from Precision Biochemicals (Colton, CA) and dissolved in
DMSO (0.05% final concentration).

Slices were stimulated with 100 usec monophasic current pulses using
monopolar, stainless steel stimulating electrodes placed in the stratum
radiatum immediately adjacent to or within the presumed dendritic arbor
(Ishizuka et al., 1995) of the cell from which the recording was being
made. Slices were stimulated every 30 sec in some of the experiments
(see Figs. 1, 2) and every 10 sec in the remaining experiments. Bursts of
stimuli were given every 30 sec in some of the experiments (see Figs. 1,
2, 8) and every 5 min in the remaining experiments. The rest of the
stimuli were single pulses. LTP was induced by pairing 120 stimuli at 1
Hz while voltage clamping the postsynaptic cell at +10 mV. Only cells
exhibiting potentiation (>40% measured 30 min after the induction
protocol) were considered for further analysis. Responses were ampli-
fied, low-pass filtered at 1 kHz, sampled at 2 kHz, and analyzed on-line.
Response amplitude was taken as the difference between a 5 msec
baseline and a 10 msec period surrounding the peak of the response.

Control responses in the graphs include both the responses to single
stimuli and the responses to the first stimuli of the bursts. Depressed
responses in the graphs span the last several responses in the bursts (see
and compare Figs. 34, 8A4). In several experiments (see Figs. 3-7), we
have expanded the time course of the depressed responses of individual
bursts for illustrative purposes (see Fig. 64, for example). Unless other-
wise noted, bar graphs represent the average response over a period of 10
min. In some figures (see Figs. 44,, 54,), we have time aligned and
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age amplitude of first and seventh re- B
sponse immediately before pairing
(Baseline) and 20 min after pairing
(LTP). Amplitudes are normalized to
the amplitude of the first response dur-
ing the baseline (C, ). The first and sev-
enth response amplitudes are normal-
ized separately to their respective
baseline amplitudes (C,). Potentiation
of the first and seventh response ampli-
tudes was not significantly different
(286 = 42 and 256 * 38%, respectively;
n = 5; p > 0.05, paired ¢ test). D, The
same experiments with adenosine (1-2
uMm) applied after pairing. After wash,
there was an increase in the amplitude of
both the first and seventh responses (n =
4). All panels illustrate data from the
same set of cells (n = 5).

500 -

Fier

400 -
300 -
200

100 {1 :

0! ———

1234567

Amplitude (%)

Stimulus Number

averaged the last 20 responses of successive bursts to arrive at the single
traces shown. For all traces, the stimulus artifact is omitted for clarity.
Summary graphs were prepared by subtracting the isolated stimulus
artifact (NBQX, D-AP-5, or picrotoxin) when available from all other
responses, setting the baseline period to 100%, normalizing all responses
to this baseline, averaging adjacent responses in a given experiment, and
then averaging across experiments. Data in the graphs and text are
presented as the mean = SEM.

RESULTS

LTP and burst-induced facilitation

In an initial set of experiments, we induced LTP in CA1l pyrami-
dal cells while monitoring synaptic transmission with brief bursts
of stimulation (25 Hz; seven stimuli) to the Schaffer collateral/
commissural afferents in the stratum radiatum. Using the
perforated-patch recording technique (Rae et al., 1991) allowed
us both to achieve relatively low access resistances (12-20 M)
and to avoid washout of LTP, which commonly occurs when
whole-cell recordings with extended baselines are made (Mali-
now and Tsien, 1990).

Figure 1 shows a typical example and Figure 2 shows a sum-
mary (n = 5) of results from this experiment. After obtaining a 20
min baseline, we induced LTP with 120 single stimuli given at 1
Hz while holding the cells at +10 mV. The response to each
stimulus in the burst potentiated (Figs. 14, 2B) for the duration
of the recordings (Figs. 1B, 24). Moreover, although a modest
difference in the level of potentiation for the first and seventh
responses was seen in the individual example, the level of poten-
tiation for the first and seventh responses was not significantly
different when all cells were considered (286 *+ 42 and 256 =
38%, respectively; n = 5; p > 0.05, paired ¢ test; Fig. 24,C,). In
fact, all responses during the burst underwent a similar potenti-
ation (Fig. 2B, inset). Thus, the fidelity of the synaptic response to
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brief, facilitatory bursts of presynaptic stimuli is preserved by a
uniform potentiation of responses within the burst after LTP.
This pattern of change in synaptic strength is very different
from that seen with a redistribution of synaptic strength
(Markram and Tsodyks, 1996), in which the synaptic response to
the first stimulus in the burst is potentiated but the responses to
stimuli near the end of the burst are relatively unaffected. Be-
cause redistribution of synaptic strength was seen in the neocor-
tex by the use of current-clamp recordings, we considered the
possibility that the responses near the end of the burst failed to
show an increase with LTP because the current was shunted
through voltage-gated channels that were more strongly activated
after potentiation. However, when we repeated these experiments
in current clamp, a similar increase in the response to the first and
seventh stimuli of the burst was still evident (n = 3; data not
shown), suggesting that shunting does not explain the difference
between these results and those of Markram and Tsodyks (1996).
An important difference between the synaptic responses illus-
trated in Figures 1 and 2 and those observed between pairs of
neocortical cells (Markram and Tsodyks, 1996) is that the pre-
synaptic burst in CA1 was facilitatory rather than depressing. This
is an important distinction because only with higher frequency
stimuli that elicited short-term depression did neocortical LTP
manifest itself as a redistribution rather than a uniform increase
in synaptic strength (Tsodyks and Markram, 1997). We therefore
asked what constitutes an adequate stimulus for deciding whether
LTP is accompanied by a redistribution of synaptic strength.
Two models of the synaptic responses to presynaptic bursts of
stimuli are helpful in understanding the answer to this question
(Abbott et al., 1997; Tsodyks and Markram, 1997). These models
predict that with a sufficient number of presynaptic stimuli deliv-
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ered at a rate beyond a certain frequency of stimulation, termed
the “limiting frequency,” the amplitude of the synaptic response
will be inversely proportional to the frequency of stimulation, and
thus the average postsynaptic response will be constant. Such
presynaptic bursts therefore result in the maximal short-term
depression of the postsynaptic response. Functionally, the sim-
plest way of conceptualizing the limiting frequency is that fre-
quency of stimulation at which the rate of synaptic vesicle recy-
cling eventually determines the synaptic response size. This will
occur when the presynaptic burst is sufficiently long and of a
sufficiently high frequency such that the releasable pool of vesicles
enters a depleted state (Dobrunz and Stevens, 1997). Such a burst
was required to observe a pure redistribution of synaptic strength
(Markram and Tsodyks, 1996) and can be identified by modulat-
ing release probability and by verifying that the amplitudes of the
responses near the end of the burst are unaffected.

To determine whether the brief presynaptic bursts we used in
Figure 1 were maximally depressing, because anything less could
explain our failure to observe a redistribution of synaptic
strength, we applied and washed out adenosine to modulate
release probability (Prince and Stevens, 1992). To facilitate the
comparison of the effects of this pharmacological manipulation
with those of LTP, we examined what happened after the washout
of adenosine. Washout had the expected effect on the first re-
sponse, causing an increase in amplitude (Fig. 1B, ). However, the
seventh response also increased (Fig. 1B,). Adenosine was ap-

10
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[ Depressed

shows the average of 12 consecutive
burst responses given every 5 min in the
presence of 50 uM D-AP-5. Calibration:
100 pA, 100 msec. B, The amplitudes of
the control (B;) and depressed (B,)
responses, showing that these ampli-
tudes were stable over time. Control
responses (B;) consist of responses to
single stimuli (every 10 sec) as well as
the first response in each burst. De-
pressed responses (B,) are the last 20
responses in each burst, as shown in 4.
Bursts were given at the times indicated
by the open arrowheads. Note the differ-
ent amplitude scales in B; and B,. C,
Average amplitude of the control re-
sponse as well as the average amplitude
of each group of five successive re-
sponses (125 msec) in the 12 bursts. D,
Average control and depressed re-
sponse amplitudes. All panels illustrate
data from the same cell.
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50

plied in three of the other four cells in which brief presynaptic
bursts were used to monitor LTP. On average, the seventh re-
sponse again increased (Fig. 2D), suggesting that under these
experimental conditions brief bursts of presynaptic stimuli are not
maximally depressing bursts. Therefore these experiments, as
well as the results of a previous study of LTP using brief facilita-
tory bursts in the hippocampus (Pananceau et al., 1998), do not
eliminate the possibility that a redistribution of synaptic strength
accompanies hippocampal LTP; the presynaptic bursts may have
been insufficient to reveal any sort of redistribution. It was there-
fore important to arrange the experimental conditions so that the
presynaptic bursts we gave elicited maximally depressed synaptic
responses.

Burst-induced depression

To enhance our ability to elicit maximally depressed responses,
we lowered [Mg?*] from 4.0 to 1.0 mwm, increased the frequency
of the presynaptic bursts from 25 to 40 Hz, and increased the
number of stimuli from 7 to 80. Figure 3 shows that these
prolonged bursts depressed the response amplitude by a factor of
three to four, which is similar to the magnitude of depression
observed with much shorter presynaptic bursts in neocortical cell
pairs (Markram and Tsodyks, 1996). Bursts were given once every
5 min, the shortest interval at which the burst responses remained
stable, and were elicited in the presence of b-AP-5 (50 um), an
NMDA receptor antagonist, to prevent induction of LTP (Fig.
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3B,). The last 20 responses in each prolonged burst were grouped
for analysis because their amplitude was fairly constant (Fig.
3A4,C). Interleaved with the bursts were single stimuli that
allowed us to monitor the nondepressed, or control, responses
(Fig. 3B,).

To determine whether these prolonged bursts were in fact
maximally depressing, we compared the burst responses in the
presence and absence of adenosine. Because one of the goals of
these experiments was to compare what happens during LTP with
the effects of increasing the probability of transmitter release, we
again examined the recovery from the depressing action of aden-
osine (1-2 uMm; Fig. 44,C,). Washout resulted in an increase of
202 = 20% (n = 10) in the amplitude of the control responses to
single stimuli but had no effect on the amplitude of the depressed
responses at the end of the burst (101 = 7%; n = 10). Therefore,
these prolonged bursts satisfy the requirements for presynaptic
stimulation that elicits maximally depressed synaptic responses.

LTP and burst-induced depression

Having verified that this prolonged stimulation is maximally
depressing, we returned to the question of whether hippocampal
LTP results in a redistribution of synaptic strength. A typical
example of this experiment is shown in Figure 5. After obtaining
a 20 min baseline during which prolonged presynaptic bursts were
given every 5 min and at the end of which p-AP-5 was washed out
(Fig. 54,,4,), we induced LTP. p-AP-5 was then reapplied, and
bursts were restarted. Figure 5, B, and B,, illustrates that the

Time (ms)

' ' % 4 % 4
1500 2000 2 A
500 20 5, % %, =

B,
%

depressed responses at the end of the burst exhibited an increase
in amplitude that was equivalent to that of the control responses
(control responses, 272 = 6%; depressed responses, 290 = 16%).
To ensure that in this cell these prolonged bursts were indeed
maximally depressing, we applied adenosine (2 um) that, consis-
tent with the experiment illustrated in Figure 4, dramatically
decreased the control responses but had no effect on the de-
pressed responses. These two manipulations (LTP and adeno-
sine) performed on the same set of synapses strongly suggest that
a redistribution of synaptic strength does not occur during hip-
pocampal LTP. As an additional control, we also applied
kynurenic acid (250 um), a low-affinity glutamate receptor antag-
onist. This had the expected effect in that, like LTP, both the
control and depressed response amplitudes changed in parallel
after washout of the drug (control responses, 241 = 5%; de-
pressed responses, 228 *= 17%; Fig. 54,B,). At the end of the
experiment we applied NBQX, a specific AMPA receptor antag-
onist, which abolished both the control and the depressed re-
sponses (Fig. 54,B,).

LTP was obtained in seven additional cells in which prolonged
bursts were given (Fig. 6). Although there was a tendency for the
control responses to undergo more potentiation than the de-
pressed responses, on average the increase in the two was not
significantly different (control responses, 275 * 30%; depressed
responses, 215 = 32%; n = 8§; p > 0.05, paired ¢ test; Fig. 64,C,).
In fact, the increases in response amplitudes throughout the burst
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were similar (Fig. 6B, inset), indicating that the fidelity of the
synaptic response, even with these prolonged bursts, is preserved
during LTP.

In six of the eight cells we also applied adenosine (Fig. 74-C)
at a concentration (1-2 uM) that, after washout, gave us an
increase in the control response amplitude similar to that ob-
tained during LTP. Again, consistent with the example shown in
Figure 4, when we washed out adenosine, the control response
amplitude increased dramatically, whereas the depressed re-
sponse amplitude was unaffected (control responses, 280 = 42%;
depressed responses, 104 + 14%; n = 6; Fig. 74,C,). Thus in the
same cells in which LTP caused an equivalent increase in re-
sponses throughout the burst (i.e., failed to result in a redistribu-
tion of synaptic strength), we were able to demonstrate that
depressed responses were unaffected by a presynaptic manipula-
tion of transmitter release, thus proving that the bursts were
maximally depressing. In these same cells we also applied and
then washed out kynurenic acid to assess how a pure postsynaptic
manipulation would affect the responses to prolonged bursts (Fig.
7D-F). Again, we chose a concentration of kynurenic acid (250

120 results in a stable potentiation of the control re-
sponses (A4;) as well as the depressed responses
elicited by the prolonged presynaptic bursts (4,;
40 Hz; 80 stimuli). Adenosine (2 uMm), kynurenic
acid (Kyn; 250 um), and NBOX (5 um) were per-
fused during the times indicated by the horizontal
bars. Adenosine depressed the control responses
without affecting the depressed responses.
Kynurenic acid depressed both responses. Traces
are averages of 60 responses and are centered over
the time when the averages were taken. Calibra-
tion: A, A,, 200 pA, 20 msec. Note, however, the
different amplitude scales in 4, and 4,. B, Aver-
ages of control and depressed response amplitudes
with LTP, adenosine, kynurenic acid, and NBOX.
Absolute amplitudes are summarized (B, ). Con-
trol and depressed response amplitudes are nor-
malized to their respective amplitudes during the
baseline, in adenosine, and in kynurenic acid (B,).
All panels illustrate data from the same cell.

[ Control
[ Depressed

wM) that, after washout, gave us an increase in the control
response similar to that obtained during LTP. As would be
expected, these results closely paralleled the LTP results obtained
earlier in the same cells (Fig. 6). The increase in the amplitude of
the control and depressed responses was similar (control re-
sponses, 223 * 8%; depressed responses, 250 = 30%; n = 6; Fig.
7D,F,) as was the increase for all responses in the bursts (Fig. 7E,
inset).

These experiments strongly suggest that LTP at excitatory
synapses on CAl pyramidal cells is fundamentally different from
the LTP observed in the neocortex (Markram and Tsodyks,
1996). However, it is conceivable that because we stimulated
extracellularly and recorded population synaptic responses,
rather than stimulating the presynaptic cell directly as is done in
paired recordings, a redistribution of synaptic strength may have
occurred in our experiments without our detecting it because of
inconsistent extracellular stimulation of the afferent fibers during
the bursts. To address this issue, we attempted to record from
connected pairs of hippocampal pyramidal cells.
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Figure 6. Fidelity of the synaptic re-

sponse to prolonged bursts is preserved 1

after LTP. A, Summary graph (n = 8)

showing that the control responses (4, ) 400
and the depressed responses (A4,) un-
dergo a similar, stable potentiation after
the induction of LTP with pairing ( filled
arrow). Bursts were given at the times
indicated by the open arrowheads (40
Hz; 80 stimuli). B, Control responses
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(circles, O and @]) during the baseline AA A A +
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LTP and burst-induced depression at synapses
between pairs of hippocampal pyramidal cells
Recording from connected pairs of hippocampal pyramidal cells
in slices is a difficult undertaking for many reasons, most notable
of which is the low level of synaptic connectivity (MacVicar and
Dudek, 1979; Miles and Wong, 1986; Sayer et al., 1990; Foster
and McNaughton, 1991; Malinow, 1991; Smith et al., 1995). We
were further handicapped by the need to record from the postsyn-
aptic cell using the perforated-patch technique to obtain an
adequate baseline of burst responses for analysis. We first at-
tempted to record from connected CA3-CAl pyramidal cell
pairs. We examined 29 cell pairs but did not observe a single
connection. We therefore turned our attention to CA3 pyramidal
cell pairs in which the basic properties of LTP are indistinguish-
able from those of LTP between CA3 and CA1 pyramidal cells
(Zalutsky and Nicoll, 1990; Pavlidis and Madison, 1997; Debanne
et al., 1998).

We recorded from a total of 209 pairs of CA3 pyramidal cells,
finding 26 pairs that were synaptically connected. Initially we used
the same experimental conditions that were used for the CAl
experiments. However, the CA3 region exhibited spontaneous
bursting. This was prevented by doubling the concentrations of
the divalent cations to reduce overall excitability (Frankenhae-
user and Hodgkin, 1957). It was also necessary to reduce the
number of stimuli in each burst, because we found the unitary
responses were generally depressed to a stationary level after
three to four stimuli. We therefore shortened the bursts to 10
stimuli (at 40 Hz) and gave them every 30 sec. The last six unitary
responses in the burst were designated as the depressed re-
sponses. The control responses consisted of the unitary responses
to the first stimulus in each burst combined with unitary responses
to interleaved single stimuli.

Figure 8 shows the results from the four pairs of CA3 pyramidal

cells in which it was possible to complete the experiment. As was
the case for the population synaptic responses recorded in CA1
pyramidal cells, the unitary control response amplitude and the
unitary depressed response amplitudes exhibited a similar poten-
tiation after the induction of LTP (205 = 42 and 234 * 39%,
respectively; n = 4; Fig. 8B,D,). Indeed the amplitude of all
unitary responses in the burst underwent a similar potentiation
(Fig. 8C, inset). Thus, even though the presynaptic burst stimula-
tion necessary to elicit depressed responses in these CA3 cell
pairs was similar to that used in the neocortical cell pairs
(Markram and Tsodyks, 1996), these CA3-CA3 synapses exhib-
ited a form of LTP distinct from the redistribution of synaptic
strength seen with neocortical LTP.

DISCUSSION
It is well established that the firing pattern of neurons in the CNS
varies dramatically over time, ranging from single isolated spikes
to prolonged high-frequency bursts of action potentials (Ranck,
1973; Connors and Gutnick, 1990; Lisman, 1997). It is also well
documented that the probability of release and thus the strength
of synaptic transmission are markedly influenced by the pattern of
presynaptic firing (Magleby, 1987; Zucker, 1989). Therefore a
fundamental issue in understanding the neural encoding of in-
formation is to determine the consequences, if any, that long-
lasting changes in synaptic strength might have on short-term
synaptic dynamics. We have examined this issue by asking
whether NMDA receptor-dependent LTP in the hippocampus
involves a redistribution of synaptic strength with a presynaptic
burst, as has been observed at neocortical synapses (Markram and
Tsodyks, 1996), or instead involves a uniform potentiation of
responses to the stimuli of the burst.

To address this issue we first recorded synaptic responses in
CA1 pyramidal cells in response to brief presynaptic bursts that
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elicited facilitated responses. After the induction of LTP, the
responses exhibited a uniform potentiation rather than a redistri-
bution of synaptic strength, a finding that differs from that ob-
tained at neocortical synapses (Markram and Tsodyks, 1996).
These results are in complete agreement with a recent study that
examined the effects of LTP on the synaptic responses to brief
(80-200 msec), facilitatory bursts (Pananceau et al., 1998). There,
it was also found that all of the responses to the stimuli of the
train were potentiated equally during LTP (i.e., no redistribution
took place). Both sets of results using brief presynaptic bursts are
consistent with and follow from previous studies, which have
found a lack of interaction between LTP at CAl synapses and
paired-pulse facilitation (McNaughton, 1982; Manabe et al., 1993;
Asztely et al., 1996; but see Schulz, 1997; Sokolov et al., 1998).
However, prolonged bursts of presynaptic stimuli result in short-
term synaptic depression, which clearly uses processes not evoked
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amplitudes of all responses after wash-
ing normalized to the average ampli-
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malized to the control response ampli-
tude in kynurenic acid (F, ) and to the
0 average amplitudes in kynurenic acid
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by either paired pulses or brief, facilitatory bursts (Dobrunz and
Stevens, 1997). That the processes resulting in synaptic depres-
sion may be affected by LTP is supported by the observation that
at neocortical synapses, the extent of redistribution of synaptic
strength is positively correlated with the extent of synaptic de-
pression (Markram and Tsodyks, 1996). Thus a conclusive test of
whether LTP at hippocampal synapses causes redistribution of
synaptic efficacy requires that the presynaptic stimuli elicit syn-
aptic responses that, like those in the neocortical experiments, are
maximally depressed by the end of the train.

We therefore extended the length of the burst and modified the
recording conditions to elicit maximal depression of the re-
sponses. After confirmation that the responses were indeed max-
imally depressed, we again found that LTP was accompanied by a
uniform potentiation of successive responses to the stimuli of the
burst. Finally, because of the possibility that a redistribution of
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Figure 8. Fidelity of the synaptic re-
sponse to presynaptic bursts is preserved
after LTP when recording from pairs of
CA3 pyramidal cells. A, Individual exam-
ple showing averages of 40 consecutive
unitary responses (lower traces) to presyn-
aptic bursts (upper traces; 40 Hz; 10 stim-
uli) given at the times indicted by the
letters a—d in B. Calibration: 100 mV, 10
pA, 50 msec. B, Summary graph (n = 4)
showing that the unitary control responses
(B;) and the unitary depressed responses
(B,; last six responses in burst) undergo a
similar, stable potentiation after induction
of LTP with pairing ( filled arrow). Bursts
were induced in the presynaptic cell every
30 sec at the times indicated by the open
arrowheads. C, Unitary control responses
(bars, [] and M) and unitary responses to
burst (circles, O and @) during the base-
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whose responses are illustrated in A4.

synaptic strength was overlooked because of inconsistent extra-
cellular stimulation of afferents, we examined LTP between pairs
of hippocampal pyramidal neurons. Yet again, LTP was associ-
ated with a uniform potentiation of successive responses to the
stimuli of the burst. Thus, in contrast to LTP in the neocortex
(Markram and Tsodyks, 1996), NMDA receptor-dependent LTP
in the hippocampus involves a uniform potentiation of responses
to all patterns of stimulation, including both brief, facilitatory
bursts and prolonged depressing bursts.

It should be noted that the burst response patterns between
CA1 pyramidal cells (Figs. 1-7) and CA3 pyramidal cells (Fig. 8)
differed. Although intrinsic differences in the properties of the
presynaptic boutons contacting CA1 versus CA3 pyramidal cells
or inconsistent stimulation of afferent fibers when extracellular
stimulation was used (but see Allen and Stevens, 1994) may have
contributed to this difference, we think that the different extra-
cellular [Ca?*]/[Mg?*] ratio in the two experiments is an impor-
tant factor. Regardless of the differences in the burst responses
from the two sets of synapses, however, the important finding was
that both synapses underwent LTP in which the individual syn-
aptic responses were uniformly increased rather than redistrib-
uted. The similarity of these results may not be surprising because
CA3-CA3 and CA3-CAl synapses exhibit similar forms of
NMDA receptor-dependent synaptic plasticity (Zalutsky and
Nicoll, 1990; Pavlidis and Madison, 1997; Debanne et al., 1998).
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Although the differences found between hippocampal and neo-
cortical LTP are most likely indicative of a fundamental differ-
ence in the mechanisms responsible for LTP in these two brain
regions, several differences in the experimental conditions be-
tween the two studies should be noted. These include the record-
ing technique (perforated patch vs whole cell), the temperature at
which experiments were conducted, the presence or absence of
GABA, receptor-mediated inhibition, and the extracellular di-
valent cation concentration. However, it seems unlikely that dif-
ferences in these experimental parameters could account for the
presence or absence of a redistribution of synaptic strength dur-
ing LTP.

The simplest explanation for our results is that hippocampal
synapses express a form of LTP that is primarily caused by some
postsynaptic modification of glutamate receptor function and/or
number. This would cause the observed uniform increase in the
synaptic responses throughout the burst. In contrast, the most
straightforward explanation for the redistribution of synaptic
strength observed at neocortical synapses is that they express a
form of LTP that involves significant alterations in presynaptic
mechanisms controlling transmitter release (Markram and Tso-
dyks, 1996). For instance, an increase in the probability of trans-
mitter release would enhance the responses to the early stimuli of
the burst but would have minimal effects on depressed responses
at the end of the burst.
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What are some of the functional implications of the uniform
potentiation of responses to bursts shown here? Abbott et al.
(1997) hypothesize that depression serves to control synaptic gain
by attenuating responses to afferents with statically elevated firing
rates. If afferents exhibit a broad range of firing rates, some level
of attenuation is obviously important. However, a redistribution
of synaptic strength has no effect on the average postsynaptic
contribution of an afferent input (Tsodyks and Markram, 1997).
Thus at afferent rates of firing in which temporal summation and
synaptic attenuation are significant factors, LTP in the form of
redistribution will have little effect on either the action potential
timing or firing rate of the postsynaptic cell. On the basis of our
results, hippocampal LTP may serve to override synaptic attenu-
ation under such circumstances so that the important inputs
(those that are potentiated) can drive the postsynaptic cell more
effectively. Separately, Lisman (1997) hypothesizes that at a given
synapse only one of the stimuli in a burst result in a quantal
response and that therefore bursts are the fundamental unit of the
neural code. Under such circumstances, the response at a single
synapse can be characterized by the conditional probability that a
given stimulus in the burst will result in quantal release when all
the previous stimuli fail to cause quantal release. LTP in the form
of redistribution will serve to increase the probability that the
single release event occurs early in the burst, thereby decreasing
the probability that it will occur later. Thus the timing of the
postsynaptic response to a burst (i.e., the timing of the single
quantal release) will be advanced after the redistribution associ-
ated with neocortical LTP. The quantal size will be unaffected.
As mentioned above, our results with hippocampal LTP are most
easily explained by an increase in the postsynaptic response
Therefore, in Lisman’s model the single quantum will be released
with the same timing (defined by the series of conditional prob-
abilities) but will be of a greater magnitude. In this context,
therefore, the effects of a redistribution of synaptic strength will
be significant where the precise timing of the inputs affects the
firing of the postsynaptic cell, whereas the effects of hippocampal
LTP will be significant where the synaptic weights most affect the
firing of the postsynaptic cell.

We have considered the interaction between LTP and short-
term plasticity manifested in responses to bursts of stimuli. We
have found that NMDA receptor-dependent LTP in the hip-
pocampus involves an unconditional potentiation entirely inde-
pendent of the temporal pattern of the input, thus preserving the
fidelity of responses to dynamically modulated stimuli. Current
evidence supports the hypothesis that LTP may be one of the
biological substrates of learning and long-term memory (Stevens,
1998). It has recently become apparent that both burst-induced
depression and burst-induced facilitation may also serve func-
tional roles in the neural coding of information (Buonomano and
Merzenich, 1995; Abbott et al., 1997; Lisman, 1997; Tsodyks and
Markram, 1997). This study of the interaction between LTP and
short-term plasticity should therefore help in understanding how
synapses in the hippocampus undergo meaningful modifications
that can be used for the encoding of new information.
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