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Jensen, Ole and John E. LismanPosition reconstruction from an cycle until the animal leaves the place field. Thus firing rate
ensemble of hippocampal place cells: contribution of theta phagegreatly increased when the rat is in the cell’s place field.
coding.J. Neurophysiol83: 2602-2609, 2000. Previous analysis ofq importance of the phase of firing relative to the theta

the firing of individual rat hippocampal place cells has shown that_ .. _.. : ) .
their firing rate increases when they enter a place field and that th% cillation was discovered by O’Keefe and Recce (1993, see

phase of firing relative to the ongoing theta oscillation (712 HAISO Skaggs et al. 1996). They found that as the animal
varies systematically as the rat traverses the place field, a phenomefgives through the place field, the phase of firing becomes
termed the theta phase precession. To study the relative contribugimogressively earlier on each successive theta cycle, a phe-
of phased-coded and rate-coded information, we reconstructed fftsmenon known as the “theta phase precession” or “theta
animal’s position on a linear track using spikes recorded simultahase advance.”

neously from 38 hippocampal neurons. Two previous studies of thisrpg findings of O’Keefe and Recce suggest that the neural
kind found no evidence that phase information substantially improves

reconstruction accuracy. We have found that reconstruction is il%gde |n_ the h|ppocampus involves bOt,h phase-coded and rate-
proved provided epochs with large, systematic errors are first ég@ded information. If pure phase coding were present, a cell
cluded. With this condition, use of both phase and rate informatia#ould fire on each theta cycle (i.e., at constant rate), and
improves the reconstruction accuracyb%3% as compared with the information would be encoded only by changes in its phase of
use of rate information alone. Furthermore, it becomes possiblefiing. Because place cells change their rate of firing, the code
o e oot oot s 2 be Sofm b of rate and phase nformaton: ¢ vioud
than three phase divisions per theta cycle. These results strengthenc'i grly be desirable to. have a.quantlFatIY.e way of evaluat".]g
hypothesis that information in rat hippocampal place cells is encod&i€ther phase-coded information is significant compared with
by the phase of theta at which cells fire. that provided by rate alone. A general strategy for evaluating
such coding issues is to reconstruct the environmental factors
that triggered spikes from the spike trains (Rieke et al. 1997).
If including a given property of these trains improves the
accuracy of reconstruction, this property can contribute to the
Particular types of sensory input can cause a cell to finegural code.
but it remains unclear which aspects of the firing pattern areThe hippocampus is a particularly favorable region for
important. Many aspects of spike trains could potentiallysing this approach because it is possible to record simul-
carry information, including the average firing rate, theéaneously from an ensemble of hippocampal neurons and to
occurrence of specific interspike intervals, the occurrence @fap their place fields. Several groups (Brown et al. 1998;
a burst, or the degree to which different cells fire in coinEenton and Muller 1998; Wilson and McNaughton 1993;
cidence (Eggermont 1998; Engel et al. 1992; Lisman 1997hang et al. 1998) analyzed ensemble data of this kind to
Rieke et al. 1997). The Sp'ke“ properties tE\at contribuigconstruct the animal’s position in its environment using
usable information define the “neural code.” In networksygpisticated algorithms for reconstruction (e.g., Bayesian

governed by an oscillation, the phase at which a cell fir%.?]d Template: seasetrops). Surprisingly, these studies

relative to the oscillation could also carry information (H°p§uggested that phase might not contribute substantially.

INTRODUCTION

field 1995; Perkel and Bullock 1968). The possibility o o .
such phase-coded information is suggested by observati SeC|f|caIIy, Zhang et al. (1998) ;uggestgd that it was un-
on rat hippocampal place cells. Each place cell fires wh ely that phase carried useable information because their

the animal is in a particular position in an environment an t'mt?]I time \Aé'anoWﬂ:o: recolnstrlé.lct;gn was mBUCh Ion%erl
the cells collectively map the entire space (O’Keefe ari]a" the period of a theta cycle. Furthermore, Brown et al.

. L 998) showed that reconstruction was not improved by
Dostrovsky 1971; Olton et al. 1978). The firing of plac gonsidering the theta amplitude modulation of the firing rate

cells is linked to a theta frequency (7-12 Hz) networ f the place cells. This work, although not ruling out the

oscillation in a complex way. There is little firing when th ; \ .
animal is outside the “place field” of a cell. As the animalmportance of phase information, has nevertheless raised

moves into the place field, firing occurs during each theﬁ?rious. doubts.abo'ut Whether. the cqntrjbution of phase-
coded information is quantitatively significant compared

The costs of publication of this article were defrayed in part by the payme\q{Ith rate-coded information. Because the basis of neural

of page charges. The article must therefore be hereby maskhaftisemerit  €0ding has such important implications for hippocampal
in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. ~ function (Lisman 1999), we have reexamined this issue.
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METHODS Xreconstructed™ arg mxaxz N fi(X) (2)

Recordings '
BAYESIAN METHOD. Bayes’ rule was used to calculate the proba-

The data we have analyzed were generated as part of the stuglyy of the animal to be at positior, given the number of spikes)
reported by Skaggs et al. (1996). Before surgery the rat was traine¢#ected int

run for food rewards placed on the middle of the arms in a triangular
maze (204 cm long, 8 cm wide). Single-cell recordings were made
from 10 tetrodes placed in the hippocampus. The theta population
activity of the field potential was recorded from the hippocampal L . )
fissure. A threshold level was adjusted by eye that detected most thERg Probability distribution of position®(x) was calculated during
peaks in the raw signal. This threshold was then applied to band-pH&first 500 s (when constructing the place fiel@h) does not have
filtered data (6—10 Hz) to automatically detect peaks and assign thihpe calculated because itis given by the normalizatid®(efh). The
a time stamp. If the interval between two adjacent peaks was too sHERM P(n[x) is derived using the firing rate$x) from the place fields
(<100 ms) or too long*%167 ms) to be considered a theta period, @SSUMIng that) thg firing of place ceIIs_ are sta_ltls'_[lcal_ly independent
was eliminated from further analysis. If the interval was within thi§nd2) place cells fire according to a Poisson distribution (Zhang et al.
range, spikes within this theta cycle were assigned a phase and enté
into the data set analyzed for coding questions. This procedure min- At ()"
imizes the contribution of activity during non-theta “large irregular P(n|x) = ]_[ P(ni|x) = H ‘ exp —Atfi(x)] (4)
activity” periods. i oot

The rat's position was determined by monitoring light-emittin
diodes (LEDs) placed on the rat's head stage. The position of %’E L . . .
LEDs was established using a video-tracking device (25@56 distribution P(xjn) for all x is calculated. The maximum of this
pixels, 2.3 pixels per cm). Some uncertainty in the animal’s positigfistribution defines the most probable position
is nevertheless present because the LEDs are actually above the
animal’'s head and their position can be influenced by head angle
(Skaggs et al. 1996). The position of the rat recordes-jncoordi-
nates was projected onto a straight line representing each arm of Tireeta phase precession
maze.

P(n[x)P(x)

PO = o

(©)

erting these expressions into Bayes’ ruig.(3), the probability

Xreconslrucledz arg nlaxp(x‘ n) (5)

The phase precession was applied by dividing each theta period into
. lqorith N subperiods. A place field was then divided according to which
Reconstruction algorithms subperiod the individual spikes belonged (e.g., FA. & his resulted

The triangular maze was linearized to one stretch of 204 cm affdthe vectorf(x) = [f,(X), f(X), . . ., fx-aa(X)], Where the elements 1
divided into 150 bins (defining the variabbd, The actual position of t0 N are the subdivisions of the first place field, elemets 1 to 2
the rat was calculated from the tracking device and projected onto thél the next subfield, and so forth. The vectors of spikes (n,,
linear maze. The place fields for each of the 38 cells were constructld: - - » Mn+as) are constructed similarly. After the division, the-re
using the first 500 s of data-@ runs in the maze). The place fieldsconstruction was performed as before, using the template and Bayes-
were represented by the vectgx) = [f,(X), fx(X), . . . , fzg(X)] where ian methods. When usmg_the Bayesian meth(_)d, it was useful to apply
x is one of the 150 bing(X) represents the firing rate of célas a the_ method under condlt_lons where phase !nformatlon_wa_s absent.
function of spacex (the total number of spikes in collected bin This was done by a shuffling procedure in which each spike in a theta
divided by the total time the rat was in big. After the place fields Cycle was reassigned a random phase.
were constructed, they were smoothed with Gaussian kernels
(width = 2.7 cm). Using the subsequent 500 s of data, the reconstr@errection excluding tracking error
tion algorithms were applied using a sliding time window of width ) ) ) )
At each time window, spikes from the place cells were colleated: _If the variance isreconstruciodOF the reconstruction algorithm and
(N, Ny, . . ., Ng). N, represents the number of spikes from ¢efor  Tiracking fOF the tracking system, then the measured variance is
each time step, the position was reconstructed on the basis of collected ) ) )
spikes ) and the place fieldsf(x)]. The reconstructed position was Omeasured™ Oreconstruction™ Jtracking ©)
compared with the position measured by the tracking device. Th@ecause the mean absolute error (m.a.e.) of a Gaussian distribution
mean absolute error (m.a.e.) was used as a measure of the reconsfjijivariances? is o(2/m)*/?, the reconstruction error corrected for the
tion tracking error is

mean absolute errot L z [x: - X ! ® 2., 2 2 2,
N predicted measure rn-a-ereconstruction= ; ((rmeasured_ 0'Iracking = m-a-emeasured_ ; Glracking

.

Mehta et al. (1997) have shown that place fields are not stable, but @

tend to expand asymmetrically during the 1st 15-20 laps a r% SULTS

traverses a maze. Obviously, if one could find a method to incorporate

this effect into the reconstruction algorithm, the error of reconstruc- The data utilized in this study were obtained from an inves-

tion Wpuld be reduced. Hovyever, we expect that the conclusioa@ation of place cells in a behaving rat by W. Skaggs, C.

regarding the phase precession would remain the same. Barnes, and B. McNaughton, who kindly supplied the data to
) us. Recordings were made from 10 tetrodes placed in the

Template matching method hippocampus. Individual cells were identified by a standard

A template f(x), is defined as a vector of firing rates from the 3¢luster technique (Skaggs et al. 1996). Out of a total of 75 cells
cells at binx. The best match of the collected spike o 1 of the 150 identified, 38 cells showed spatially localized firing. Of these,
templates defines the reconstructed position (Wilson and McNaugh&h were in the CAL region and 4 were in the dentate gyrus. All
1993; Zhang et al. 1998) 38 cells are considered together in our analysis. Note that these
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TABLE 1. Effect of using phase information of mean track. Then, using the 2nd 10 passages, the rat’'s current posi-
reconstruction errot tion was reconstructed from the spikes that occurred in a time
_ window (At), using the previously established properties of
Al >|305|fc')'2%5_‘ individual place cells and either of two reconstruction algo-

Spikes >0 Spikest  Stand Data fithms described by Zhang at al. (1998). These algorithms are
termed the “1-step Bayesian method” and the “template match-

Template _ ing” method (also termed the “direct basis method”). The
No phase information, cm 12.6 78 76 template matching method is relatively straightforward: during
Seven phase bins, cm 12.2 6.4 5.3 . -
9%Improvementt 3 2 43 the 1st 10 passages, one establishes for each posi}ion the

Bayesian track a reference template that relates firing rate to cell number
No phase information, cm 15.4% 6.0% 4.3t (cell 1 f(x) spikes/s;cell 2 f,(X) spikes/s, etc.). For eacht
s'rmpphrg\slznt:g‘rifm 174-4 254-8 433-0 during the 2nd 10 passages, one finds the reference template

b . .
Number of ime windows 3,332 848 498 that best matches the profile generated by the spikes that occur

in that period Eq. 2. The Bayesian method is more complex
On average, 4.2 2.0 of the 38 cells being recorded contributed to the fiin@nd depends primarily on two functiorisd. 3. The first is the
during the 150-ms time window. Collectively all cells that fired during a tim(probab”ity that the observed profile of spikes could arise from

window produced an average total of 3:84.1 spikes. * Mean absolute eror v raference template for a given position. The second is the
(seemeTHODS). T (Decrease in reconstruction error)(error with phase informa-

tion) X 100%.  Phase was used after random phase shuffling. p'robability. Of_ bei.ng at a given positiof(x), based on past
history (this is highest at the food stands where the animal
place cells were not preselected according to whether thefgen lingers). From these two sources of information and the
showed phase precession. Data were collected as the ratassumption of Poisson firing, the most likely current position
counterclockwise on a triangular maze (arm lengtt68 cm; can be computed. Comparing these methods, both Zhang et al.
total track= 204 cm). The rat was motivated to traverse th€l998) and Brown et al. (1998) found the Bayesian method to
track by food placed at food stands at the middle of each arbre the more accurate.
The animal went around the track 20 times, and the rat’s actualn our first series of reconstructions, only rate information
position was continuously determined by a video trackingas used. The mean reconstructed error was in the range of
system. 14-16 cm (Table 1) with both template and Bayesian methods.
In the initial step of position reconstruction, the properties dfhe individual reconstructions using the Bayesian method are
individual place cells were characterized by correlating cethown in Fig. 2. In this figure, the reconstructed position is
firing with actual position during the 1st 10 passages of thmotted as a function of the measured position. If the recon-
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A L ‘ ' T J how the number of erratic jumps and the mean reconstruction
error falls as the threshold for the minimum number of spikes
10 GHengeﬂ?;s . per time window is raised (if only time windows with-4
T spikes were considered, this excluded 11% of the spikes and
P 33% of the time windows; if the threshold was9, this
g excluded 45% of the spikes and 70% of the time windows). It
2 is important to recall that, although many place cells (38) were
g’ monitored, these were still only a very small subset of the total
g (~10°). Given this limited sampling, it is to be expected that
LU 0 there will be time windows when little of the information
¢ present is collected. We conclude from this analysis that when
- 1 evaluating the details of position coding, time windows having
g " é et 1‘0 R s a small nu_mber of spikes produce a !arge systemic error that
Min Spikes per Time Window (#) could dominate the mean reconstruction error.
The presence of systematic errors is serious because it could
B & 7 T T T T obscure the effect of factors, such as phase, that might potentially
14 %7 7 affect the quality of reconstruction. Zhang et al. (1998) argued that
emplate . : . . .
- G—0 Bayesian k phase |nforma_t|on was unllkelylto be of use beca_use consideration
€ 12 of phase requireat corresponding to a theta periogt 150 ms),
L but when they reducedit to such values, reconstruction accuracy
S 1o deteriorated. This result is replicated in Fig. 3 (all spikes; both
ut_, Bayesian and Template matching methods). However, as noted
=2 above, this conclusion may be affected by the large systematic
3 reconstruction errors that occur when little information is avail-
= able in a time window. To test this possibility, we repeated the
5]
25
4 L : L : [ . L L L { L L
" Min Spikes per Time Window # " %----X Template: all
p P 0 10 *=——x Templata: >4 spikes
FIG. 2. If an estimate is made only if a minimum number of spikes occur : G ---©O Bayesian: all
during a time window, reconstruction errors are reduckdeffect on the G—~& Bayesian: >4 spikes
percentage of analyzed windows that have erratic jumps. An erratic jump is
defined as occurring when the prediction error-i$0 cm.B: effect on mean '
absolute error in analyzed windows. 20 - 4
structions were perfect, all the points would fall along a diag-
onal line with a width of several centimeters reflecting the !
measurement error of the rat’s actual position @eeording’s g b
in METHODS). It can be seen that most points fall along the &
diagonal, but that there are also many points that fall far from 5
the diagonal. These large errors (defined as erxdi@ cm) are Lﬁ 15 - o @ -

termed “erratic jumps.” Figure A shows that there is a sys-
tematic source of these large errors because they tend to fal
along vertical and horizontal lines.
It was clearly of importance to identify the sources of these
systematic errors. It can be seen that a large number of them
fall along horizontal lines at the reconstructed positions of
~34, 102, and 170 cm. These are the positions of the food 10
stands. Such errors are expected if the time window that serves
as the basis of the computation contains little information (few ) "
or zero spikes) because when this occurs, the Bayesian method I o O‘o-o-eo
picks a reconstructed position based on the peaks in the posi- -eg
tion probability distributionP(x) (seeEq. 3. The peaks oP(x) WW
are where the animal spends the most time, which turns out to ]
be at the food stands. 5, P P - 500
To determine whether most erratic jumps indeed arise when Time Window (msec)
the number of spikes iAt is low, reconstructions were made
only when the total number of spikes wagl. This procedure FIG- 3. Good reconstructions of position can be made even using short time

o ; _windows if only time windows with>4 spikes are considered., reconstruc-
greatly reduced the number of erratic Jumps (F@),lespe tion error for the Bayesian and template matching method using all time

cially those in which thepredictedposition is a food stand yindows. —, reconstruction error with a threshctd spikes per time window
(these formed the horizontal bands in Figy)1Figure 2 shows for both reconstruction methods.
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analysis after excluding all periods witt¥ spikes. When this was 400 : ; . J
done, it was found that reconstruction was as good for short time
windows (~100 ms) as for long ones (Fig. 3). This has important
implications because it now becomes reasonable to use the theta
period (150 ms) as the time window and to study the effect of
spike phase within that window.

Before proceeding with studying the effect of phase on
reconstruction accuracy, we first tested whether we could ob-
serve the dependence of position on phase that was previously
reported (Skaggs et al. 1996). Figurd 4hows the spatial
distribution of firing for different phases of a representative 0 : : :
place cell. There is an ordered progression of the spatial profile 0 , 2 4
as a function of phase, with one exception (the phase with Tracking Error, Std. Dev. (cm)
lowest firing rate). Because these results are similar to what hame. 5. Percent improvement in position reconstruction produced by taking
been previously reported, we proceeded to study how rec@hase into consideration depends on the SD of the tracking error. The Bayesian

: . . : . method is used here. The tracking error has been estimated to be as large as 5
struction was affected by takmg phase into consideration. cm. If the error were actually this large, the % improvement in reconstruction

_ Our ggneral strategy for _StUdying the effect of phas_e_ and rafor would be unreasonably high, suggesting that the mean tracking error may
information on reconstruction accuracy was to subdivide easfismaller.

theta cycle (seeeTtHops) into a discrete number of phase bins.
In separate analyses, the number of bins was varied from 1many sources of systematic error as possible. The reconstruc-
9. If there was only one phase bin, then there was no phai# shown in Fig. B is only for time windows where there are
information and the reconstruction depended only on rate isnbstantial number of spikes-4), a condition that reduced the
formation. Alternatively, phase information was analyzed for@rratic jumps (compare to Fig.AL There are nevertheless
given number of bins and compared with the reconstruction feome remaining large systematic errors that tend to fall along
the same number of bins when spikes were shuffled betwestical lines. We found that raising the number of spikes
bins (seesavesian METHOD in METHODS). If phase information required did not greatly reduce these errors. It can be seen that
was shuffled, the reconstruction depended only on rate inféhese errors occurred primarily when the animal was at food
mation. stands. It is known that when an animal is eating, large-
Figure 4,B and C, shows how the reconstruction accuracamplitude irregular activity (LIA) occurs that can be difficult to
improved as we increased the number of phase bins into whitistinguish from theta (Vanderwolf 1969). Given this possibil-
a theta cycle was divided, for both the Template and Bayesidy it was of interest to examine the effect of phase information
methods. For the Template method, the reconstruction acehen these large errors at food stands were not a factor. We
racy improved progressively as the number of phase bins whsrefore redid the analysis of phase information considering
increased to seven (FigB% the absolute error was reduced bynly the positionsbetweenfood stands (Fig. @). Table 1
1.4 cm (22%) by using phase. Figur€ 4hows that when the shows that under these conditions, taking phase information
Bayesian method was used, the error was reduced by 1.2 iohe account produced a 43% improvement in reconstruction
(25%) when six phase bins were used. When the numberaaicuracy compared with what could be achieved using rate
phase bins was nine, the improvement was no longer signififormation alone.
cant, suggesting that there is an optimal number of phase biné\n additional factor that could influence the percent im-
between five and nine. An example showing the benefit pfovement produced by phase information is the error in the
using phase information on individual reconstructions in measurement of the actual animal’'s position. The animal's
small (15 cm) region of the track between food stands is shoynsition was measured by monitoring the position of LEDs
in Fig. 4D. Based on the results of Fig. 4, we conclude thamounted above the rat's head. It has been estimated that
phase information improves the reconstruction of position lghanges in head angle and other factors could lead to a “track-
20-25% (Table 1). ing” error of as much as 5 cm (Skaggs et al. 1996; Wilson and
The percentage reduction in reconstruction error is a méddeNaughton 1993). Unfortunately, a quantitative determina-
sure of the importance of phase information relative to raten of this error is not available. We have therefore made
information alone. However, this percentage will be reduceddélculations for a range of values of the tracking error. It can be
there are large systematic sources of error that affect both tygesn in Fig. 5 that if there is no correction for tracking error,
of reconstructions. It was therefore desirable to eliminate pbase information produces a 43% improvement in reconstruc-

300

200

100

Percent Improvement

Fic. 4. When phase information is used, reconstruction accuracy is impraviédstrative example of how the firing of a cell
at a given phase depends on positibiset the phase windows relative to the peaks of field theta. Note that the large peaks are
in order (as indicated by the number at their peak). The phase with lowest firing rates is out of seBuérmeeeconstruction is
improved by increasing the number of phase bins when the template matching method is used. Significant imprBverQdrs)(
in reconstruction compared with the case where phase information was not used is indicated by aStemgksvement also
occurs when the Bayesian method is used. Significant improvement(.05) compared with the case where the phase bins were
shuffled is indicated by asteriskB: illustration of individual reconstructions and their errors, with and without the use of phase
information. Thin black line is the measured position as a function of time during a 1.2-s period. Vertical solid and dashed lines
connect the reconstructed position to the measured position and illustrate the magnitude of the errors, with and without phase
information. Note that some of the reconstructed positions appear to be absolutely exact, but that this exactness results from the
fact that position was discretized by 1.36 cm. For all reconstructions in this figure, only time windows in which thereQvere
spikes in a time window were considered.



2608 O. JENSEN AND J. E. LISMAN

tion error. On the other hand, if the tracking error was actualtjealing with these errors, they implemented a continuity con-
5 cm, virtually the whole reconstruction error is accounted fatraint in the Bayesian reconstruction algorithms. The continu-
by the tracking error and the percent improvement in recoity constraint ensures that a reconstructed position is close to
struction produced by phase become400%. We think it is the previous reconstructed position (Zhang et al. 1998: the
unlikely that the tracking error is actually as large as 5 cm amhyesian 2-step method). In this way erratic jumps were pre-
taking an intermediate value of the tracking error (3 cm) seemented. This constraint requires that the previous reconstructed
more plausible. In this case the actual reconstruction errorpgsition be stored temporarily and used to interpret the mean-
1.8 cm and the percent improvement produced by taking phase of current spiking. In contrast, we find that very good
into consideration is~100%. estimates of position can be made using current spike activity
These results raise the possibility that the estimate of poalene, provided that time windows with zero or few spikes are
tion based on brain recordings is more accurate than that baggtbred.
on actual measurement. This is not unreasonable because the
reconstruction aIgorithr_ns use _functions derived fmlmltipl_e Number of phase bins
measurements of position, which can lead to an averaging out
of measurement error. More generally, these results indicatéFigure 4,B andC, indicates that reconstruction accuracy is
that reconstructions have become so accurate, that the trackingroved by increasing the number of phase bins within a theta
errors are problematic. It would therefore be very desirable ¢ycle, at least up to six bins. There is some hint that there might
reduce these if possible in future experiments. On the basisbef an optimum at about six to seven, but the data are not
the available information, we conclude that phase producesufficiently reliable to be certain about this. We have examined
minimum improvement in reconstruction error of 43% and th#lte statistical significance of this dependency. Using a Wil-
the improvement is probably much larger (Fig. 5). coxon rank test on the template-method results (FB), @e
find that seven phase bins is better than one, two, or tiree (
0.03) for data excluding food stands. For the Bayesian method
(Fig. 4C), we find that six phase bins is better than one, two, or
The phase precession of individual hippocampal place ceflgee and also better than nine  0.03). Taken together,
(O’'Keefe and Recce 1993; Skaggs et al. 1996) is a strikitigese results indicate that the number of meaningful phase
phenomenon, and the fact that it occurs suggests that theisions is more than three. This conclusion is consistent with
hippocampus uses a neural code that depends on phase-ctited@revious suggestion that place cells have approximately
information in addition to rate-coded information. We haveeven discrete phases of firing within a theta cycle (Jensen and
more rigorously tested this possibility using the ensemblésman 1996, 1997; Lisman and Idiart 1995). This proposal
activity of 38 place cells to reconstruct the rat's position as\tas based on the observation from in vivo recordings during
moves around a triangular track. This form of analysis make®vement showing that7-10 high-frequency (40-100 Hz)
it possible to quantitatively estimate the effect of taking phag@mma cycles are nested within each theta cycle (Bragin et al.
information into account. Our results clearly show that whel®95; Csicsvari et al. 1999; Soltesz and Deschenes 1993).
phase-coded information is used, the accuracy of positiBuring each gamma cycle, the network of hippocampal inter-
reconstruction is greatly improved. This demonstrates that theurons produces a short-lasting hyperpolarizing input to the
phase-coded information is quantitatively significant and thpyramidal neurons that transiently suppresses spike activity.
the neural code in the hippocampus uses a combination of lais inhibitory activity would be expected to divide a theta
rate code and a theta-phase code. cycle into a series of discrete phase bins.
To reveal the utility of phase-coded information, we first had
to remove systematic sources of error not related to positipr,tanction of phase coding
coding. These sources of error (Fig. 1) occurred during periods
when there were an insufficient number of spikes available toAlthough our results show that the ensemble of place cells
make a good estimate or when the animal was at a food staoontains phase-encoded information, little is known about how
When these periods of systematic error were eliminated, ttigs information is used. One idea is that the brain could use an
remaining data were used for reconstruction, with or withoalgorithm not unlike the Bayesian algorithm to combine infor-
phase information. Because this comparison was made on thation from different phase bins and to thereby produce a
samedata, there is no bias toward any particular result. Byrediction of current position (Zhang et al. 1998). Alterna-
making this comparison, we found that phase-coded inforniasely, information inindividual phase bins may be detected by
tion is of great utility in reconstructing position (Figs. 4 and 5downstream neurons that are phase-sensitive detectors (Jensen
Table 1). We estimate that an animal’s position can be pr£999). Such detectors would not only have to receive the
dicted with an error ok<3 cm, much smaller than the actuaphase-specific hippocampal activity, but a theta reference sig-
size of the rat, and that the improvement produced by takingl by which to decode it. It is known that theta activity is
phase information into account i543% (Table 1; Fig. 5). found in brain regions that receive input from the hippocam-
Importantly, predictions of this accuracy can be made on tipes, including the entorhinal and cingulate cortexes (reviewed
basis of a relatively small number of spikes (10—20) obtainéa Bland and Oddie 1998). It is implicit in some models of the
from a relatively small number of cells-5) that fire during the phase precession (Burgess et al. 1994; Jensen and Lisman
brief time window of single theta cycles (150 ms; Table 1). 1996; Lisman 1999; Skaggs et al. 1996; Tsodyks et al. 1996)
The observation that some reconstructions lead to lartfgt cells representing sequential upcoming positions fire se-
erratic jumps in positions has been previously noted by boguentially within a theta cycle, i.e., with increasing phase
Zhang et al. (1998) and Brown et al. (1998). As a mean dtlay. Thus detectors with sensitivity to specific phases could

DISCUSSION



PHASE-CODED INFORMATION 2609

determine whether a given position is nearby (if firing occursnsen O. anp Lisman, J. E. Hippocampal CA3 region predicts memory

with ear|y phase) or remote (if firing occurs with late phase). sequences: accounting for the phase precession of place loedlming
Mem.3: 279-287, 1996.

JENSEN, O. AnD Lisman, J. E. The importance of hippocampal gamma oscil-
lations for place cells: a model that accounts for phase precession and spatial

. . hift. In: Computational Neuroscience: Trends in Reseaedited by J. M.
Our results provide the strongest evidence to date that phasl%ower. New York: Plenum, 1997, p. 683—689.

coded information is expressed by e_nsembles o_f hippocamR%ANA, M. J.. SKULER, R., CAPLAN, J. B., KRSCHEN M., AND MADSEN, J. R.
neurons and that cells express this information in a form thaiuman theta oscillations exhibit task dependence during virtual maze nav-
allows substantial improvements in position estimation com-igation. Nature 399: 781-784, 1999.

pared with what can be achieved using rate information alorkeimMEscH, W., DoPPELMAYR, M., SCHIMKE, H., AND RIPPER B. Theta synchro-
Our findings relate 0n|y to the rat hippocampus, but thetahization and alpha desynchronization in a memory t&slychophysiology

oscillations have been found in other brain areas in rodents gntf" 169-176, 1997. . . . . .
SMAN, J. E. Bursts as a unit of neural information: making unreliable

in humans (Gevins et al. 1997; Kahana et al. 1999; KIimeschSynalloses reliablarends Neurosci20: 38—43 1997

etal. 1997;_ Macrides etal. 1982; Ni(_?0|e“3 et al. 1995; Tesch@yan, J. E. Relating hippocampal circuitry to function: recall of memory
1997). It will be important to determine whether phase-codedsequences by reciprocal dentate/CA3 interactidvisuron 22: 233—242,

information is also present in these areas. 1999.
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