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Jensen, Ole and John E. Lisman.Position reconstruction from an
ensemble of hippocampal place cells: contribution of theta phase
coding.J. Neurophysiol.83: 2602–2609, 2000. Previous analysis of
the firing of individual rat hippocampal place cells has shown that
their firing rate increases when they enter a place field and that their
phase of firing relative to the ongoing theta oscillation (7–12 Hz)
varies systematically as the rat traverses the place field, a phenomenon
termed the theta phase precession. To study the relative contribution
of phased-coded and rate-coded information, we reconstructed the
animal’s position on a linear track using spikes recorded simulta-
neously from 38 hippocampal neurons. Two previous studies of this
kind found no evidence that phase information substantially improves
reconstruction accuracy. We have found that reconstruction is im-
proved provided epochs with large, systematic errors are first ex-
cluded. With this condition, use of both phase and rate information
improves the reconstruction accuracy by.43% as compared with the
use of rate information alone. Furthermore, it becomes possible to
predict the rat’s position on a 204-cm track with very high accuracy
(error of ,3 cm). The best reconstructions were obtained with more
than three phase divisions per theta cycle. These results strengthen the
hypothesis that information in rat hippocampal place cells is encoded
by the phase of theta at which cells fire.

I N T R O D U C T I O N

Particular types of sensory input can cause a cell to fire,
but it remains unclear which aspects of the firing pattern are
important. Many aspects of spike trains could potentially
carry information, including the average firing rate, the
occurrence of specific interspike intervals, the occurrence of
a burst, or the degree to which different cells fire in coin-
cidence (Eggermont 1998; Engel et al. 1992; Lisman 1997;
Rieke et al. 1997). The spike properties that contribute
usable information define the “neural code.” In networks
governed by an oscillation, the phase at which a cell fires
relative to the oscillation could also carry information (Hop-
field 1995; Perkel and Bullock 1968). The possibility of
such phase-coded information is suggested by observations
on rat hippocampal place cells. Each place cell fires when
the animal is in a particular position in an environment and
the cells collectively map the entire space (O’Keefe and
Dostrovsky 1971; Olton et al. 1978). The firing of place
cells is linked to a theta frequency (7–12 Hz) network
oscillation in a complex way. There is little firing when the
animal is outside the “place field” of a cell. As the animal
moves into the place field, firing occurs during each theta

cycle until the animal leaves the place field. Thus firing rate
is greatly increased when the rat is in the cell’s place field.
The importance of the phase of firing relative to the theta
oscillation was discovered by O’Keefe and Recce (1993; see
also Skaggs et al. 1996). They found that as the animal
moves through the place field, the phase of firing becomes
progressively earlier on each successive theta cycle, a phe-
nomenon known as the “theta phase precession” or “theta
phase advance.”

The findings of O’Keefe and Recce suggest that the neural
code in the hippocampus involves both phase-coded and rate-
coded information. If pure phase coding were present, a cell
would fire on each theta cycle (i.e., at constant rate), and
information would be encoded only by changes in its phase of
firing. Because place cells change their rate of firing, the code
may be some hybrid of rate and phase information. It would
clearly be desirable to have a quantitative way of evaluating
whether phase-coded information is significant compared with
that provided by rate alone. A general strategy for evaluating
such coding issues is to reconstruct the environmental factors
that triggered spikes from the spike trains (Rieke et al. 1997).
If including a given property of these trains improves the
accuracy of reconstruction, this property can contribute to the
neural code.

The hippocampus is a particularly favorable region for
using this approach because it is possible to record simul-
taneously from an ensemble of hippocampal neurons and to
map their place fields. Several groups (Brown et al. 1998;
Fenton and Muller 1998; Wilson and McNaughton 1993;
Zhang et al. 1998) analyzed ensemble data of this kind to
reconstruct the animal’s position in its environment using
sophisticated algorithms for reconstruction (e.g., Bayesian
and Template; seeMETHODS). Surprisingly, these studies
suggested that phase might not contribute substantially.
Specifically, Zhang et al. (1998) suggested that it was un-
likely that phase carried useable information because their
optimal time window for reconstruction was much longer
than the period of a theta cycle. Furthermore, Brown et al.
(1998) showed that reconstruction was not improved by
considering the theta amplitude modulation of the firing rate
of the place cells. This work, although not ruling out the
importance of phase information, has nevertheless raised
serious doubts about whether the contribution of phase-
coded information is quantitatively significant compared
with rate-coded information. Because the basis of neural
coding has such important implications for hippocampal
function (Lisman 1999), we have reexamined this issue.
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M E T H O D S

Recordings

The data we have analyzed were generated as part of the study
reported by Skaggs et al. (1996). Before surgery the rat was trained to
run for food rewards placed on the middle of the arms in a triangular
maze (204 cm long, 8 cm wide). Single-cell recordings were made
from 10 tetrodes placed in the hippocampus. The theta population
activity of the field potential was recorded from the hippocampal
fissure. A threshold level was adjusted by eye that detected most theta
peaks in the raw signal. This threshold was then applied to band-pass
filtered data (6–10 Hz) to automatically detect peaks and assign them
a time stamp. If the interval between two adjacent peaks was too short
(,100 ms) or too long (.167 ms) to be considered a theta period, it
was eliminated from further analysis. If the interval was within this
range, spikes within this theta cycle were assigned a phase and entered
into the data set analyzed for coding questions. This procedure min-
imizes the contribution of activity during non-theta “large irregular
activity” periods.

The rat’s position was determined by monitoring light-emitting
diodes (LEDs) placed on the rat’s head stage. The position of the
LEDs was established using a video-tracking device (2563 256
pixels, 2.3 pixels per cm). Some uncertainty in the animal’s position
is nevertheless present because the LEDs are actually above the
animal’s head and their position can be influenced by head angle
(Skaggs et al. 1996). The position of the rat recorded inx-y coordi-
nates was projected onto a straight line representing each arm of the
maze.

Reconstruction algorithms

The triangular maze was linearized to one stretch of 204 cm and
divided into 150 bins (defining the variable,x). The actual position of
the rat was calculated from the tracking device and projected onto the
linear maze. The place fields for each of the 38 cells were constructed
using the first 500 s of data (;9 runs in the maze). The place fields
were represented by the vectorf(x) 5 [f1(x), f2(x), . . . , f38(x)] where
x is one of the 150 bins.fi(x) represents the firing rate of celli as a
function of space,x (the total number of spikes in collected binx
divided by the total time the rat was in binx). After the place fields
were constructed, they were smoothed with Gaussian kernels
(width 5 2.7 cm). Using the subsequent 500 s of data, the reconstruc-
tion algorithms were applied using a sliding time window of widthDt.
At each time window, spikes from the place cells were collected:n 5
(n1, n2, . . . , n38). ni represents the number of spikes from celli. For
each time step, the position was reconstructed on the basis of collected
spikes (n) and the place fields [f(x)]. The reconstructed position was
compared with the position measured by the tracking device. The
mean absolute error (m.a.e.) was used as a measure of the reconstruc-
tion
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Mehta et al. (1997) have shown that place fields are not stable, but
tend to expand asymmetrically during the 1st 15–20 laps a rat
traverses a maze. Obviously, if one could find a method to incorporate
this effect into the reconstruction algorithm, the error of reconstruc-
tion would be reduced. However, we expect that the conclusions
regarding the phase precession would remain the same.

Template matching method

A template,f(x), is defined as a vector of firing rates from the 38
cells at binx. The best match of the collected spikes (n) to 1 of the 150
templates defines the reconstructed position (Wilson and McNaughton
1993; Zhang et al. 1998)
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x
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BAYESIAN METHOD. Bayes’ rule was used to calculate the proba-
bility of the animal to be at positionx, given the number of spikes (n)
collected int

P~xun! 5
P~nux!P~x!

P~n!
(3)

The probability distribution of positionsP(x) was calculated during
the first 500 s (when constructing the place fields).P(n) does not have
to be calculated because it is given by the normalization ofP(xun). The
term P(nux) is derived using the firing ratesf(x) from the place fields
assuming that1) the firing of place cells are statistically independent
and2) place cells fire according to a Poisson distribution (Zhang et al.
1998)
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Inserting these expressions into Bayes’ rule (Eq. 3), the probability
distribution P(xun) for all x is calculated. The maximum of this
distribution defines the most probable position

xreconstructed5 arg max
x

P~xun! (5)

Theta phase precession

The phase precession was applied by dividing each theta period into
N subperiods. A place field was then divided according to which
subperiod the individual spikes belonged (e.g., Fig. 4A). This resulted
in the vectorf(x) 5 [f1(x), f2(x), . . . , fN*38(x)], where the elements 1
to N are the subdivisions of the first place field, elementsN 11 to 2
* N the next subfield, and so forth. The vectors of spikesn 5 (n1,
n2, . . . , nN*38) are constructed similarly. After the division, the re-
construction was performed as before, using the template and Bayes-
ian methods. When using the Bayesian method, it was useful to apply
the method under conditions where phase information was absent.
This was done by a shuffling procedure in which each spike in a theta
cycle was reassigned a random phase.

Correction excluding tracking error

If the variance issreconstruction
2 for the reconstruction algorithm and

stracking
2 for the tracking system, then the measured variance is

smeasured
2 5 sreconstruction

2 2 stracking
2 (6)

Because the mean absolute error (m.a.e.) of a Gaussian distribution
with variances2 is s(2/p)1/2, the reconstruction error corrected for the
tracking error is

m.a.e.reconstruction5 Î2
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R E S U L T S

The data utilized in this study were obtained from an inves-
tigation of place cells in a behaving rat by W. Skaggs, C.
Barnes, and B. McNaughton, who kindly supplied the data to
us. Recordings were made from 10 tetrodes placed in the
hippocampus. Individual cells were identified by a standard
cluster technique (Skaggs et al. 1996). Out of a total of 75 cells
identified, 38 cells showed spatially localized firing. Of these,
34 were in the CA1 region and 4 were in the dentate gyrus. All
38 cells are considered together in our analysis. Note that these
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place cells were not preselected according to whether they
showed phase precession. Data were collected as the rat ran
counterclockwise on a triangular maze (arm length5 68 cm;
total track5 204 cm). The rat was motivated to traverse the
track by food placed at food stands at the middle of each arm.
The animal went around the track 20 times, and the rat’s actual
position was continuously determined by a video tracking
system.

In the initial step of position reconstruction, the properties of
individual place cells were characterized by correlating cell
firing with actual position during the 1st 10 passages of the

track. Then, using the 2nd 10 passages, the rat’s current posi-
tion was reconstructed from the spikes that occurred in a time
window (Dt), using the previously established properties of
individual place cells and either of two reconstruction algo-
rithms described by Zhang at al. (1998). These algorithms are
termed the “1-step Bayesian method” and the “template match-
ing” method (also termed the “direct basis method”). The
template matching method is relatively straightforward: during
the 1st 10 passages, one establishes for each position (x) on the
track a reference template that relates firing rate to cell number
(cell 1 f1(x) spikes/s;cell 2 f2(x) spikes/s, etc.). For eachDt
during the 2nd 10 passages, one finds the reference template
that best matches the profile generated by the spikes that occur
in that period (Eq. 2). The Bayesian method is more complex
and depends primarily on two functions (Eq. 3). The first is the
probability that the observed profile of spikes could arise from
the reference template for a given position. The second is the
probability of being at a given position,P(x), based on past
history (this is highest at the food stands where the animal
often lingers). From these two sources of information and the
assumption of Poisson firing, the most likely current position
can be computed. Comparing these methods, both Zhang et al.
(1998) and Brown et al. (1998) found the Bayesian method to
be the more accurate.

In our first series of reconstructions, only rate information
was used. The mean reconstructed error was in the range of
14–16 cm (Table 1) with both template and Bayesian methods.
The individual reconstructions using the Bayesian method are
shown in Fig. 1A. In this figure, the reconstructed position is
plotted as a function of the measured position. If the recon-

TABLE 1. Effect of using phase information of mean
reconstruction error*

All
Spikes .9 Spikes/t

.9 Spikes/t,
No Food-
Stand Data

Template
No phase information, cm 12.6 7.8 7.6
Seven phase bins, cm 12.2 6.4 5.3
%Improvement† 3 22 43

Bayesian
No phase information, cm 15.4‡ 6.0‡ 4.3‡
Six phase bins, cm 14.4 4.8 3.0
%Improvement† 7 25 43

Number of time windows 3,332 848 498

On average, 4.26 2.0 of the 38 cells being recorded contributed to the firing
during the 150-ms time window. Collectively all cells that fired during a time
window produced an average total of 9.86 4.1 spikes. * Mean absolute error
(seeMETHODS). † (Decrease in reconstruction error)(error with phase informa-
tion) 3 100%. ‡ Phase was used after random phase shuffling.

FIG. 1. Reconstructed position (estimated by the Bayesian
method) is plotted vs. measured position. These reconstructions
do not take phase information into account. Each dot represents
a reconstruction.A: reconstruction for a 150-ms time window.
Note that there are a significant number of large errors that lead
to erratic jumps in the reconstructed position. These errors
tended to cluster around the reconstructed positions at 39, 102,
and 170 cm; the locations of the food stands.B: reconstructions
for time windows in which there was.4 total spikes collected
from the 38 place cells within a time window. Note that the
number of large errors is reduced.C: reconstructions when
there were.4 spikes per time window and when the animal
was not at a food stand.
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structions were perfect, all the points would fall along a diag-
onal line with a width of several centimeters reflecting the
measurement error of the rat’s actual position (seeRecording’s
in METHODS). It can be seen that most points fall along the
diagonal, but that there are also many points that fall far from
the diagonal. These large errors (defined as errors.10 cm) are
termed “erratic jumps.” Figure 1A shows that there is a sys-
tematic source of these large errors because they tend to fall
along vertical and horizontal lines.

It was clearly of importance to identify the sources of these
systematic errors. It can be seen that a large number of them
fall along horizontal lines at the reconstructed positions of
;34, 102, and 170 cm. These are the positions of the food
stands. Such errors are expected if the time window that serves
as the basis of the computation contains little information (few
or zero spikes) because when this occurs, the Bayesian method
picks a reconstructed position based on the peaks in the posi-
tion probability distribution,P(x) (seeEq. 3). The peaks ofP(x)
are where the animal spends the most time, which turns out to
be at the food stands.

To determine whether most erratic jumps indeed arise when
the number of spikes inDt is low, reconstructions were made
only when the total number of spikes was.4. This procedure
greatly reduced the number of erratic jumps (Fig. 1B), espe-
cially those in which thepredictedposition is a food stand
(these formed the horizontal bands in Fig. 1A). Figure 2 shows

how the number of erratic jumps and the mean reconstruction
error falls as the threshold for the minimum number of spikes
per time window is raised (if only time windows with.4
spikes were considered, this excluded 11% of the spikes and
33% of the time windows; if the threshold was.9, this
excluded 45% of the spikes and 70% of the time windows). It
is important to recall that, although many place cells (38) were
monitored, these were still only a very small subset of the total
(;105). Given this limited sampling, it is to be expected that
there will be time windows when little of the information
present is collected. We conclude from this analysis that when
evaluating the details of position coding, time windows having
a small number of spikes produce a large systemic error that
could dominate the mean reconstruction error.

The presence of systematic errors is serious because it could
obscure the effect of factors, such as phase, that might potentially
affect the quality of reconstruction. Zhang et al. (1998) argued that
phase information was unlikely to be of use because consideration
of phase requiresDt corresponding to a theta period (;150 ms),
but when they reducedDt to such values, reconstruction accuracy
deteriorated. This result is replicated in Fig. 3 (all spikes; both
Bayesian and Template matching methods). However, as noted
above, this conclusion may be affected by the large systematic
reconstruction errors that occur when little information is avail-
able in a time window. To test this possibility, we repeated the

FIG. 3. Good reconstructions of position can be made even using short time
windows if only time windows with.4 spikes are considered.z z z, reconstruc-
tion error for the Bayesian and template matching method using all time
windows. —, reconstruction error with a threshold.4 spikes per time window
for both reconstruction methods.

FIG. 2. If an estimate is made only if a minimum number of spikes occur
during a time window, reconstruction errors are reduced.A: effect on the
percentage of analyzed windows that have erratic jumps. An erratic jump is
defined as occurring when the prediction error is.10 cm.B: effect on mean
absolute error in analyzed windows.
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analysis after excluding all periods with,4 spikes. When this was
done, it was found that reconstruction was as good for short time
windows (;100 ms) as for long ones (Fig. 3). This has important
implications because it now becomes reasonable to use the theta
period (150 ms) as the time window and to study the effect of
spike phase within that window.

Before proceeding with studying the effect of phase on
reconstruction accuracy, we first tested whether we could ob-
serve the dependence of position on phase that was previously
reported (Skaggs et al. 1996). Figure 4A shows the spatial
distribution of firing for different phases of a representative
place cell. There is an ordered progression of the spatial profile
as a function of phase, with one exception (the phase with
lowest firing rate). Because these results are similar to what has
been previously reported, we proceeded to study how recon-
struction was affected by taking phase into consideration.

Our general strategy for studying the effect of phase and rate
information on reconstruction accuracy was to subdivide each
theta cycle (seeMETHODS) into a discrete number of phase bins.
In separate analyses, the number of bins was varied from 1 to
9. If there was only one phase bin, then there was no phase
information and the reconstruction depended only on rate in-
formation. Alternatively, phase information was analyzed for a
given number of bins and compared with the reconstruction for
the same number of bins when spikes were shuffled between
bins (seeBAYESIAN METHOD in METHODS). If phase information
was shuffled, the reconstruction depended only on rate infor-
mation.

Figure 4,B andC, shows how the reconstruction accuracy
improved as we increased the number of phase bins into which
a theta cycle was divided, for both the Template and Bayesian
methods. For the Template method, the reconstruction accu-
racy improved progressively as the number of phase bins was
increased to seven (Fig. 4B): the absolute error was reduced by
1.4 cm (22%) by using phase. Figure 4C shows that when the
Bayesian method was used, the error was reduced by 1.2 cm
(25%) when six phase bins were used. When the number of
phase bins was nine, the improvement was no longer signifi-
cant, suggesting that there is an optimal number of phase bins
between five and nine. An example showing the benefit of
using phase information on individual reconstructions in a
small (15 cm) region of the track between food stands is shown
in Fig. 4D. Based on the results of Fig. 4, we conclude that
phase information improves the reconstruction of position by
20–25% (Table 1).

The percentage reduction in reconstruction error is a mea-
sure of the importance of phase information relative to rate
information alone. However, this percentage will be reduced if
there are large systematic sources of error that affect both types
of reconstructions. It was therefore desirable to eliminate as

many sources of systematic error as possible. The reconstruc-
tion shown in Fig. 1B is only for time windows where there are
substantial number of spikes (.4), a condition that reduced the
erratic jumps (compare to Fig. 1A). There are nevertheless
some remaining large systematic errors that tend to fall along
vertical lines. We found that raising the number of spikes
required did not greatly reduce these errors. It can be seen that
these errors occurred primarily when the animal was at food
stands. It is known that when an animal is eating, large-
amplitude irregular activity (LIA) occurs that can be difficult to
distinguish from theta (Vanderwolf 1969). Given this possibil-
ity, it was of interest to examine the effect of phase information
when these large errors at food stands were not a factor. We
therefore redid the analysis of phase information considering
only the positionsbetweenfood stands (Fig. 1C). Table 1
shows that under these conditions, taking phase information
into account produced a 43% improvement in reconstruction
accuracy compared with what could be achieved using rate
information alone.

An additional factor that could influence the percent im-
provement produced by phase information is the error in the
measurement of the actual animal’s position. The animal’s
position was measured by monitoring the position of LEDs
mounted above the rat’s head. It has been estimated that
changes in head angle and other factors could lead to a “track-
ing” error of as much as 5 cm (Skaggs et al. 1996; Wilson and
McNaughton 1993). Unfortunately, a quantitative determina-
tion of this error is not available. We have therefore made
calculations for a range of values of the tracking error. It can be
seen in Fig. 5 that if there is no correction for tracking error,
phase information produces a 43% improvement in reconstruc-

FIG. 5. Percent improvement in position reconstruction produced by taking
phase into consideration depends on the SD of the tracking error. The Bayesian
method is used here. The tracking error has been estimated to be as large as 5
cm. If the error were actually this large, the % improvement in reconstruction
error would be unreasonably high, suggesting that the mean tracking error may
be smaller.

FIG. 4. When phase information is used, reconstruction accuracy is improved.A: illustrative example of how the firing of a cell
at a given phase depends on position.Inset: the phase windows relative to the peaks of field theta. Note that the large peaks are
in order (as indicated by the number at their peak). The phase with lowest firing rates is out of sequence.B: the reconstruction is
improved by increasing the number of phase bins when the template matching method is used. Significant improvement (P 5 0.05)
in reconstruction compared with the case where phase information was not used is indicated by asterisks.C: improvement also
occurs when the Bayesian method is used. Significant improvement (P 5 0.05) compared with the case where the phase bins were
shuffled is indicated by asterisks.D: illustration of individual reconstructions and their errors, with and without the use of phase
information. Thin black line is the measured position as a function of time during a 1.2-s period. Vertical solid and dashed lines
connect the reconstructed position to the measured position and illustrate the magnitude of the errors, with and without phase
information. Note that some of the reconstructed positions appear to be absolutely exact, but that this exactness results from the
fact that position was discretized by 1.36 cm. For all reconstructions in this figure, only time windows in which there were.9
spikes in a time window were considered.

2607PHASE-CODED INFORMATION



tion error. On the other hand, if the tracking error was actually
5 cm, virtually the whole reconstruction error is accounted for
by the tracking error and the percent improvement in recon-
struction produced by phase becomes.400%. We think it is
unlikely that the tracking error is actually as large as 5 cm and
taking an intermediate value of the tracking error (3 cm) seems
more plausible. In this case the actual reconstruction error is
1.8 cm and the percent improvement produced by taking phase
into consideration is;100%.

These results raise the possibility that the estimate of posi-
tion based on brain recordings is more accurate than that based
on actual measurement. This is not unreasonable because the
reconstruction algorithms use functions derived frommultiple
measurements of position, which can lead to an averaging out
of measurement error. More generally, these results indicate
that reconstructions have become so accurate, that the tracking
errors are problematic. It would therefore be very desirable to
reduce these if possible in future experiments. On the basis of
the available information, we conclude that phase produces a
minimum improvement in reconstruction error of 43% and that
the improvement is probably much larger (Fig. 5).

D I S C U S S I O N

The phase precession of individual hippocampal place cells
(O’Keefe and Recce 1993; Skaggs et al. 1996) is a striking
phenomenon, and the fact that it occurs suggests that the
hippocampus uses a neural code that depends on phase-coded
information in addition to rate-coded information. We have
more rigorously tested this possibility using the ensemble
activity of 38 place cells to reconstruct the rat’s position as it
moves around a triangular track. This form of analysis makes
it possible to quantitatively estimate the effect of taking phase
information into account. Our results clearly show that when
phase-coded information is used, the accuracy of position
reconstruction is greatly improved. This demonstrates that the
phase-coded information is quantitatively significant and that
the neural code in the hippocampus uses a combination of a
rate code and a theta-phase code.

To reveal the utility of phase-coded information, we first had
to remove systematic sources of error not related to positional
coding. These sources of error (Fig. 1) occurred during periods
when there were an insufficient number of spikes available to
make a good estimate or when the animal was at a food stand.
When these periods of systematic error were eliminated, the
remaining data were used for reconstruction, with or without
phase information. Because this comparison was made on the
samedata, there is no bias toward any particular result. By
making this comparison, we found that phase-coded informa-
tion is of great utility in reconstructing position (Figs. 4 and 5;
Table 1). We estimate that an animal’s position can be pre-
dicted with an error of,3 cm, much smaller than the actual
size of the rat, and that the improvement produced by taking
phase information into account is.43% (Table 1; Fig. 5).
Importantly, predictions of this accuracy can be made on the
basis of a relatively small number of spikes (10–20) obtained
from a relatively small number of cells (;5) that fire during the
brief time window of single theta cycles (150 ms; Table 1).

The observation that some reconstructions lead to large
erratic jumps in positions has been previously noted by both
Zhang et al. (1998) and Brown et al. (1998). As a mean of

dealing with these errors, they implemented a continuity con-
straint in the Bayesian reconstruction algorithms. The continu-
ity constraint ensures that a reconstructed position is close to
the previous reconstructed position (Zhang et al. 1998: the
Bayesian 2-step method). In this way erratic jumps were pre-
vented. This constraint requires that the previous reconstructed
position be stored temporarily and used to interpret the mean-
ing of current spiking. In contrast, we find that very good
estimates of position can be made using current spike activity
alone, provided that time windows with zero or few spikes are
ignored.

Number of phase bins

Figure 4,B andC, indicates that reconstruction accuracy is
improved by increasing the number of phase bins within a theta
cycle, at least up to six bins. There is some hint that there might
be an optimum at about six to seven, but the data are not
sufficiently reliable to be certain about this. We have examined
the statistical significance of this dependency. Using a Wil-
coxon rank test on the template-method results (Fig. 4B), we
find that seven phase bins is better than one, two, or three (P ,
0.03) for data excluding food stands. For the Bayesian method
(Fig. 4C), we find that six phase bins is better than one, two, or
three and also better than nine (P , 0.03). Taken together,
these results indicate that the number of meaningful phase
divisions is more than three. This conclusion is consistent with
the previous suggestion that place cells have approximately
seven discrete phases of firing within a theta cycle (Jensen and
Lisman 1996, 1997; Lisman and Idiart 1995). This proposal
was based on the observation from in vivo recordings during
movement showing that;7–10 high-frequency (40–100 Hz)
gamma cycles are nested within each theta cycle (Bragin et al.
1995; Csicsvari et al. 1999; Soltesz and Deschenes 1993).
During each gamma cycle, the network of hippocampal inter-
neurons produces a short-lasting hyperpolarizing input to the
pyramidal neurons that transiently suppresses spike activity.
This inhibitory activity would be expected to divide a theta
cycle into a series of discrete phase bins.

Function of phase coding

Although our results show that the ensemble of place cells
contains phase-encoded information, little is known about how
this information is used. One idea is that the brain could use an
algorithm not unlike the Bayesian algorithm to combine infor-
mation from different phase bins and to thereby produce a
prediction of current position (Zhang et al. 1998). Alterna-
tively, information inindividualphase bins may be detected by
downstream neurons that are phase-sensitive detectors (Jensen
1999). Such detectors would not only have to receive the
phase-specific hippocampal activity, but a theta reference sig-
nal by which to decode it. It is known that theta activity is
found in brain regions that receive input from the hippocam-
pus, including the entorhinal and cingulate cortexes (reviewed
in Bland and Oddie 1998). It is implicit in some models of the
phase precession (Burgess et al. 1994; Jensen and Lisman
1996; Lisman 1999; Skaggs et al. 1996; Tsodyks et al. 1996)
that cells representing sequential upcoming positions fire se-
quentially within a theta cycle, i.e., with increasing phase
delay. Thus detectors with sensitivity to specific phases could
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determine whether a given position is nearby (if firing occurs
with early phase) or remote (if firing occurs with late phase).

Conclusion

Our results provide the strongest evidence to date that phase-
coded information is expressed by ensembles of hippocampal
neurons and that cells express this information in a form that
allows substantial improvements in position estimation com-
pared with what can be achieved using rate information alone.
Our findings relate only to the rat hippocampus, but theta
oscillations have been found in other brain areas in rodents and
in humans (Gevins et al. 1997; Kahana et al. 1999; Klimesch
et al. 1997; Macrides et al. 1982; Nicolelis et al. 1995; Tesche
1997). It will be important to determine whether phase-coded
information is also present in these areas.
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