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Abstract

This paper proposes a model for the
short-termm memory (STM) of unique lists of
known items, as, for instance, a phone
number. We show that the ability to
accurately store such lists in STM depends
strongly on interaction with the preexisting
long-term memory (LTM) for individual
items (e.g., digits). We have examined this
interaction in computer simulations of a
network based on physiologically realistic
membrane conductances, synaptic plasticity
processes, and brain oscillations. In the
model, seven STMs can be kept active, each
in a different gamma-frequency subcycle of
a theta-frequency oscillation. Each STM is
maintained and timed by an
activity-dependent ramping process. LTM is
stored by the strength of synapses in
recurrent collaterals. The presence of
preexisting LTM for an item greatly
enhances the ability of the network to store
an item in STM. Without LTM, the precise
timing required to keep cells firing within a
given gamma subcycle cannot be
maintained and STM is gradually degraded.
With LTM, timing errors can be corrected
and the accuracy and order of items is
maintained. This attractor property of STM
storage is remarkable because it occurs
even though there is no LTM that identifies
which items are on the list or their order.
Multiple known items can be stored in STM,
even though their representation is
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overlapping. However, multiple, identical
memories cannot be stored in STM,
consistent with the psychophysical
demonstration of repetition blindness. Our
results indicate that meaningful
computation (memory completion) can
occur in the millisecond range during an
individual gamma cycle.

Introduction

The previous paper in this series dealt with
the short-term memory (STM) of lists of novel
items. The current paper deals with the STM of
novel lists of known items, as, for instance, a phone
number. Each of these items (digits) already has a
representation in long-term memory (LTM). Thus,
when an item is presented, there is the potential
for interaction with the preexisting memory of
that item in LTM. It is this interaction that is ex-
amined here in networks having dual gamma/theta
oscillations. These oscillations serve to multiplex
the buffer so that up to seven memories can be
simultaneously active, each in a separate gamma
subcycle.

As we showed in the previous paper in this
series (Jensen et al., this issue), the fidelity with
which such a network stores novel items in STM is
limited because there is no basis for error correc-
tion. The maintained firing that perpetuates short-
term memory is caused by an activity dependent
process intrinsic to neurons, the after-depolariza-
tion (ADP) (Storm 1989; Andrade 1991; Caeser et
al. 1993; Libri et al. 1994). The ramp-like rise of
the ADP provides the timing function necessary to
make each memory active in the appropriate
gamma cycle. In the presence of noise, such a sys-
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tem cannot maintain an STM accurately and cells
will eventually fire in the wrong gamma cycle. Be-
cause an STM is encoded by the simultaneous fir-
ing of a subgroup of cells within a given gamma
cycle, a cell that fires in the wrong gamma cycle
would seriously degrade the memory. The ADP
mechanism is not error correcting because the
ADP is unique to each cell and information is
therefore not redundantly stored. For novel items,
there is no LTM in recurrent synapses about the
item that can be used for error correction. Timing
errors will therefore accumulate, and the STM of
novel items will become degraded. In this paper
we show that the situation is very different when
there is a preexisting LTM representation for an
item in LTM: Error correction is possible and the
STMs can be stored accurately in their proper or-
der.

The network that we analyze in this paper is
shown in Figure 1. We assume that the network
has already formed LTM for individual items (e.g.,
digits) through the process described in the pre-
vious paper (Jensen et al., this issue). This process
involves fast N-methyl-p-aspartate (NMDA) chan-
nels that form associative connections between
cells that fire in the same gamma cycle. These au-
toassociative LTMs are stored in the synaptic
weights of the recurrent collaterals.

This paper focuses on answering several key
questions about the network of Figure 1. One im-
portant question is whether a network of this kind
can accurately maintain an STM in the presence of
noise. As mentioned above, networks without LTM
maintain STM quite inaccurately when challenged
with noise. A second question is whether the net-
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Figure 1: The integrated STM—-LTM model. Pyramidal
cells in the network have the ADP mechanism to store
STM and recurrent collaterals with modifiable synapses.
In this paper LTM for items have been encoded previ-
ously into these synapses. Gamma oscillations are gen-
erated by recurrent inhibition through an interneuron.
Theta oscillation results from a 6-Hz input from an ex-
ternal source.
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work will have properties similar to standard at-
tractor networks, specifically, the ability to com-
plete memories from degraded versions. An im-
portant underlying question that has not been
addressed previously is whether meaningful neu-
ral computation can be performed within a
gamma cycle. This is the time scale for computa-
tion that is required in the framework of our
model. A third question regards coding. A key
question is whether an overlapping code can be
used or whether separate, nonoverlapping cell
groups must be used to represent each item. The
former is more efficient and would enable the net-
work to store a larger number of memories. The
simulations presented in this paper follow the
methods described in the previous paper in this
series (Jensen et al., this issue).

Results

The simulation in Figure 2B shows that mem-
ories introduced to the STM can be kept active and
stable in the presence of noise, if they already have
a representation in LTM. In the example, the si-
multaneous firing of cells 1 to 5 constitutes the
first memory and cells 6 to 10 the second memory
and so forth. The synaptic matrix to the left rep-
resents the four preexisting encoded patterns (see
legend for explanation). In the previous paper
(Jensen et al., this issue) in this series, we de-
scribed how the network can encode such a rep-
resentation. At about #=1050 msec (Fig. 2B)
memory 2 and 3 are degraded by the noise; some
of the cells constituting the memories fire in the
wrong gamma cycles. However, owing to the syn-
aptic feedback, the memories recover their cor-
rect representation at = 1400 msec. Novel mem-
ories without a representation in LTM cannot be
maintained stable in STM in the presence of noise
(Fig. 2A). The noise eventually causes the active
cells to fire in incorrect gamma cycles, thereby
degrading the STMs.

Attractor networks (Hopfield 1982; Amit
1989) can perform pattern completion, but the
time it takes for such completion is generally not
considered. Figure 3, shows that our network can
perform pattern completion within a single
gamma cycle. Prior to the simulation in Figure 3,
two memory patterns were encoded (cells 1-5;
cells 6-10). At time =150 msec, fragments
(80% ) of pattern 1 were presented to the system.
One theta cycle later, the fragment is activated by
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Figure 2: An STM can be faithfully main-
tained for items with a representation in
LTM, even in the presence of noise. {A) In
this simulation, no LTM is present. Four

memory patterns consisting of cells 1-5,
\ 6—-10, and so forth are introduced to the net-
A" | work (arrows). The noise causes the firing to
be delayed or advanced, and all synchroni-
zation is eventually lost thereby degrading
the STMs. (B) Prior to the simulation, four

memory patterns were encoded into LTM,

as shown by the synaptic matrix. When
these four patterns are introduced into STM,
their representation remains stable despite
the noise. Both in A and B we show the

connectivity matrix of the network as a way
of visualizing the information in LTM. The
cell number (1-20) is specified on both
Y i axes; the size of the square at location i,j
| denotes the synaptic strength of the connec-

tion between cell i (y-axis) and cell j (x-axis).
See Jensen et al. (this issue) for the equations

the ADP pattern and completed 2 msec later. The
way this completion occurs can be explained as
follows: The cells that were fired by sensory input
corresponding to the degraded pattern have an
ADP that will cause these cells to fire on the sec-
ond theta cycle. This firing triggers monosynaptic
recurrent excitation and disynaptic feedback inhi-
bition. Because the excitation occurs faster than
the inhibition and because these pyramidal cells
are selectively connected to the other cells that
are part of the same memory pattern, these other
cells will become active within a few milliseconds,
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Figure 3: The integrated network is capable of pattern
completion. Two memory patterns (cells 1-5, cells
6—10) were encoded in the synapses prior to the simu-
lation shown, as illustrated by the synaptic matrix.
When degraded versions of these patterns were pre-
sented to the network (arrows), the patterns were rapidly
completed.
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and parameters defining the network.

thereby completing the memory pattern correctly.
Shortly thereafter, inhibition will arrive and end all
firing in that gamma cycle. It can thus be seen how
meaningful computation occurs within a gamma
cycle.

Figure 4 demonstrates that overlapping mem-
ories can be actively maintained in the STM. Two
overlapping memories, A and B (each represented
by five cells), were encoded previously in LTM as
illustrated by the synaptic matrix. The overlap
consists of a cell (in this example cell 5, which
constitutes a 20% overlap) that participates in the
representation of both memory A and B. If mem-
ory A and B are both active in the short-term
buffer, cell 5 has to fire twice within a theta cycle.
The simulation in Figure 4 shows that recurrent
collaterals makes this possible. The first time the
cell fires is a result of the ADP and the input from
the recurrent excitation from cells 1—4. The sec-
ond time it fires is a result of the recurrent input
from cells 6-9. Figure 4B specifically illustrates
the synaptic current mediated by the AMPA con-
ductance that enables cell 5 to be activated in two
gamma cycles within the same theta cycle.

The simulations shown in Figure 5 were done
to demonstrate the overall capabilities of a hybrid
STM/LTM network. The task is to demonstrate that
multiple, overlapping memories can be stored ac-
curately in STM, even in the presence of noise, and
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Figure 4: The integrated network is capable of storing

two patterns in STM that overlap (a cell fires as part of
both memaries). (A) Two patterns were stored initially in
the network as shown by the synaptic matrix. Both pat-
terns have cell 5 in common, i.e., an overlap of ~20%.
The overlap is also seen in the matrix: all cells are con-
nected to cell 5. The recurrent collaterals enable cell 5
to take part in both patterns. (B) The recurrent synaptic
AMPA current activating cell 5.

to show that the STM memory capacity is limited,
as in our previous simulation (Lisman and Idiart
1995). Prior to the shown simulation, eight par-
tially overlapping memories were encoded in
L.TM. The memories were 20% overlapping. Dur-
ing the shown simulation, we introduced memory
items 1—7 into STM in successive theta cycles.
Some of these memories were degraded when in-
troduced. As seen, degraded patterns were com-
pleted and the seven memories remained stable
despite the noise and the overlaps. When an eighth
memory was introduced, a previously stored STM
(#7) stopped being active. This demonstrates that
the capacity of the STM buffer is limited to seven
items.

Discussion

INTERACTIONS WITH LTM ALLOWS RELIABLE
STORAGE OF MULTIPLE STMS IN THE
MULTIPLEXED BUFFER

Humans can store novel lists of about seven
known items in STM (Miller 1956) and recall the
list items in correct order. In our simulation of
STM (Jensen et al., this issue; Fig. 2A), memories
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that do not have a representation in LTM are grad-
ually degraded because noise disrupts the timing
of the ADP. This timing is necessary to keep indi-
vidual cells firing in the correct gamma cycle. A
key finding presented here is that STM can be
maintained reliably even in the presence of noise,
provided that the network already contains a rep-
resentation of each item in LTM. Because of the
interaction of LTM with STM, timing errors can be
corrected (Fig. 2B). This means that attractor prin-
ciples apply to the short-term storage of list items
in their proper order. This is remarkable, because
there is in fact no LTM attractor that specifies
which of the known items are on the list or their
order.

The attractor property of the network for or-
der occurs because errors in the timing of individ-
ual cells can be recognized on the basis of item
information stored in LTM. This can be under-
stood as follows: There are two types of excitatory
drive on neurons during STM. The first is the ADP,
an intrinsic membrane process that ramps up with
time after the cell fires. The second is the synaptic
input from the recurrent collaterals. Suppose a cell
is part of a group that represents memory 2 and
that it is supposed to fire in gamma subcycle 2. If
the ADP in this cell is too large or a positive noise
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Figure 5: Demonstration that a hybrid LTM/STM net-

work can stably store only seven memory patterns in
STM in the presence of noise. Each memory consisting
of five cells is introduced to the network on successive
theta cycles (arrows). Several cycles later, an eighth
memory is loaded causing the seventh to drop out. The
simulation also shows the ability of the networks to
maintain overlapping patterns active and to perform pat-
tern completion. Patterns 1 and 2 overlap with respect to
cell 5. Patterns 2, 3, and 4 are presented degraded to the
network but were completed by the recurrents. Param-
eters as in previous simulations except for o = 0.01.
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fluctuation occurs, the cell will erroneously fire in
subcycle 1. This will partially degrade memory 1,
but as we will see, this degradation is only tempo-
rary. Now, consider what happens when we come
to subcycle 2. On the basis of the ADP timing
mechanism alone, the cell would not fire in the
second subcycle, and this would partially degrade
memory 2. However, because the cell receives
synaptic inputs from the other cells that represent
memory 2 it will fire in the second subcycle. This
will not only prevent the degradation of memory 2
but will also reset the ADP timing ramp in that cell.
As a result, when we come to the next theta cycle,
the cell will tend to fire correctly in the second
gamma subcycle. Thus, the fact that it fired in an
incorrect gamma cycle in the first theta cycle does
not lead to a permanent error in the phase of firing
in subsequent theta cycles. In this way, the autoas-
sociative LTM restores order information, even
though no attractor information is available about
order.

The idea of temporal segmentation of memo-
ries was put forward by Wang et al. (1990). Horn
and Usher (1992) and Horn and Opher (1996)
have suggested an oscillatory recurrent network
separating memories in subsequent cycles. Our
model is based on these principles, but we suggest
a physiological realistic implementation of such a
system.

We should emphasize that the network of Fig-
ure 1 can provide a short-term storage of lists but
cannot store lists in LTM. Thus, a telephone num-
ber could be stored temporarily but not perma-
nently. What the circuit can do through its STM
properties (sample-and-hold) is to provide the re-
petitive input required to produce synaptic mod-
ification in some other network. The next paper in
this series (Jensen and Lisman, this issue) shows
how such input leads to LTM for lists in networks
with slow NMDA channels.

OVERLAPPING CODE AND SPARSENESS

Our analysis of the hybrid STM/LTM network
indicates that an overlapping code can be used to
store memories in L'TM, as in classic attractor net-
work models. The existence of an overlapping
code means that a given cell can fire in multiple
theta cycles, as part of the representation of differ-
ent memories. We do, however, have to require
that the overlap is not too big. We have shown that
the memory network can handle at least 20%
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overlap among the represented memories. It has
been pointed out by Rolls and Treves (1990) that
memories in the brain are probably represented
by a sparse neural code. In the case of the hippo-
campal memory storage, Treves and Rolls (1994)
have estimated the sparseness to be a=0.02 (a is
defined in Jensen et al., this issue). Sparse coding
has also been observed in recordings in the pri-
mate temporal cortex by Miyashita (1988).

PROPERTIES OF OVERLAPPING CODE;
IMPLICATIONS FOR DETECTION OF THETA AND
GAMMA IN SPIKE TRAINS

Consideration of cases where firing occurs in
multiple gamma cycles makes it clear that it could
be hard to detect theta and gamma frequencies by
analyzing spike trains. Cells can fire in two or more
gamma cycles, and there appear to be no restric-
tions about the gamma cycles in which firing oc-
curs; for example, they could be neighboring sub-
cycles or distant subcycles. Moreover, the gamma
cycles in which firing occurs could change from
theta cycle to theta cycle, For these reasons, firing
occurs neither at gamma (20—-60 Hz) or theta
(5—8 Hz) frequency, even though these frequen-
cies provide the organizational principles for con-
trolling the timing of spike firing. Both frequencies
are, of course, readily apparent in any signal that
reflects groups of cells, such as field potentials or
interneuron firing,

POSSIBLE EXPLANATION OF REPETITION
BLINDNESS

Although partially overlapping memories can
be stored in STM, two identical memories cannot
be in the STM buffer at the same time. When cells
fire together to represent a memory, the ADP will
be reset and will lead to reexcitation of the mem-
ory on the next theta cycle. There is no basis for
these cells firing again during the same theta cycle
because the ADP takes time to build up (smaller
parts of a memory overlapping with other memo-
ries can, however, be repeated within a theta cycle
owing to recurrent excitation; Fig. 4). This implies
that lists in which the same digit occurred twice
would be impossible to hold in STM. At first this
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seems to contradict our experience, but there is,
in fact, psychophysical evidence to indicate that
repetition is problematic. “Repetition blindness”
has been well documented for visually presented
stimuli that are presented rapidly and with precise
control of interarrival times (MacKay 1969; Kan-
wisher 1987). For instance, if a sentence is pre-
sented in which a word appears twice, subjects
only mention the repeated word once when asked
to reproduce the sentence. When information is
presented verbally, the same phenomenon occurs
(repetition deafness), but it is less pronounced
and requires a faster repetition rate (Miller and
MacKay 1994). Obviously, in normal speech, rep-
etition of a number can usually be detected, pos-
sibly because the first and second presentation of
the number are spoken differently and so can
somehow be encoded as “different” items.

BRAIN MECHANISMS OF STM

In this final section we discuss the literature as
it relates to some of the biological underpinnings
of our STM model. One important issue is the lo-
calization of the STM network. Current work sug-
gests that STM or “working” memory is localized
to prefrontal cortex (Goldman-Rakic 1995). One
observation that points in this direction is that per-
sistent firing, the halimark of working memory,
occurs in this region during the memory period in
a delayed match-to-sample task. Abolishing this
persistent firing with local cooling abolishes the
behavior that depends on STM, a fact that distin-
guishes the frontal cortex from other regions that
also show activity during the delay period. This
delay is on the order of seconds.

Our model makes the assumption that the
same network stores multiple STMs and does this
through a multiplexing scheme based on theta and
gamma oscillations. The presence of gamma oscil-
lations in frontal cortex has been demonstrated by
several methods (Llinas and Ribary 1993; Sanes
and Donoghue 1993), but their link to memory
storage remains unclear. Subthreshold oscillations
in slice preparations of prefrontal cortex have
been found by Llinas et al. (1991) and Gutfreund
et al. (1995). Oscillations related to STM have
been identified by Nakamura et al. (1992). They
have found a 3.0- to 4.0-Hz oscillation in the ac-
tivity of single neurons in the temporal lobe of
monkeys performing a visual STM task.

Critical to maintaining order information in

our model is the ramp-like rise of the ADP. Al-
though there has been substantial progress in un-
derstanding the ionic basis of the ADP, the mech-
anism of the slow rise remains unclear. We favor
the view that the afterpotential is actually the sum-
mation of a step-like ADP and a briefer after-hy-
perpolarization (AHP). According to this view, the
slow rise of the ADP is actually attributable to the
decline of the AHP. Because the AHP is triggered
by a rise in intracellular Ca*" that occurs after
action potentials, it is straightforward to under-
stand why timing ramps are reset by each action
potential, as we have assumed [several types of
AHP have been identified; the type required to
account for the ramp-like rise of the ADP must
have an >100-msec decay and would therefore be
classified as a medium AHP according to Storm
(1989)].

Although our work points to a mechanism by
which multiple STMs could be stored by a single
network, it is possible to take the contrary view
that each STM is stored in its own network. Per-
haps frontal cortex is actually a dense collection of
independent networks, each devoted to a different
memory. The observation that cells that remem-
ber the direction of a particular eye movement are
localized to a small subregion of frontal cortex
would support this view (Goldman-Rakic 1995).
However, it is hard to imagine that such localiza-
tion is general, because it would seem to severely
limit the number of possible memories. Further-
more, there would still have to be interactions
between the representations to store order infor-
mation in STM. It thus seems highly desirable that
the brain should be able to store multiple STMs in
the same network. We have shown here that
known brain mechanisms can accomplish this
function.
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