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Abstract

Hippocampal recordings show that
different place cells fire at different phases
during the same theta oscillation, probably
at the peak of different gamma cycles. As
the rat moves through the place field of a
given cell, the phase of firing during the
theta cycle advances progressively. In this
paper we have sought to determine whether
a recently developed model of hippocampal
and cortical memory function can explain
this phase advance and other properties of
place cells. According to this physiologically
based model, the CA3 network stores
information about the sequence of places
traversed during learning. Here we show
that the phase advance can be understood if
it is assumed that the hippocampus is in a
recall mode that operates when the animal
is already familiar with a path. In this mode,
sensory information about the current
position triggers recall of the upcoming 5-6
places (memories) in the path at a rate of
one memory per gamma cycle. The model
predicts that the average phase advance will
be one gamma cycle per theta cycle, a value
in reasonable agreement with the data. The
model also correctly accounts for (1) the
fact that the firing of a place cell occurs
during ~7 theta cycles (on average) as the
animal crosses the place field; (2) the
observation that the phase of place cell
firing depends more systematically on
position than on time; and (3) the fact that
traversal of an already familiar path
produces further modifications (shifts the
firing of a cell to an earlier position in the
path). This later finding suggests that recall

!Corresponding author.

of previously stored information
strengthens the memory of that
information. In the model, this occurs
because of a novel role of
N-methyl-p-aspartate channels in recall. The
general success of the model provides
support for the idea that the hippocampus
stores sequence information and makes
predictions of expected positions during
gamma-frequency recall.

Introduction

In previous papers in this series, we have ex-
amined how long-term memory can form in net-
works where memories are multiplexed by theta/
gamma oscillations (Jensen and Lisman 1996ab,
this issue; Jensen et al., this issue). A key conclu-
sion is that the time constant of deactivation of the
N-methyl-p-aspartate (NMDA ) channels that gov-
ern synaptic modification in recurrent collaterals
is an important determinant of the function of the
network. If the time constant is shorter than the
period of a gamma cycle, the network will perform
an autoassociative function, linking different ele-
ments of the same memory. If the time constant is
longer than the period of a gamma cycle, the net-
work will perform a heteroassociative function,
linking cells that represent different, temporally
separated memories. We showed that these het-
eroassociative linkages are well suited for the stor-
age and recall of memory sequences (Jensen and
Lisman 1996b, this issue). The NMDA channels in
the recurrent collaterals of the hippocampal CA3
region have a deactivation time constant of 100—
150 msec (Debanne et al. 1995), a time consider-
ably longer than that of a gamma cycle. The impli-
cation is that the CA3 network is not an autoasso-
ciative network, as previously thought, but rather
a heteroassociative network. This is an idea that
others have recently proposed (Buzsaki 1989;
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Manai and Levy 1993; Granger et al. 1994; Prep-
scius and Levy 1994; Blum and Abbott 1996) and
there is some direct experimental support (Skaggs
and McNaughton 1996).

In this paper we have sought to determine
whether the specific model for storage and recall
of sequence information developed in the previ-
ous papers can account for some of the key results
regarding hippocampal place cells. These cells fire
when the animal enters a subregion of an environ-
ment ((’Keefe and Dostrovsky 1971; Olton et al.
1978; McNaughton ct al. 1983; Muller et al. 1987).
A particularly dramatic finding is the importance
of the phase of cell firing during the theta cycle:
The phase systematically advances as the animal
moves through its place field (O’Keefe and Recce
1993). A second result relates to the fact that the
animal may not be moving at constant velocity.
The results show that when velocity is not con-
stant, position is a better predictor of phase than
time (O'Keefe and Recce 1993). A third result is
that the firing of place cells has been found to
predict future locations (Muller and Kubie 1989).
Finally, M.R. Metha, B.L. McNaughton, C.A. Barncs,
NS. Suster, KL. Weaver, and J.L. Gerrard (pers.
comm) have found that the traversal of a well-
learned path leads to a progressive increase in the
size of place fields and an offset in their position.

Results and Discussion

The model we have used to explain place cell
data is described in the previous paper (Jensen
and Lisman 1996b, this issuc). In the current con-
text we assume that the different memories being
processed by the rat are the memories of specific
places on the linear track. We assume that the
system has both learning and recall modes. In
learning mode, a cortical network acts as a short-
term buffer. It absorbs incoming information in
real time, stores sequential memories (places) in
adjacent gamma cycles, and produces repetition of
the memories once every theta cycle in a time-
compressed way. Signals from his “sample-and-
hold” buffer provide input into the hippocampus
and drive synaptic modification in the recurrent
collaterals of CA3. The synaptic modification in
CA3 is governed by slow NMDA channels (deac-
tivation time constant ~150 msec) and the infor-
mation encoded is the sequence of places along
the track. In recall mode, the sensory information
about the current place provides input to CA3
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cells at the beginning of a theta cycle. This triggers
CA3 through collateral connections to produce
readout of the subsequent parts of the stored se-
quence at a rate of one memory (place) per
gamma cycle. A novel aspect of the recall mecha-
nisms we have proposed is that the CA3 cells en-
coding one memory excite the cells encoding the
next memory by NMDA-mediated excitatory
postsynaptic potentials (EPSPs). We found that
this mechanism provided the delay needed for the
sequence to be recalled at one memory per
gamma cycle, In recall mode, the hippocampus
serves as a predictor of the path to come.

The hippocampal recordings of O’Keefe and
Recce (1993) and of Skaggs et al. (1996) were
obtained as the rat moved along a one-dimensional
track. Traversal of this track was repeated many
times in the process of learning and data collec-
tion. Because the rat was familiar with the track,
we assume that the rat is in recall mode. The phase
advance of a place cell can be accounted for in
terms of the diagram in Figure 1. Consider the path
along the linear track to be a sequence of discrete
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Figure 1: Diagrammatic illustration of how phase ad-
vance occurs as an animal moves through the place field
on a well-known path. We assume that the animal has
already learned the sequence of places on the path des-
ignated by the numerals 1-13. As the animal moves
through the place field, the sensory inputs regarding the
current position are input to the CA3 region of the hip-
pocampus at the beginning of each theta cycle. This
input stimulates recurrent collaterals to produce firing of
cells that encode subsequent positions in this sequence
(path). It can be seen that the cell encoding position 7
fires earlier on each successive theta cycle.
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memories corresponding to positions 1-7 learned
during the many previous traversals of the track.
We assume that when the rat is running at its typ-
ical velocity during learning, it stores information
about its current position in each theta cycle. Dur-
ing recall, when the animal enters position 1, the
sensory information about current position enters
CA3 early during a theta cycle. This information
serves as a cue to trigger the recall of the subse-
quent 6 memories (positions) in the stored se-
quence (positions 2—7), each in a different gamma
subcycle of a theta period. As the animal moves
along the linear track, the current position
changes. Thus when the next theta cycle occurs,
the sensory input to the hippocampus will be po-
sition 2 in the sequence. This input then stimulates
recall of positions 3—8 in subsequent gamma cy-
cles. This process continues during subsequent
theta cycles. As can be secen in the example in
Figure 1, the cell representing position 7 starts
firing late in the theta cycle and systematically ad-
vances in phase as the animal moves through its
place field. This provides a simple explanation of
the phase advance observed in hippocampal re-
cordings.

Figure 2 shows how the phase advance can
occur in simulations of the CA3 network. The de-
tails of the simulation are given in the Methods
section of the first paper in this series (Jensen et
al., this issuc). In these simulations we use a com-
pound cue of two positions to represent the cur-
rent position of the rat for reasons that will be
discussed later (“Timing of Inputs to CA3"). Prior
to the simulation a sequence of positions has been
stored according to the method described in
Jensen and Liman ( 1996b, this issue; Fig. 2). This is
illustrated by the asymmetric synaptic matrix in
Figure 2A. The simulations show the phase ad-
vance of place cell 7 (Fig. 2B) with respect to
location. The plot of phase as a function of time is
shown in Figure 2C.

The model predicts a phase advance of one
gamma cycle per theta cycle and it is of interest to
compare this with the observed data. This predic-
tion holds only if the rat is moving as fast during
recall as it did during learning, an assumption that
may not be true on individual trials, but is proba-
bly true on average. From the data of O’Keefe and
Recce (1993) we measured phase advances of
~20°% cm of movement. The phase advance of one
gamma cycle per theta cycle can be compared
with this measured value as follows: The duration
of one gamma cycle corresponding to 50°. The
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Figure 2: Simulation of place cell firing as the animal
moves through its place field. Two positions near the
current position of the rat are used to cue recall. (A)
Synaptic matrix of stored path; (B) firing in seven repre-
sentative cells is shown. Note that the firing in cell 7
(black dot) starts with late phase during the theta oscil-
lation (shown at bottom) and moves to earlier phase as
the animal moves forward in its place field. (C) Plot of
phase of firing of cell 7 as a function of time. The rat is
assumed to be moving at constant velocity. See Jensen
and Lisman (1996b, this issue) and Jensen et al. (this
issue) for a detailed description of the network. The pa-
rameters are the following: Vie,=—060 mV, V.=
—50mV, A,=—150 pA, 74,=50 msec, Agaga= — 150
PA, Teapa=4.0 msec, Aymoa=784 pA, Tumpa, =50
msec, Tympa,=20.0 msec, 7,,,=2.0 Msec, Tyeay=
0.5 msec, 1,,,= 1800 msec, 1,,,=36000 msec, 7,,=
900 msec, fpw,=6.0 Hz, and By,.,,=150.0 pA. Note
that we allow only synaptic modification in the simula-
tions during recall only in Fig. 5. The synaptic values (A)
ranged from O to 0.25.

distance moved in one theta cycle is ~4 cm, as
judged from the rat velocity plots of O’Keefe and
Recce (1993 ) and their measurements of theta fre-
quency of ~10 Hz. Thus, one gamma cycle per
theta cycle translates roughly into a phase advance
of 50°/4 cm ~12 °/cm. This is in reasonable agree-
ment with the measured value of 20°/cm.

A closely related comparison of theory and
model can be made. The model predicts that on
average a place cell will fire for seven theta cycles
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as the animal moves through the place field. Both
the records of O’'Keefe and Recce (1993, Figs. 2.5,
and 6) and Skaggs et al. (1996, Fig. 6A—D) show
that this number is approximately correct. In the
paper of Skaggs et al. (1996), Figure 6A-D illus-
trates the spike histogram of a place cell as a func-
tion of theta cycles binned over multiple runs. If
we count only bins that have activity >10% of the
maximum activity, we find that a place cell is ac-
tive on 10.3* 1.3 theta cycles (N=4). If we count
only bins having >20% of the maximum activity,
the value is 8.8% 1.3 (N=4). If only bursts rather
than spikes are taken into account these numbers
would probably be smaller (see Discussion).

The model makes the further prediction that
the number of cycles during which firing occurs
should be inversely related to the velocity of the
rat during recall. If the velocity of the animal is the
same during recall as during learning firing should
occur on seven theta cycles. Furthermore, the size
of the place field should be the velocity of the rat
times the duration of seven theta cycles. For a ve-
locity of 0.4 m/s and a theta frequency of 10 Hz,
the predicted place cell size will be ~30 cm. This
is in the right range. The model makes the further
prediction that the size of the place fields should
be related to the average velocity of the rat during
learning. These predictions remain to be tested.

O'Keefe and Recce (1993) were interested in
whether the phase of firing was more linear if they
plotted phase as a function of time or position.
Time and position are not proportional because
the rat does not move at constant velocity. They
found that the phase advanced more linearly with
position than with time. In Figure 3, we show the
phase as a function of time (Fig. 3A) and position
(Fig. 3B) for three different velocities. The slope of
the phase advance is independent of velocity
when plotted as a function of position, but not
when plotted as a function of time. The model thus
correctly predicts that for a rat moving at varying
velocity, the data points in a phase versus time plot
will be much more scattered than in a phase ver-
sus position plot.

When the animal goes through a familiar en-
vironment, a CA3 cell will first fire with late phase
because it represents a prediction of an expected
position. Under these conditions it is being ex-
cited by other CA3 cells. As time passes and the
animal moves forward, it will reach a place that
corresponds to its actual position. Under these
conditions it is being excited by direct sensory
input. Given that the expectation of a future posi-
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Figure 3: Effect of velocity on the change in phase as

the animal moves through its place field. (A) When
phase is plotted vs. time, the slope of the curve is af-
fected by velocity (O) v=100cm/sec, (A) v=50 cm/
sec, ([J) v=33 cm/sec; (B) when plotted vs. position,
the slope of the curve is unaffected by velocity (O)
v=100 cm/sec, (/) v=50 cm/sec, ((0) v=33 cm/sec.

tion is inherently more unreliable than a direct
response to sensory cues about current position,
cells that fire late in the theta cycle should be
poorer predictors of position than cells that fire
early in the theta cycle. Precisely this kind of re-
lationship has been reported by Skaggs et al
(19906).

LEARNING AND RECALL MODE

We can give only a crude account of what
determines whether the animal will be in learning
or recall mode. It seems likely that this would de-
pend strongly on the familiarity of the sensory in-
put (see also Hasselmo and Bower 1993). In an
unfamiliar environment, the animal would go into
learning mode. In a familiar environment, the an-
imal would be in recall mode and make predic-
tions about future positions.

The model predicts that the position of a place
field should be strongly affected by which mode
the animal is in. In learning mode (Jensen and
Lisman 1996a,b, this issue; Jensen et al., this issue),
the hippocampus together with the cortical areas
are operating in a sample-and-hold, short-term
memory mode. Multiple sequential aspects of the
sensory world are captured by a cortical network
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in real time; each memory is stored in an appro-
priate gamma slot, and repeated in compressed
time at gamma frequency, once every theta cycle,
This repetition occurs after the sensory input and
provides the repetition necessary to drive synaptic
modification in the recurrent synapses. This learn-
ing mode of operation is illustrated in Figure 4
(bottom; note that only four of seven gamma cy-
cles are shown). In recall mode (Fig. 4, top), the
hippocampus is not doing sample-and-hold, but
rather is using current information to predict the
future based on previously stored information. Fig-
ure 4 emphasizes the enormous difference in po-
sition of the place field, depending on what mode
the animal is in. This shift should be equal to the
size of a place field, that is, ~20-30 cm. Whether
such large shifts occur remains to be determined.
One way of detecting such shifts might be by plac-
ing a novel item on a well-known track. If the
animal shifted to learning mode, there should be a
large shift in the place field. A second approach
would be to compare the position of a place field
on a novel track with the position after the same
track had become highly familiar.

Our ideas about how learning mode works are
less well defined than for recall mode. The net-
work might work in a continuous way in sampling
the cnvironment. In computer terms, the buffer
could work as a top-down stack, with each new
memory forcing out the oldest. In our investiga-
tions, we have not succeeded in finding 2 mecha-
nistically plausible way of implementing such a
stack. Alternatively, learning mode might involve a
discontinuous process in which the sample-and-

hold buffer operated until it became filled with
secyven memories. Input of new information might
then cease until the system is cleared and reset. If
the buffer works in this way no phase advance is
expected during learning mode (Fig. 4 ).
Observations about rats as they learn about a
novel environment suggest that the learning pro-
cess is discontinuous. Eilam and Golani (1989)
have found that when a rat is exploring a novel
environment it will establish one or two home
bases to which it always returns after an explor-
ative excursion. Furthermore, when the rat is ex-
ploring, it alternates between progression and
stopping (Golani et al. 1993; Tchernichovski and
Golani 1995). The number of stops made within
one excursion are uniformly distributed, with an
upper bound of 10£2. We hypothesize that each
time a rat makes a stop within an excursion, a
representation of that place is loaded into the sam-
ple-and-hold buffer. Perhaps this upper bound of
the number of stops reflects the small number of
memorics that can be held in the sample-and-hold
buffer (Lisman and Idiart 1995; Jensen and Lisman
1996ab, this issue; Jensen et al., this issue).

ROLE OF NMDA CHANNELS IN RECALL: RECALL
PRODUCES LEARNING

A dramatic prediction of the postulated role of
NMDA channels in recall is that the act of recalling
memories should strengthen them. This strength-
ening will be selective for the synapses that were
originally strengthened in learning mode. Our sim-

Figure 4: Diagrammalic illustration of
the spatial dependence of place cell firing
in learning mode and recall mode. Note
that only four of the seven gamma slots
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8 are shown. The arrows mark the cue that
provides information about current posi-
tion to CA3. The numbers underneath the
theta oscillation indicate the time of firing
{in some cell) of the memory of the posi-
tion designated by the numeral. The
1 spikes indicate when spiking occurs in a
particular cell. In learning mode we as-
sume the buffer to be empty before infor-
mation is introduced. The firing of the
place cell occurs before reaching position
4 when the rat is in recall mode. The fir-
ing of the same cell occurs after position 4
when the rat is in learning mode.
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ulations show that this should lead to some sur-
prising consequences. Because NMDA-mediated
synaptic transmission is enhanced as the animal
reexperiences a known path, EPSPs will become
larger. Because it is these EPSPs that make cells
fire, the inhibitory postsynaptic potentials (IPSPs)
that separate gamma cycles will be more easily
overcome by the EPSP; specifically, less of the IPSP
will have to decay for the cell to reach threshold.
As a result, cells will fire earlier in the ganmima
cycle. Because inhibition in the model is stimu-
lated by the firing of pyramidal cells, negative feed-
back inhibition will arrive earlier. The overall con-
sequence will be to increase the frequency of the
gamma oscillations and thus to increase the num-
ber of gamma cycles that can fit into a theta cycle.
This is illustrated in Figure 5. It can be seen that in
lap 1 there are seven gamma cycles in a theta cy-
cle. But as the animal does increasing laps in this
known environment, continued use of the NMDA
channels increases synaptic strengths (sece the
weight matrix ) and eventually results in a situation
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where gamma is so fast that as many as nine
gamma cycles can occur in a theta cycle. This
means that prediction occurs further ahead, that is,
that the position where firing first occurs shifts in
the dircction opposite the movement (Fig. 5B).
Furthermore, the overall size of the place field also
gets larger (Fig. 5C). Because the period of gamma
oscillations decreases when the rat reexperiences
the known path, the phase advance per theta cycle
(e.g., the slope of phase vs. position ) will decrcase.

Recent experiments by M.R. Mehta, B.L. Mc-
Naughton, C.A. Barnes, M.S. Suster, K.L. Weaver,
and J.L. Gerrard (pers. comm.) appear to have
been done under conditions appropriate for com-
parison with the predictions of Figure 5. Place
cells were monitored as the rat ran through what
was already a highly familiar track (the animal had
run the same track on many previous days). It was
observed that, as the animal did repeated laps,
there were small progressive changes in the prop-
ertics of place fields of the same order as those in
Figure 5. It should be emphasized that these shifts
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Simulations demonstrating that using the NMDA channel during recall mode produces further learning (A) Plot

of cell firing during traversal of a well-known path with animal in recall mode. Plots are shown afler 1, 10, and 20 laps.
Note the increase in number of gamma cycles. Synaptic matrices show that the synapses have hecome stronger. With
increasing lap number, (B) the time of occurrence of the firing of cell #7 gets earlier on the track and (C) there is an
increase in the size of the place field. Velocity of rat: V = 100.0 cm/sec.
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that occur in recall mode are much smaller than
those we would predict by comparing learning
mode with recall mode (see above and Fig. 4).

THE POSTULATED ROLE OF NMDA CHANNELS IN
RECALL CAN BE DIRECTLY TESTED

Predictions that could be tested are as follows:

1. NMDA channel blockers should block the
phase advance seen as the rat moves through
its place field.

2. NMDA channel blockers should block progres-
sive changes in the size and position of the
place field as the animal does laps on a well-
known track.

3. In a suitable behavioral test of sequence lcarn-
ing (perhaps path learning), NMDA channel
blockers should reversibly block expression of
previously learned knowledge about the se-
quence.

One complication of these experiments should be
mentioned: Because an NMDA channel mediates
excitation to interneurons, NMDA antagonists may
produce disruption of hippocampal processing
through action on interneurons rather than recur-
rent synapses.

WHY IS PHASE ADVANCE DATA SO NOISY
COMPARED WITH THE PREDICTIONS OF
THE MODEL?

The plots of phase versus position (O’Keefe
and Recce 1993) based on experimental data arc
much noisier than our simulations (Fig. 2). This
raises the question of whether brain networks
work with the kind of precision envisioned in our
model. This question cannot yet be answered, but
we suggest two relevant considerations. First, the
data plots are necessarily made by averaging to-
gether many trials. However, as now demonstrated
directly (M.R. Mehta, B.L. McNaughton, CA.
Barnes, M.S. Suster, K.L. Weaver, and J.L. Gerrad,
pers. comm.), the data is not stationary over such
trials. This nonstationarity may obscure the regu-
larity of underlying mechanisms. Second, and per-
haps more important, there is a question of
whether all spikes or just bursts should be consid-
ered when analyzing spike data. It has been argued
that hippocampal synapses filter out single spikes
as if they were noise, but transmit bursts reliably
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(Lisman 1996). This raises the possibility that the
important signals are carried by bursts. If this is
true, plots of burst phase versus position will re-
veal more precise timing and hence less variability
in the phase data.

PHASE, NOT FIRING RATE, CODES FOR
ACTUAL LOCATION

Our model implies that in recall mode, place
cell firing early in the theta cycle codes for actual
location, whereas cells firing with late phase are
predictors of future position. Because prediction is
necessarily risky, cells firing early in the theta cy-
cle will be better indicators of actual position than
cells firing late in the theta cycle. This has been
confirmed experimentally by Skaggs et al. (1996).
It has also been observed that cells firing early or
late in the theta cycle have a lower firing rate than
cells firing on the peak of the theta cycle (where
there can be multiple spikes per gamma cycle).
This implies that the place cells with the highest
firing rate arc not the cells coding for the actual
location. Given the simplified way we have ap-
proximated spike firing, our model is not able to
account for data in which multiple spikes (bursts)
occur in gamma cycles. An extension of our model
with more realistic bursting neurons is being de-
veloped for this and other phenomena: the obser-
vation that the phase advance approaches 360° for
strong place fields (in our model, only 200°, Fig. 3)
and data regarding two-dimensional place fields.

TIMING OF INPUTS TO THE CA3 REGION

We have assumed that during recall, the CA3
system is cued by direct sensory inputs early in the
theta cycle. Some support for this comes from the
work of Skaggs et al. (1996), showing that firing in
the dentate preceeds firing in CA3 by 90°. One
difficulty with reconciling the model with the
data, however, is that the phase precession ob-
served in CA3 and CA1, which we have attributed
to process in CA3, can also be observed in the
dentate. For this to occur there would have to be
firing during multiple gamma cycles in the den-
tate. We do not yet have a clear explanation for
this. One possibility suggested by Buzsaki (pers.
comm.) is that part of the activity in dentate
reflects synaptic feedback from CA3. As suggested
by the results in Figure 2, it is desirable to
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cue the sequence during recall with the first two
items in the sequence, not just with one. The rea-
son has to do with the cumulative nature of
NMDA-mediated readout described in Jensen and
Lisman ( 1996b, this issue ). Briefly, multiple cuing
is desirable because it eliminates ambiguity when
two paths cross. The idea that multiple cues are
used to stimulate the recall of the full sequence
can be rephrased to say that a partial sequence is
used to recall the full sequence. Because the slow
NMDA channels necessary to store sequence in-
formation are present not only in hippocampus,
but also in cortex, it is possible that the cortex
itself stores partial sequences, that current input
stimulates the cortex to produce a partial se-
quence, and that the input of the partial sequence
into the CA3 region of hippocampus then pro-
duces the full sequence.

COMPARISON WITH OTHER MODELS

With regard to specifically predicting the
phase advance of O'Keefe and Reece (1993) (Fig.
2), our work has important similaritics with the
model of Tsodyks et al. (1996). As in our model,
hippocampal cells that fire early in the theta cycle
are driven by current sensory input, and these
cells, in turn, stimulate other CA3 cells to fire late
in the theta cycle. What is novel in our model are
the strong constraints imposed by network oscil-
lations, and the use of known conductances
[NMDA, afterhyperpolarization (AHP)] in account-
ing for network function. It is some of these fur-
ther assumptions that allow quantitative predic-
tion of place-cell data and the value of the phase
advance. In the model of Tsodyks et al. (1996) the
speed of sequence readout is determined by ad-
justable parameters of the model. In our model the
magnitude of phase advance is accounted for with
no free parameters.

THE HIPPOCAMPUS SITS AT THE APEX OF THE
INFORMATION FLOW IN THE BRAIN

Anatomical work shows that the hippocampus
sits at the apex of communication flow in the
brain. Sensory data from specialized cortical areas
converges onto polymodal association areas that
then provide input to the hippocampus. Interest-
ingly, information is also sent from the hippocam-
pus back to the polymodal areas, which in turn

sends information back to the specialized sensory
areas. The fact that the hippocampus is able to use
current information and stored sequences to pre-
dict what is expected in the future raises the ques-
tion of what will be done with these predictions.
The existence of pathways for flow of information
back to cortical areas suggests that these predic-
tions are sent to the cortex, where expectations
are set. We refer the reader to various theoretical
papers on how these expectancies might be used
by the cortex (Mumford 1994; W. Softky, pers.
comm. ).
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