GABA_A Receptors at Hippocampal Mossy Fibers

Arnaud Ruiz,1,3 Ruth Fabian-Fine,2 Ricardo Scott,1 Matthew C. Walker,1 Dimitri A. Rusakov,1 and Dmitri M. Kullmann1,*
1Department of Clinical and Experimental Epilepsy
Institute of Neurology
University College London
London, WC1N 3BG
United Kingdom
2Department of Psychology and Neuroscience
Dalhousie University
Halifax, Nova Scotia B3H 4H7
Canada

Summary
Presynaptic GABA_A receptors modulate synaptic transmission in several areas of the CNS but are not known to have this action in the cerebral cortex. We report that GABA_A receptor activation reduces hippocampal mossy fibers excitability but has the opposite effect when intracellular Cl⁻ is experimentally elevated. Synaptically released GABA mimics the effect of exogenous agonists. GABA_A receptors modulating axonal excitability are tonically active in the absence of evoked GABA release or exogenous agonist application. Presynaptic action potential-dependent Ca²⁺ transients in individual mossy fiber varicosities exhibit a biphasic dependence on membrane potential and are altered by GABA_A receptors. Antibodies against the γ2 subunit of GABA_A receptors stain mossy fibers. Axonal GABA_A receptors thus play a potentially important role in tonic and activity-dependent heterosynaptic modulation of information flow to the hippocampus.

Introduction
Ionotropic GABA receptors contribute to presynaptic modulation of transmission in the mammalian spinal cord (Eccles et al., 1963; Nicoll and Alger, 1979), retina (Lukasiewicz and Werblin, 1994; Tachibana and Kaneko, 1987), posterior pituitary (Saridaki et al., 1989; Zhang and Jackson, 1993), and auditory brainstem (Turecek and Trussell, 2002). Presynaptic GABA_A receptors have also been reported in the ventromedial hypothalamus (Jang et al., 2001). Finally, they have been shown to have an autoreceptor function in the terminals of developing cerebellar interneurons (Pouzat and Marty, 1999). In contrast to the abundance of evidence that presynaptic GABA_A receptors modulate transmission at a variety of subcortical synapses, their role in the cerebral cortex is far from clear. Because GABA_A receptors can mediate rapid signaling, a presynaptic role in the cerebral cortex would have extensive implications for higher information processing. In support of this possibility, GABA_A receptors have been reported to modulate the release of neurotransmitters from synaptosomes (Fassio et al., 1999; Fung and Fillenz, 1983), and seizure-like activity in vitro can initiate ectopic axonal action potentials via GABA_A receptors in Schaffer collaterals (Stasheff et al., 1993). Both of these phenomena are, however, open to alternative interpretations. In particular, GABA_A receptor-mediated responses can be accompanied by efflux of HCO₃⁻ and K⁺ (Voipio and Kaila, 2000). Indeed, extracellular K⁺ accumulation has been proposed to account for GABA_A receptor-dependent initiation of ectopic action potentials during epileptiform discharges (Avoli et al., 1998). Thus, there is little compelling evidence that presynaptic GABA_A receptors can directly affect transmitter release at cortical synapses.

Hippocampal mossy fibers are a well-characterized cortical pathway from dentate granule cells to the hippocampus proper. The mossy fiber-CA3 pyramidal cell synapse has been proposed to act as a “conditional detonator” and is critical for information processing within the hippocampus circuitry (Henze et al., 2000). Several presynaptic glutamate and opioid receptors have been shown to modulate mossy fiber transmission (Kamiya et al., 1996; Lanthorn et al., 1984; Scanziani et al., 1997; Schmitz et al., 2001; Vignes et al., 1998; Weisskopf et al., 1993; Yamamoto et al., 1983; Yokoi et al., 1996). Through this means, mossy fiber-CA3 synaptic signaling can be modulated by spillover of neurotransmitters. Notably, GABA depresses mossy fiber transmission via presynaptic metabotropic GABA_B receptors (Min et al., 1998; Vogt and Nicoll, 1999). Prompted by the observation that both metabotropic and ionotropic glutamate receptors can modulate mossy fiber transmission, we asked whether presynaptic ionotropic GABA_A receptors are also present. Such receptors could potentially mediate a more rapid response to changes in extracellular GABA than GABA_A receptors. We report that GABA_A receptors directly modulate mossy fiber excitability, and moreover, that this phenomenon is tonically active at ambient GABA concentrations. Synaptically released GABA also mimics the effect of exogenous GABA_A receptor agonists on mossy fiber excitability. We further show that GABA_A receptors alter Ca²⁺ influx into axonal varicosities. Finally, we provide immunohistochemical evidence at both light and electron microscopic levels for the presence of γ2 subunit-containing GABA_A receptors in mossy fibers.

Results
GABA_A Receptors Modulate Mossy Fiber Excitability
We looked for evidence of functional axonal GABA_A receptors in granule cells by examining the effects of a GABA_A receptor agonist on the excitability of mossy fibers (Kamiya and Ozawa, 2000). We evoked antidromic action potentials via a stimulating electrode positioned in stratum lucidum in acute hippocampal slices, while
Figure 1. GABA\textsubscript{A} Receptors Modulate Hippocampal Mossy Fiber Excitability

(A) Antidromic action current (AC) success rate (mean ± SEM) plotted against time, showing a reduction evoked by bath perfusion of 1 μM muscimol. Right: sample consecutive traces obtained from one neuron before and during muscimol application and following washout.

(B) In granule cells recorded with a high [Cl-] pipette solution, muscimol increased the success rate for antidromic ACs. Right: sample traces as for (A).

(C) Time course of input resistance following muscimol application in the same cells as shown in (A) and (B).

(D) Bar chart showing opposite changes in somatic holding current after muscimol application.

recording from a granule cell held in voltage clamp at −70 mV with a pipette containing 8 mM Cl- (close to the concentration estimated in neocortical neurons [Kaila et al., 1993]). AMPA, kainate, NMDA, and GABA\textsubscript{A} receptors were blocked pharmacologically. Action potentials were detected as inward action currents (ACs). We lowered the stimulus intensity until stimuli resulted in an AC in 40%–60% of cases. Bath perfusion of a low concentration of the selective GABA\textsubscript{A} agonist muscimol (1 μM; EC\textsubscript{50} for GABA\textsubscript{A} receptors, 0.9–8.9 μM; Ebert et al., 1997) reversibly decreased the success rate by 62% ± 12% (mean ± SEM; p < 0.03, n = 8; Figure 1A). Muscimol had no effect on the AC success rate when suprathreshold stimuli were delivered, implying that it did not act by promoting action potential conduction failure (Verdier et al., 2003). Instead, the results indicate that GABA\textsubscript{A} receptors decrease mossy fiber excitability.

Although the effect of muscimol on the AC success rate is consistent with the existence of axonal GABA\textsubscript{A} receptors, an alternative possibility is that it acts indirectly by altering the extracellular ionic environment, for instance by promoting K+ efflux from neighboring neurons via activation of the K+–Cl- transporter KCC2 (Payne et al., 1996). We therefore obtained whole-cell recordings from granule cells with a pipette containing a high [Cl-] solution (E\textsubscript{Cl} = +3 mV), with the goal of shifting the axonal GABA\textsubscript{A} reversal potential in a positive direction, without altering the action of muscimol on surrounding neurons and glia. We delayed the application of muscimol until >20 min had elapsed to allow intracellular Cl- to accumulate. When muscimol was applied, the success rate increased reversibly by 78% ± 8% (p < 0.01, n = 5; Figure 1B), opposite to the result obtained with a low [Cl-] recording solution. The fact that manipulation of [Cl-], in only one cell is able to switch the polarity of the effect of muscimol indicates that the phenomenon does not depend critically on changes in extracellular ion concentrations.

Local Agonist Application Implicates Distal Axonal Receptors

Where are the GABA\textsubscript{A} receptors that affect axonal excitability? The effects of muscimol obtained with either high or low [Cl-] pipette solutions were accompanied by a decrease in input resistance (Figure 1C) and opposite changes in somatic holding current (Figure 1D). Because the cell body was kept in voltage clamp, effects of GABA\textsubscript{A} receptors on the somatodendritic membrane potential were unlikely to spread to the axonal membrane. However, this does not exclude a role for GABA\textsubscript{A} receptors in the axonal initial segment, which may not have been fully clamped. To test whether muscimol altered the action current success rate through a direct effect on axonal receptors, we pressure-applied a low concentration of muscimol (2.5 μM) via a pipette positioned within 50 μm of the stimulating electrode in stratum lucidum and at least 1000 μm from the cell body. Because the dendrites of granule cells are oriented in a direction opposite to that of the mossy fiber, this experimental design precluded activation of receptors in the somatodendritic compartment or in the axonal initial segment. The soma was voltage-clamped with a low [Cl-] pipette. Pressure application of muscimol in stratum lucidum resulted in a 40% ± 6% decrease in AC success rate.
Figure 2. Axonal GABA_A Receptors Modulate Mossy Fiber Excitability

(A) Focal activation of axonal GABA_A receptors with pressure ejection of muscimol (2.5 μM) at the stimulus site in stratum lucidum reversibly depresses the AC success rate (top) but has no effect on the somatic holding current (middle) or the input resistance of granule cells (bottom, average of 6 cells). Sample traces show consecutive ACs taken before (Ctrl), 30 s after pressure application of muscimol (Musc), and following recovery (Wash).

(B) Plot showing that the muscimol-induced depression of AC success rate was prevented by SR95531 (10 μM; n = 5). The bar chart at right shows the effect of pressure-applied muscimol on the holding current in the same experiments. The consecutive sample traces were obtained in one cell before (Ctrl), immediately after focal muscimol application (Muscimol puff), and after muscimol in SR95531. *p < 0.05.

(C) Modulation of AC success rate by pressure-applied muscimol depends on [Cl⁻]. Top: time course showing the decrease of AC success rate evoked by focal muscimol in cell-attached recordings (n = 4). Bottom: graph illustrating the opposite modulation of the AC success rate evoked by focal muscimol application before (Cell attached) and 30 min after break-in with a high chloride pipette (Whole cell). The filled circles show the mean ± SEM for 4 cells. The AC success rate in each case was normalized to the success rate in the absence of muscimol application. Insets show consecutive traces from one cell cell-attached (top) and whole-cell mode (bottom).

(p < 0.01, n = 11 applications in 6 cells), which was accompanied by no change in either the somatic holding current or the input resistance (p > 0.3; Figure 2A). This effect indicates that muscimol affected the AC success rate by acting on axonal receptors, electrically close to the site of action potential initiation. We verified that the effect of muscimol was mediated by GABA_A receptors by repeating the agonist application in the presence of the selective antagonist SR95531 (10 μM). This manipulation completely blocked the muscimol-induced depression of the AC success rate (p < 0.05; n = 5 applications in 4 cells), again with no change in holding current (p > 0.6; Figure 2B).

We further tested the hypothesis that axonal GABA_A receptors modulate axonal excitability by applying muscimol locally to the stimulus site while initially recording in cell-attached mode and subsequently in whole-cell mode with a high [Cl⁻] solution. During the initial phase of this experiment, pressure ejection of muscimol (2.5 μM) induced a reversible decrease in the AC success rate (Figure 2C, top panel), consistent with the effect obtained with a low [Cl⁻] pipette solution (see Figure 2A). Following “break-in,” we allowed intracellular Cl⁻ to equilibrate for 30 min. A second muscimol application caused an increase in AC success rate, opposite to the decrease obtained in the same neurons in cell-attached mode (p < 0.01; n = 4, Figure 2C, bottom). Thus, GABA_A receptor activation has opposite effects on axonal excitability depending on E_{Cl} within the same granule cell. The finding that GABA_A receptor activation decreases...
axonal excitability in cell-attached recordings (and hence in the absence of experimental perturbation of [Cl\(^-\)]) contrasts with the effect of GABA iontophoresis on group I afferent excitability in the spinal cord (Rudomin et al., 1981).

Synaptically Released GABA Mimics the Effect of Exogenous Agonist Application

Although the actions of muscimol indicate that GABA\(_A\) receptors are present in mossy fibers, they do not prove that such receptors can respond to the endogenous ligand GABA. We therefore delivered two stimuli with a 25 ms interstimulus interval in order to explore the effect of activating GABAergic terminals in the vicinity of the site of antidromic action potential generation. When the stimulus intensity was adjusted to achieve an almost 100% success rate for the first stimulus, the success rate for the second stimulus was 43% ± 6% (n = 13). We then applied the benzodiazepine agonist zolpidem (0.2 \(\mu\)M), which enhances GABA\(_A\) receptor affinity in a subtype-dependent manner. This led to a reversible 59% ± 12% decrease in the success rate of the second AC (p < 0.02, n = 6; Figure 3A). Conversely, blocking GABA\(_A\) receptors with SR95531 (10 \(\mu\)M) reversibly increased the success rate for the second stimulus (91% ± 24% increase, p < 0.03, n = 4; Figure 3B). A similar enhancement of AC success rate was obtained in the presence of another blocker of GABAA receptors, bicuculline methiodide (123% ± 38% increase, p < 0.04, n = 3; Figure 3C). These results imply that the reduced axonal excitability following the first stimulus is at least partly due to GABA\(_A\) receptor activation.

Circumstantial evidence suggests that mossy fibers themselves may release GABA (Gutierrez and Heinemann, 2001; Sandler and Smith, 1991; Sloviter et al., 1996; Walker et al., 2001). Do presynaptic GABA\(_A\) receptors act exclusively as autoreceptors, akin to those reported in cerebellar interneurons (Pouzat and Marty, 1999)? We looked for evidence of remote effects of synaptically released GABA by delivering conditioning stimuli via a second stimulating electrode located in stratum radiatum, designed to activate axons of local interneurons but not the mossy fiber itself. We verified that trains elicited by this electrode did not evoke antidromic action potentials in the recorded granule cell. Figure 3D shows that, following high-frequency trains of conditioning stimuli, the success rate for an antidromic action current was reduced by 42% ± 14% of control (p < 0.02, n = 7). The effect of the conditioning stimuli was blocked by picrotoxin (p < 0.05 when compared to results without picrotoxin; n = 4; Figure 3E) or SR95531 (n = 2, not shown). These results imply that GABA released from other neurons can persist in the extracellular space at a concentration that is able to reduce axon excitability (when recording with a low [Cl\(^-\)] pipette) before it is cleared by diffusion and uptake. Whether presynaptic GABA\(_A\) receptors on an individual mossy fiber can be activated by GABA released from the same axon cannot be determined from the present results.

Axonal GABA\(_A\) Receptors Are Tonically Active in the Absence of Evoked GABA Release

The evidence presented thus far indicates that both exogenous and endogenous GABA\(_A\) receptor agonists are able to modulate mossy fiber excitability. Granule cells have recently been shown to express a form of nonsynaptic tonic inhibition mediated by high-affinity GABA\(_A\) receptors (Nusser and Mody, 2002; Overstreet and Westbrook, 2001; Stell and Mody, 2002). We therefore asked whether the axonal receptors are also active at ambient GABA levels by looking at the effect of perfusing the selective antagonist SR95531. We examined the antidromic AC success rate obtained with single stimuli delivered at a low frequency, at an intensity just below threshold. Figure 4A (top) shows that, when granule cells were held at −70 mV with a low [Cl\(^-\)] pipette, perfusing SR95531 (10 \(\mu\)M) profoundly and reversibly enhanced the antidromic AC success rate in the absence of exogenous agonists (n = 6). This implies that tonically active GABA\(_A\) receptors reduce mossy fiber excitability. We repeated this experiment with a high [Cl\(^-\)] pipette, initially stimulating at an intensity sufficient to obtain near 100% success rate for an AC. SR95531 application in this situation produced a decrease in AC success rate, which partially reversed upon washout (n = 6; Figure 4A, bottom). Thus, in agreement with the effects of muscimol application, experimental depolarization of the Cl\(^-\) reversal potential reversed the effect of manipulating GABA\(_A\) receptors.

We estimated the degree to which mossy fiber excitability can be increased or decreased from baseline by activating or blocking GABA\(_A\) receptors. Instead of delivering the antidromic stimulus at a fixed intensity while monitoring the AC success rate, we stepped the stimulus intensity through a cycle and applied muscimol (2 \(\mu\)M) followed by the GABA\(_A\) receptor antagonist picrotoxin (100 \(\mu\)M). Figure 4B shows that in all four cells tested (high [Cl\(^-\)] pipette, holding potential, −70 mV), muscimol shifted the input-output curve to the left, and picrotoxin applied subsequently shifted it to the right.

Presynaptic GABA\(_A\) Receptors Modulate Ca\(^{2+}\) Influx into Mossy Fiber Varicosities

Although the above results imply that both exogenous drugs acting at GABA\(_A\) receptors and extracellular GABA play a major role in determining the excitability of mossy fibers in response to extracellular stimuli, they say little about the physiological role of axonal GABA\(_A\) receptors: action potentials are normally initiated close to the cell body and generally propagate orthodromically with a high safety factor (Cox et al., 2000; Emptage et al., 2001; Koester and Sakmann, 2000; although see Debanne et al., 1997). Can activation of mossy fiber GABA\(_A\) receptors affect transmitter release, and if so, how?

It is technically difficult to measure how GABA\(_A\) receptors affect orthodromic transmission to postsynaptic targets such as CA3 pyramidal neurons, both because they influence axon recruitment by extracellular stimuli and because of evidence that mossy fibers themselves can release GABA (Gutierrez and Heinemann, 2001; Sandler and Smith, 1991; Sloviter et al., 1996; Walker et al., 2001). Instead, we looked for a possible direct consequence of mossy fiber GABA\(_A\) receptors on Ca\(^{2+}\) influx into presynaptic boutons. Several lines of evidence suggest that Ca\(^{2+}\) influx and transmitter release at mossy fiber synapses are modulated by the presynaptic membrane potential (Geiger and Jonas, 2000; Kamiya
Figure 3. Synaptically Released GABA Activates Presynaptic Receptors

(A–C) AC success rates (mean ± SEM) plotted for the first (open circles, thick connecting lines) and second (closed circles, thick lines) of two stimuli (25 ms interval), while recording from granule cells with a low [Cl⁻] pipette solution. The stimulus intensity was adjusted to give a near 100% success rate for the first stimulus. Success rates for the second stimulus in individual experiments are also shown (symbols connected with dashed lines).

(A) Zolpidem (Zpm, 0.2 μM) decreased the antidromic AC success rate for the second pulse without affecting that of the first pulse (n = 6). Inset: example consecutive traces before and during application of zolpidem.

(B) SR95531 (5 μM) enhanced the success rate for the second pulse (n = 4).

(C) Bicuculline (Bic, 20 μM) also increased the success rate of the second AC (n = 3).

(D) Conditioning trains of stimuli delivered via a second electrode in stratum radiatum (two trains of 5 pulses at 40 Hz, 10 s interval) decreased the AC success rate (n = 7). The conditioning trains themselves did not elicit antidromic ACs. Sample traces: antidromic ACs before (top) and after (bottom) conditioning stimuli (middle).

(E) Summary bar chart of four cells showing a decrease in success rate after trains of stimuli and reversal of this effect by picrotoxin (PTX, 100 μM). *p < 0.05.

and Ozawa, 2000; Lauri et al., 2001; Mellor et al., 2002; Schmitz et al., 2001). We therefore applied two-photon excitation microscopy to image fast, action potential-evoked, Ca²⁺-dependent fluorescence transients (detected with 0.2 mM Fluo-4, at 2 ms sampling) in individual mossy fiber varicosities (Figures 5A–5D). Because the axon could not generally be followed reliably for more than 150–200 μm, the recordings were restricted to relatively proximal varicosities in the dentate hilus (Jackson and Redman, 2003). We held the granule cell in whole-cell voltage clamp mode with a low [Cl⁻] pipette solution and initially examined the effect of changing the holding somatic voltage on the presynaptic Ca²⁺-dependent fluorescence, both baseline and in response to a suprathreshold antidromic action potential, which was evoked via an extracellular electrode placed in stratum lucidum. (Orthodromic action potentials evoked with 5 ms depolarizing voltage pulses gave identical results.) The action potential was monitored at the granule cell as an AC (Figure 5B). This approach does not allow the local presynaptic membrane potential to be measured simultaneously with the Ca²⁺-dependent fluorescence. However, if somatic depolarization or hyperpolarization is able to displace the varicosity’s potential from rest, changes in Ca²⁺-dependent fluorescence should reveal the qualitative relationship between the local membrane potential and local Ca²⁺ kinetics.

Depolarizing the soma from −70 mV to −60 mV gave an almost 40% decrease in the size of the Ca²⁺-dependent fluorescence transient ΔF/F (fractional fluorescence increment over baseline), which was accompanied by a 19% ± 3% increase in baseline fluorescence F (Figures 5E and 5F). Somatic hyperpolarization, on the other hand, had a biphasic effect on the Ca²⁺-dependent transient, with an increase (~20%) up to −90 mV and a decrease with larger hyperpolarization, but no effect on baseline F.

In the presence of a high-affinity indicator, the rela-
Figure 4. Tonically Active GABA_A Receptors Modulate the Excitability of Mossy Fibers

(A) Top: bath-applied SR95531 (10 μM) increased the success rate for antidromic ACs when cells were recorded with a low [Cl[−]] solution (n = 6). The stimulation strength was initially set just below threshold for evoking an AC. Bottom: SR95531 had the opposite effect when cells were recorded with a high [Cl[−]] solution (n = 6).

(B) Input-output curves showing the AC success rate as a function of stimulus intensity for four cells, during a control period, and following successive bath applications of muscimol (2 μM) and picrotoxin (100 μM), when cells were recorded with a high [Cl[−]] pipette solution.

We also examined the effect of blocking tonically active GABA_A receptors with 10 μM SR95531. This had no effect on baseline fluorescence but reversibly decreased the action potential-evoked fluorescence transient to 76% ± 9% of baseline (p < 0.03, n = 9; Figures 6D–6F; ∆F/F corrected for changes in F₀; p < 0.05; Figures 6D–6F). This result implies that removal of tonic activation of presynaptic GABA_A receptors decreases the Ca²⁺ influx into mossy fibers. This effect is consistent with that of hyperpolarization from a very negative baseline on transmitter release, achieved by applying kainate or elevating [K⁺]o (Schmitz et al., 2001).

We then asked whether tonic GABA_A receptor activation modulates presynaptic Ca²⁺-dependent fluorescence transients evoked by antidromic stimulation. The cell body was held at −70 mV, corresponding to the steep part of the curve shown in Figure 5F, in order to facilitate reliable detection of an effect of manipulating GABA_A receptors. Muscimol (1 μM) application resulted in a reversible 31% ± 10% increase in the baseline fluorescence (p < 0.01, n = 10), and this was accompanied by an 18% ± 8% decrease in the action potential-dependent Ca²⁺ fluorescence increment (∆F/F corrected for changes in F₀; p < 0.05; Figures 6A–6C). These effects are qualitatively similar to those of somatic depolarization and are consistent with a depolarizing GABA_A reversal potential in granule cells (Misgeld et al., 1986). Although this apparently conflicts with the evidence that GABA_A receptors decrease axonal excitability (Figures 1–4), the action potential threshold is additionally determined by changes in tissue resistivity (and/or axonal impedance) (see Discussion).

α₂ Subunit-Containing GABA_A Receptors Are Located to Mossy Fibers

Where are the GABA_A receptors that modulate axon excitability and Ca²⁺ influx into mossy fibers? α₁ and α₂
subunits are both expressed at high level in the hippocampus (Sperk et al., 1997). α_1 immunolabeling at ultrastructural resolution in mossy fiber synapses is described elsewhere (Bergersen et al., 2003). As for α_2, this subunit occurs in superficial laminae of the spinal cord (Bohlhalter et al., 1996) and at axo-axonic synapses in the forebrain (Nusser et al., 1996). At both of these locations, receptors containing α_2 subunits are candidates to mediate presynaptic inhibition. We therefore asked whether α_2 subunit-containing receptors are located presynaptically at mossy fiber synapses. Punctate immunolabeling was seen in stratum lucidum of CA3, the termination region of mossy fibers (Figures 7A and 7D; see also Sperk et al., 1997). Double labeling for α_2 and synaptophysin, a specific presynaptic marker (Wiedenmann and Franke, 1985), revealed abundant colocalization of the two epitopes (Figures 7C and 7F), consistent with a presynaptic localization of the receptors.

To probe the detailed distribution of α_2 subunits, we examined postembedding immunogold labeling at the ultrastructural level. We identified mossy fiber synapses in stratum lucidum by their large profile areas of complex shape, a large population of presynaptic pleomorphic and dense-core vesicles, and multiple postsynaptic densities contacting complex postsynaptic spines. The α_2 labeling density over mossy fiber terminals (2.34 ± 0.39 particles/µm²) was significantly higher than background (mitochondria and myelin, 0.59 ± 0.22 particles/µm²; p < 0.001, Mann-Whitney test). Immunolabeling was present at symmetrical synapses (Figure 7G) but also at mossy fiber synapses, where it was mainly found at the synaptic cleft; at extrasynaptic membranes of mossy fiber axons; in the postsynaptic membrane (7H–7M). Single sections showed labeling at 83% of mossy fiber synapses. Among the immunoreactive synapses, labeling was seen in the presynaptic profile in 79, in the postsynaptic profile in 41, in the synaptic cleft in 27, and at extrasynaptic membranes of the presynaptic terminal in 43. Thus, GABA$_A$ receptors containing the α_2 subunit do occur in a pattern consistent with a presynaptic location.

Discussion

The present study is the first to show that both GABA and exogenous GABA$_A$ receptor agonists can alter the function of an important excitatory cortical pathway in situ by acting on ionotropic receptors in the distal parts of the axon. This effect was mediated by GABA$_A$ receptors on mossy fibers themselves, rather than through indirect effects on the axonal microenvironment, because manipulation of [Cl$^-$] in a single granule cell switched the effect of muscimol from decreasing to en-
neurons. Consistent with this, we observed a substantial decrease in input resistance during bath (although not local muscimol application. (We also observed a small but significant increase in the size of the electrical artifact recorded with an extracellular electrode when GABA_A receptors were blocked with picrotoxin [data not shown].)

Shunting of the electrical stimulus could occur through GABA_A receptors on structures distinct from the mossy fibers. However, this does not detract from the key evidence that indicates that GABA_A receptors are present on the mossy fibers themselves: raising [Cl⁻]iHow do presynaptic GABA_A receptors affect mossy fiber excitability? GABA_A receptor activation raised the threshold for evoking an action potential when [Cl⁻]_i, was low (cell-attached recordings and low [Cl⁻]_i pipette solution recordings). This would, at first sight, imply that GABA_A receptors hyperpolarize the axonal membrane. This is, however, difficult to reconcile with the fact that GABA_A receptor-mediated responses have been reported to be depolarizing in granule cells (Misgeld et al., 1986). Moreover, the predicted E_{GABA} from the low [Cl⁻]_i pipette solution used here, taking into account a contribution from HCO₃⁻ permeation, is positive to ~70 mV. Finally, the Ca²⁺ imaging experiments in the present study indicate that somatic depolarization and direct activation of GABA_A receptors with muscimol both increase the baseline Ca²⁺-dependent fluorescence and decrease the action potential-dependent fluorescence transient in individual mossy fiber boutons. Thus, several lines of evidence converge on the view that, even with a low Cl⁻ recording solution, GABA_A receptors depolarize mossy fibers. A possible explanation for the increase in axonal threshold under these circumstances is that activating GABA_A receptors also shunts the electrical stimulus, possibly by decreasing the tissue resistance. Consistent with this, we observed a substantial decrease in input resistance during bath (although not local muscimol application. (We also observed a small but significant increase in the size of the electrical artifact recorded with an extracellular electrode when GABA_A receptors were blocked with picrotoxin [data not shown].)

Shunting of the electrical stimulus could occur through GABA_A receptors on structures distinct from the mossy fibers. However, this does not detract from the key evidence that indicates that GABA_A receptors are present on the mossy fibers themselves: raising [Cl⁻]i, switched the effect of GABA_A receptors from decreasing to increasing axonal excitability. When [Cl⁻]_i was high, the shunting effect (which should be independent of altering [Cl⁻]_i) in the recorded cell was presumably insufficient to overcome the threshold-lowering effect of a large depolarization produced by opening GABA_A receptors. Under these conditions, the mossy fibers behaved analogously to primary afferents in the spinal cord, where activation of GABA_A receptors lowers the threshold for antidromic action potentials (Nicoll and Alger, 1979; Rudomin et al., 1981). Indeed, a high resting intracellular [Cl⁻] is thought to underlie GABA_A receptor-mediated increase in afferent excitability (Curtis and Lodge, 1982).

Presynaptic depolarization mediated by GABA_A receptors has distinct effects on orthodromic transmission in different parts of the CNS. In the spinal cord and posterior pituitary, it decreases evoked neurotransmitter release. Depolarization-induced inactivation of Na⁺ channels plays a major role in depressing the amplitude of action potentials propagating in afferent terminals (Graham and Redman, 1994; Zhang and Jackson, 1995), although shunting of ionic currents may also play a role
both at these terminals (Segev, 1990) and in sensory afferents of the crayfish (Cattaert and El Manira, 1999). However, in the medial nucleus of the trapezoid body, presynaptic depolarization via activation of either glycine or GABAA receptors enhances evoked glutamate release (Turecek and Trussell, 2001, 2002).

In the present study, the effect of presynaptic GABAA receptors on orthodromic transmission could not be studied directly because of the confounding effects of changes in axon recruitment, GABAergic innervation of postsynaptic cells, and possible corelease of GABA with glutamate. Instead, we examined the effect of manipulating presynaptic GABAA receptors on the trigger for neurotransmitter release, action potential-evoked Ca2+ influx in individual mossy fiber varicosities. Surprisingly, activating GABAA receptors and blocking tonically active receptors both led to a reversible reduction in Ca2+ influx, as inferred from the incremental fluorescence emitted by Fluo-4. This approach suffers from the potential limitation that the axonal varicosities selected for imaging were relatively proximal, and therefore may not reflect the normal behavior of distal boutons presynaptic to CA3 pyramidal neurons, either because of intrinsic differences in the distribution and roles of GABAA receptors and Ca2+ channels or because they were more susceptible to experimental perturbation of homeostatic mechanisms.

Notwithstanding these limitations, the effect of activating GABAA receptors on action potential-dependent Ca2+ transients was qualitatively similar to that of depo-
larization. A possible mechanism is inactivation of Na⁺ channels, as has been argued to occur in the spinal cord and posterior pituitary, leading to a decrease in Ca²⁺ channel opening. Interestingly, the baseline fluorescence (prior to the action potential) also increased, both when the cell body was directly depolarized and when muscimol was applied, implying that mossy fiber depolarization may have been sufficient to open low-threshold Ca²⁺ channels and/or reduce Ca²⁺ extrusion. Depolarization-induced inactivation of high-threshold Ca²⁺ channels could also play a role in reducing action potential-evoked Ca²⁺ influx.

Blocking tonically active GABA₆ receptors also decreased the action potential-evoked Ca²⁺ transient, although in this case there was no change in baseline fluorescence. This observation is consistent with hyperpolarization of the mossy fiber varicosity beyond the maximum in the biphasonic relationship between Ca²⁺ influx and membrane potential. The absolute shape and position of this relationship with respect to membrane potential in an axonal varicosity cannot be inferred from the present study, because the degree of electrotonic attenuation along the axis is not known, and the normal resting potential of the axon may be different from that of the cell body. Nevertheless, this biphasonic relationship is qualitatively consistent with the finding that progressive depolarization of mossy fibers, achieved either by raising [K⁺], or by applying increasing kainate concentrations, first increases mossy fiber EPSPs and then depresses them (Schmitz et al., 2001). Interestingly, this biphasonic relationship between EPSP amplitude and axonal depolarization was obtained with GABA₆ receptors blocked. The mechanisms underlying depression of Ca²⁺ influx and transmitter release at very hyperpolarized levels approaching Eₚ (approximately −104 mV) are unclear, but may involve de-inactivation of K⁺ channels.

The role of GABA₆ receptors in modulating mossy fiber function could also depend on activity-dependent changes in Eₚ. Thus, intense GABA release in the vicinity of a mossy fiber could cause intracellular Cl⁻ accumulation, which could both depolarize the GABA₆ receptor, decreasing EPSP and contributing to further depolarization by engaging HCO₃⁻ and K⁺ efflux (Voipio and Kaila, 2000). Conversely, mossy fiber depolarization mediated by kainate receptor activation and/or K⁺ enhancement, as have been proposed to contribute to use-dependent facilitation and LTP (Schmitz et al., 2001; Lauri et al., 2001; Mellor et al., 2002; although see Chevalleyre and Castillio, 2002), might render GABA₆ receptors less depolarizing. The effect of GABA release from neighboring neurons on transmitter release could therefore depend on the activity history of the target mossy fiber.

Mossy fiber excitation was modulated by zolpidem. This distinguishes the receptors on mossy fibers from extrasynaptic GABA₆ receptors mediating tonic inhibition of granule cells (Nusser and Mody, 2002). Although benzodiazepine sensitivity is conventionally associated with relatively low-affinity GABA₆ receptors, diazepam can enhance GABAergic currents at sub- or low-micromolar GABA (Eghballi et al., 1997). The immunolabelling reported here implies that α₂ is expressed in mossy fibers. Although this is consistent with the effect of zolpidem (which has been reported to displace Ro15-1788 from α₂ subunit-containing receptors with a Kᵢ of 0.4 μM; Pritchett and Seeburg, 1990), the full subunit composition of the receptors at mossy fibers remains to be determined. Moreover, it will be important to explore the developmental expression of these subunits, not least because the immunohistochemical data reported here were obtained in adult rats.

Taken together with recent work on kainate receptors (Contractor et al., 2001; Kamiya and Ozawa, 2000; Lauri et al., 2001; Schmitz et al., 2001), the present results suggest a surprisingly rich complexity of signal integration in mossy fibers: by detecting the release of both glutamate and GABA via ionotropic receptors, these axons may rapidly integrate the activity of surrounding neurons, a function normally associated with dendrites.

Experimental Procedures

Electrophysiology

Transverse hippocampal slices (350 μm thick) were obtained from 3- to 4-week-old guinea pigs and were stored in an interface chamber. The storage and perfusion solution contained (in mM) NaCl (119), KCl (2.5), MgSO₄ (1.3), CaCl₂ (2.5), NaHCO₃ (26.2), NaH₂PO₄ (1), and glucose (11) and was gassed with 95% O₂/5% CO₂ (23°C, 85% light). Whole-cell recordings were made from dentate granule cells under infrared differential interference contrast imaging. The following drugs were used to block AMPA, kainate, NMDA, and GABA₆ receptors: NBQX (50 μM), D-2-amino-5-phosphonovalerate (APV, 50 μM), and CGP532432 (5 μM). Whole-cell pipettes were used to record antidromic action potentials (in mM KCl: 125, KCl, 8, HEPES (10), EGTA (0.2), MgATP (2), and Na⁺GTP (0.3) (pH 7.2, osmolality 295 mOsm). In some experiments, KCl replaced KCl with indistinguishable results. In the high (Cl⁻) solution, 145 mM KCl replaced KCl and NaCl. Extracellular stimuli used to evoke antidromic or orthodromic action potentials were delivered via a monopolar electrode positioned in stratum lucidum between 500 and 1500 μm from the granule cell (stimulus duration: 500 μs, interval 2–10 s). Conditioning trains were delivered via a second electrode positioned in stratum radiatum. Local pressure application of muscimol (2.5 μM in control perfusion solution) was delivered via a patch pipette connected to a Picospritzer (General Valve Corporation, 5–10 ms, 5–20 PS1). The pipette was positioned in stratum lucidum under visual control within 50 μm of the stimulating electrode, and the bath perfusion was arranged to keep the granule cell body upstream of this position. Currents were acquired with an Axopatch 1D amplifier (Axon Instruments), and records were filtered at 1 kHz, digitized at 2–5 kHz, and stored on a personal computer. The access and input resistances were monitored throughout the experiments using a voltage step. The access resistance was < 20 MΩ, and results were discarded if it changed by more than 20%. Junction potentials were not corrected. AC success rates were calculated from 6–12 trials per plotted point. Statistical comparisons were made using Student’s paired or unpaired t test (without normalization), where appropriate. Drugs were obtained from Tocris Cookson or Sigma.

Fast Ca²⁺ Imaging

For Ca²⁺ transient measurements, hippocampal slices were perfused with a solution containing (in mM) NaCl (119), KCl (2.5), MgSO₄ (1), CaCl₂ (2 or 2.5), NaHCO₃ (26.2), NaH₂PO₄ (1), Trolox (0.1), and glucose (11) and gassed with 95% O₂/5% CO₂ (23°C–25°C). Granule cells were recorded in whole-cell mode using a pipette solution containing (in mM): K-glucoside (135), NaCl (8), HEPES (10), EGTA (0.2), MgATP (2), and Na⁺GTP (0.3) (pH 7.2, osmolality 295 mOsm). In some experiments, KCl replaced KCl with indistinguishable results. In the high (Cl⁻) solution, 145 mM KCl replaced KCl and NaCl. Extracellular stimuli used to evoke antidromic or orthodromic action potentials were delivered via a monopolar electrode positioned in stratum lucidum between 500 and 1500 μm from the granule cell (stimulus duration: 500 μs, interval 2–10 s). Conditioning trains were delivered via a second electrode positioned in stratum radiatum. Local pressure application of muscimol (2.5 μM in control perfusion solution) was delivered via a patch pipette connected to a Picospritzer (General Valve Corporation, 5–10 ms, 5–20 PS1). The pipette was positioned in stratum lucidum under visual control within 50 μm of the stimulating electrode, and the bath perfusion was arranged to keep the granule cell body upstream of this position. Currents were acquired with an Axopatch 1D amplifier (Axon Instruments), and records were filtered at 1 kHz, digitized at 2–5 kHz, and stored on a personal computer. The access and input resistances were monitored throughout the experiments using a voltage step. The access resistance was < 20 MΩ, and results were discarded if it changed by more than 20%. Junction potentials were not corrected. AC success rates were calculated from 6–12 trials per plotted point. Statistical comparisons were made using Student’s paired or unpaired t test (without normalization), where appropriate. Drugs were obtained from Tocris Cookson or Sigma.
cally linked to a confocal scanhead (BioRad, Radiance 2000) (Rusakov and Fine, 2003). Epifluorescence was collected through a 7000SP filter and chromatically separated at 560 nm using a dichroic mirror that directed the two emission signals into separate photomultiplier tubes (λ_r < 560 nm for Fluo-4 and 560 nm < λ_r < 700 nm for Alexa 594). Large axonal varicosities were traced along the granule cell axon 70–200 μm from the soma. Line scanning (at 500 Hz) was run for a sweep duration of 600 ms at approximately 30 s intervals. A single antidromic action current was evoked using an extracellular bipolar electrode, 150 ms after the scanning sweep onset.

Data acquisition was only started once the baseline fluorescence had stabilized (15–20 min following break-in) to ensure that the indicator concentration was constant, and the variability was re-focused every 2–3 sweeps during the course of the experiment to obtain the brightest image. The effect of somatic de- or hyperpolarization on the evoked fluorescence transient was tested by systematically changing the holding voltage, in 10 mV steps, every 5–10 sweeps, to eliminate any nonspecific drift in the fluorescence response. In some experiments, orthodromic action potentials were induced by a 5 ms voltage command step applied through the patch pipette at the granule cell body. Imaging data obtained with ortho- and antidromic propagation of action potentials were indistinguishable and therefore combined. In experiments with SR95531 and muscimol, 8–15 sweeps were recorded for each experimental condition and, to minimize photodamage, 5–6 min was allowed to lapse before scanning resumed after the drug was washed out in solution. Line scans were collected as stacks of 6-bit images and analyzed offline with custom NIH Image macros. The Ca²⁺-dependent fluorescence transient ∆F/F was calculated within each sweep from the fluorescence signals (collected across the imaged variance) integrated over 100 ms time windows before and after the onset of the action current, which was simultaneously recorded. The average signal within each experimental phase ∆F/F (e.g., at a fixed value of V_m or during control/wash-in/wash-out) was then calculated. To assess the baseline fluorescence changes between experimental phases, we also calculated the average fluorescence (F) within each experimental phase. Because changes in (F) resulting from experimental manipulations could affect the interpretation of ∆F/F, we weighted (∆F/F) values by (F). The rationale for this correction factor is detailed below.

Baseline Fluorescence Correction Factor

Kinetic equations predict a simple relationship between free and buffer bound Ca²⁺ ([Ca²⁺]_{BF}) and [Ca²⁺], respectively, in steady-state conditions:

\[
\frac{[\text{Ca}^2+]_{BF}}{[\text{Ca}^2+]_{tot}} = \frac{K_{d}}{[\text{Ca}^2+] + K_{d}},
\]

where K_d is the dissociation constant of the ith buffer/indicator, and [B_{tot}] is its total concentration. Recast in terms of fluorescence, this transforms into (Tsien, 1989)

\[
\frac{[\text{Ca}^2+]_{BF}}{[\text{Ca}^2+]_{tot}} = \frac{F - F_{min}}{F_{max} - F},
\]

where F_{min}, F, and F_{max} are, respectively, the residual (Ca-free), observed, and maximum (Ca-saturated) fluorescence of the indicator. In the case of Fluo-4, K_d < 0.4 μM and F = F_{max}. Jackson and Redman (2003) have estimated the resting free [Ca²⁺] in the mossy fiber terminals at ~74 nM. When substituted into expression 2, this corresponds to a Fluo-4 F_{max}/F_{min} ratio, hereafter denoted φ, between 6 and 7. Our preliminary measurements of F_{min} with trains of stimuli are consistent with this.

When the high-affinity endogenous buffer EB and fluorescence indicator FI are both present in the terminal, the total quasi steady-state Ca²⁺ concentration [Ca_{tot}] is

\[
[\text{Ca}^2+]_{tot} = [\text{Ca}^2+] + [\text{Ca}^2+]_{BF} + [\text{CaEB}],
\]

where the last two terms correspond to the Ca bound indicator and Ca buffer, respectively. This expression can be recast using equations 1 and 2:

\[
[\text{Ca}^2+]_{tot} = K_{d}^i \frac{1}{1 - \phi} + \frac{[\text{FI}]}{[\text{FI}] + [\text{EB}]} \frac{1}{\phi},
\]

where K_dⁱ is the dissociation constant of FI, and φ^{EB} = 1 + K_d^{EB}/[Ca²⁺], where K_d^{EB} is the dissociation constant of EB. Jackson and Redman (2003) have estimated [EB]_{tot} ~ 130 μM, K_d^{EB} ~ 500 μM, and therefore φ^{EB} = 7.75.

Because F_{min} is a constant, expression 4 can be used to directly relate an increment in total Ca²⁺ to a percentage change in the fluorescence F.

In our voltage dependence experiments (Figure 5C), the average ∆F/F signal was 35% ± 4%, and in the muscimol experiments (Figure 6A) it was 34% ± 7%. The observed increases in the baseline fluorescence in these experiments were 20%–30% (Figures 5 and 6). Given the concentration values listed above and given the predicted range of φ between 6 and 7, it follows from expression 4 that in the presence of a baseline F increase of 30%, the same ∆F/F corresponds to a 30% ± 3% higher Ca²⁺ influx. In other words, weighting (∆F/F) values by (F) provided a correction with >90% accuracy in the average conditions of the experiments.

Although nonspecific photodamage in our experiments (30–45 sweeps, 600 ms long) is unlikely to exceed 5%–7% (Koester et al., 1999), individual boutons tended to show a small increase in the baseline fluorescence toward the end of the experiment (see, for instance, Figures 6B and 6E). Whenever such increases exceeded 30% (after washout of drugs), the data were discarded. Within individual sweeps, photo-bleaching was less than 2%.

Light Microscopic Immunohistochemistry

Vibratome sections were obtained from two adult male Sprague Dawley rats. Animals were anesthetized with urethane (1.5 g/kg, i.p.) and perfused over 20 min with 200 ml of 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.2) (PB). After dissection, brains were embedded in 7% Agarose, and 30 μm vibratome sections were cut transversely through the hippocampus. Sections were collected in 1% glycine/PB, washed in PB (3 x 10 min), and blocked for 30 min in incubation medium (IM) consisting of 10% fetal calf serum and 1% bovine serum albumin in PB; 0.1% saponin was added to permeabilize the tissue. Sections were then incubated overnight at 4°C in the presence of both primary antibodies (goat anti-GABA_a, Santa Cruz # sc-7350; mouse anti-synaptophysin, Boehringer Mannheim SY38), each diluted 1:100 in IM with 0.01% saponin. After extensive rinsing in PB (7 x 1 hr), preparations were blocked and permeabilized as above and secondary antibodies (Alexa 488 donkey anti-goat, Molecular Probes # A-11055, dilution 1:200; Cy3 goat anti-mouse, Jackson Immunoresearch # 111-165-003, dilution 1:500) were applied in IM overnight at 4°C. After final rinsing in PB (7 x 1 hr), preparations were mounted in Mowiol 4-88 (475904, Calbiochem) and polymerized overnight at 4°C. Preparations were examined using a Leica TCS NT confocal microscope.

EM-Immunogold Labeling Experiments

Ultrathin sections were obtained from freeze-substituted hippocampal tissue of two adult C57BL male rats as described previously (Fabian-Fine et al., 2001). Ultrathin sections (50 nm) were cut with a Reichert Ultratome and collected on pioloform-coated single-slot nickel grids. Grids were then washed extensively and rinsed in PB for 30 min, and preincubated in IM for 30 min at room temperature. Sections were then incubated with goat anti-GABA_a antibody (see above; 1:100 in IM) overnight at 4°C. After thorough washing (4 x 10 min in PB) and preincubation in IM (30 min), the secondary antibody (rabbit anti-goat IgG coupled to 10 nm gold particles; Sigma G-5402) was applied at a dilution of 1:100 in IM for 4 hr at 37°C. Preparations were then washed subsequently in PB (5 x 10 min) before final rinsing in double-distilled water. The sections were contrasted with uranyl acetate (4 min) and Reynold’s lead citrate (50 s) according to standard EM methods. Preparations were examined using a Philips 201C electron microscope, and mossy fiber synapses were identified as described previously (Reid et al., 2001). Control preparations from which the primary antibody was omitted showed no signal. Immunolabeling was analyzed using a Philips 201C electron microscope, and mossy fiber synapses were randomly selected at low magnification. Gold particles were counted at high magnification, and their density within synaptic profiles de-
terminated using NIH Image. Synapses were only scored as immunopositive when the labeling was above background level (evaluated over areas where no staining was expected, e.g., mitochondria and myelin).

Acknowledgments

We are grateful to Drs. Hugh Bostock, Alan Fine, and Barrie Lancaster for comments on the manuscript. This work was supported by the Medical Research Council, the Brain Research Trust, the Wellcome Trust, and the Killam Trust.

Received: December 2, 2002
Revised: July 31, 2003
Accepted: August 20, 2003
Published: September 10, 2003

References

