Frontiers in Systems Neuroscience 6(34):1-10, 2012. DOI: 10.3389/fnsys.2012.00034

Computational models of neurophysiological correlates of tinnitus

R. Schaette and R. Kempter.

The understanding of tinnitus has progressed considerably in the past decade, but the details of the mechanisms that give rise to this phantom perception of sound without a corresponding acoustic stimulus have not been pinpointed yet. It is now clear that tinnitus is generated in the brain, not in the ear, and that it is correlated with pathologically altered spontaneous activity of neurons in the central auditory system. Both increased spontaneous firing rates and increased neuronal synchrony have been identified as putative neuronal correlates of phantom sounds in animal models, and both phenomena can be triggered by damage to the cochlea. Various mechanisms could underlie the generation of such aberrant activity. At the cellular level, decreased synaptic inhibition and increased neuronal excitability, which may be related to homeostatic plasticity, could lead to an over-amplification of natural spontaneous activity. At the network level, lateral inhibition could amplify differences in spontaneous activity, and structural changes such as reorganization of tonotopic maps could lead to self-sustained activity in recurrently connected neurons. It is difficult to disentangle the contributions of different mechanisms in experiments, especially since not all changes observed in animal models of tinnitus are necessarily related to tinnitus. Computational modelling presents an opportunity of evaluating these mechanisms and their relation to tinnitus. Here we review the computational models for the generation of neurophysiological correlates of tinnitus that have been proposed so far, evaluate predictions and compare them to available data. We also evaluate the limits of their explanatory power, thus demonstrating where an understanding is still lacking and where further research may be needed. Identifying appropriate models is important for finding therapies and we therefore also summarize the implications of the models for approaches to treat tinnitus.