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Abstract

In the hippocampal formation, the sequential activation of place-specific

cells represents a conceptual model for the spatio-temporal events that assem-

ble episodic memories. The imprinting of behavioral sequences in hippocampal

networks might be achieved via spike-timing-dependent plasticity and phase pre-

cession of the spiking activity of neurons. It is unclear, however, whether phase

precession plays an active role by enabling sequence learning via synaptic plas-

ticity or whether phase precession passively reflects retrieval dynamics. Here we

examine these possibilities in the context of potential mechanisms generating

phase precession. Knowledge of these mechanisms would allow to selectively al-

ter phase precession and test its role in episodic memory. We finally review the

few successful approaches to degrade phase precession and the resulting impact

on behavior.

Keywords: phase precession, hippocampal formation, sequence learning,

episodic-memory formation, temporal compression, spike-timing-dependent

plasticity

∗Corresponding author
Email address: r.kempter@biologie.hu-berlin.de (Richard Kempter)

Preprint submitted to Current Opinion in Neurobiology March 2, 2017



The hippocampal formation is a notable structure in the mammalian brain

implicated in episodic memory and navigation [1]. While rats, mice, bats, or

humans are exploring a given environment, cells in their hippocampal formation

code for space by firing in restricted regions of the environment, the cells’ firing

fields [2] (see also [3, 4] for cells with non-spatial firing fields). Spatio-temporal5

events constitute episodic memories, and remembering the sequential ordering

of these events is important. Thus, the neural encoding of sequences of firing

fields in the awake state and their subsequent replay [5] are thought to be a

substrate for episodic memory acquisition and consolidation. It is not clear,

however, how such firing-field sequences are formed.10

A basic understanding of the neurobiology of sequence learning requires

knowledge about rules of synaptic plasticity, whose outcome critically depends

on the correlated activity of neurons. Therefore, knowledge about the neural

representation of sensory information is required. While recent experiments have

revealed in great detail the dependence of the induction of long-term plasticity15

in the hippocampus on the millisecond timing of pre- and postsynaptic spikes

[6] (for a review see, e.g., [7]), much less is known about how such millisecond

timing in hippocampal neurons is related to sensory input. In other words, do

hippocampal networks exhibit an appropriate neuron-correlation code [8] where

the millisecond-timing of action potentials (with respect to the theta rhythm)20

carries information about sensory input?

Hippocampal phase precession [9] is a potential candidate for a code that

supports the learning of behavioral sequences [10]. Phase precession means

that within the firing fields of place-specific cells in the hippocampus, there is

a systematic advancement of spike phases relative to the ongoing extracellular25

theta oscillation (4–12 Hz) (Fig. 1 A). If two cells with overlapping place fields

show phase precession, the temporal separation between spikes in the overlap

region is typically in the order of milliseconds. The order and the small interval

between pre- and postsynaptic spikes is well suited for asymmetric spike-timing-

dependent plasticity (STDP) rules, which can modulate the connection strength30

between these cells to facilitate sequence formation. However, despite consider-
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able recent efforts in modeling and analyzing phase precession, there is to date

no clear answer to whether the brain actually uses this code.

In what follows, we review the possible functions of phase precession in light

of their hypothesized mechanisms of generation and the evidence supporting35

them. We then review a few studies that have assessed the behavioral impact

of interfering with phase precession. We conclude with a few open questions for

future research in the field of phase precession.

What are the possible functions of phase precession?

Phase precession has typically been studied in the rodent hippocampal for-40

mation while the animal navigates in a one- or two-dimensional environment

[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], but phase precession has also been

observed outside the hippocampal formation [21], and in a variety of contexts

including running on a wheel [3] or treadmill [22], jumping [23], virtual reality

[24, 25, 26], and during fixation [27]. Recent evidence indicates phase precession45

also in the human hippocampus [28].

Here, we first review three classic hypotheses on the functional relevance of

phase precession: (1) phase coding (e.g., [9, 29]), (2) enabling synaptic plasticity

(e.g., [10]), and (3) sequence retrieval and prediction (e.g., [30]). It is important

to note that these three hypotheses are not mutually exclusive but rather suggest50

distinct computations that could be carried out in the brain to support episodic

memory; moreover, the three hypotheses might even be interrelated.

However, we suggest that hypothesis (2) is more related to cellular models

of phase precession generation, while hypothesis (3) is more consistent with net-

work models. Understanding the mechanisms of phase precession generation is55

of utmost importance because only then can we interfere with phase precession

to elucidate its functional relevance. Unfortunately, unraveling the mechanisms

behind phase precession has proven challenging [31], although a combination

of network, cellular, and inheritance mechanisms are likely to be involved (see

[32, 33, 34] for a discussion of models). Nevertheless, recent experimental re-60
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sults have considerably extended our understanding of the properties of phase

precession and provided further constraints on potential generating mechanisms

[35, 36, 37, 38, 39, 15, 40, 41, 42, 43, 44, 45, 46, 25, 24].

(1) Phase coding: a hallmark of phase precession

Phase precession was initially defined in terms of the correlation of action65

potentials’ theta phase and position or time within the firing field, which im-

mediately also suggested the existence of a phase code [9]. More precisely, the

phase-coding hypothesis states that the theta phase complements the informa-

tion provided by the coarse place-selectivity at the level of the trial-averaged

firing rate [47, 48, 49]. Indeed, phase information can be used to reconstruct70

more precisely the current location of an animal beyond the rate within a place

field [29, 50]. With phase information at hand, it is possible to disambiguate

entry and exit through a place field, even if the animal engages in backward

travel [43].

Phase precession can also code for behaviorally relevant variables beyond75

position such as a goal location. When rats navigated a T-maze during a spa-

tial alternation task, cells in the ventral striatum ramped their firing activity

and exhibited phase precession towards reward locations [51]. The anticipatory

activity of the phase-precessing ramp cells could underlie the learning of place-

reward associations [21]. It is thus possible that phase precession in the ventral80

striatum is inherited from the hippocampus [51, 32, 33]. Thus, the theta phase

provides additional information beyond the firing rate although the relationship

between phase, firing rate, and position might be complex [43].

(2) Enabling synaptic plasticity: cellular models for phase precession and tem-

poral compression85

Cellular models explain phase precession as arising from the dynamics within

a single cell, which causes the cell to reach firing threshold at earlier phases as

the animal crosses the cell’s firing field (e.g., [9, 52, 12, 11, 53]; for review
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see, e.g., [54]). Importantly, no particular synaptic connectivity is assumed for

cellular models.90

If phase precession is an emergent property of single cells, it could be used for

the encoding of behavioral sequences. Through temporal compression, behav-

ioral sequences experienced by the animal, for example, place-field sequences,

they are represented within a theta cycle (see Box 1 for a detailed definition of

temporal compression). Because of temporal compression, and given a set of95

overlapping place fields (Fig. 1 B), the spikes from the corresponding place cells

are separated by a few tens of milliseconds: a time scale appropriate for the

induction of LTP or LTD (or STDP, if the synaptic-weight change additionally

depends on exact pre-postsynaptic timing) [10, 55, 56]. Thus, by means of phase

precession, asymmetric connections between place cells that allow for a rapid100

encoding of sequences can be formed.

Only a few studies have explored the relationship between place-cell firing

patterns and the plasticity of hippocampal cells. For example, place fields in the

CA1 region of the hippocampus expand asymmetrically after repeated exposures

to familiar tracks [57, 58], and this expansion is abolished with NMDA-receptor105

antagonists [59, 45, 46].

In an in vitro study, Isaac and colleagues [60] injected natural, that is, phys-

iological spike trains into two connected CA3-CA1 cells. The degree of LTP

was dependent on the degree of temporal overlap between the two spike trains,

which mimics the spatial overlap during place-field traversals. Synaptic weights110

between place cells could thus be used to encode spatial distance [61]. It was

intriguing that only LTP was observed, regardless of the relative ordering be-

tween pre- and postsynaptic spikes (see also [62]). Similarly, STDP at CA3-CA3

synapses in vitro showed a symmetric dependence on spike timing [6].

The studies described above suggest that plasticity results from experience115

as well as from the typical firing patterns found in the hippocampus in vivo

during place-field traversals. It is not clear yet, however, whether the temporal

structure of the spiking activity, as dictated by phase precession, has any bearing

on the synaptic associations between place cells.
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(3) Sequence-retrieval and prediction: network models for phase precession and120

theta sequences

Network models explain phase precession through the concept of look-ahead:

external feed-forward input activates neurons selective for the animal’s current

location, and internal recurrent connections propagate this neural activity to

neurons representing positions ahead of the animal’s trajectory (e.g., [63, 64]; for125

a review see, e.g., [30]). This network-level mechanism can generate phase pre-

cession in single cells through the transition between the external (feed-forward)

drive and the internal (recurrent) input. Thus, network-level interactions could

generate phase precession that reflects the retrieval or prediction of already

encoded behavioral sequences.130

According to the look-ahead property of network models of phase precession,

there is a sequential representation of the path ahead of the animal. To quantify

this representation, one can rank the sequentially activated place cells accord-

ing to the temporal order of place cells visited. The order of the sequentially

activated place cells is also preserved within one theta cycle at the level of spike135

times, as initially pointed out by Skaggs and colleagues [10] and later quantified

by Dragoi and Buszaki [65]. To further formalize these findings, Foster and Wil-

son [66] introduced the concept of theta sequences: sequences of spikes from an

ensemble of place cells where there is a correlation between cell order and spike

time within one theta cycle (Fig. 1 C and 2 A). Thus, behavioral sequences140

are compressed within one theta cycle in a manner reminiscent of the temporal

compression previously described. We should note that this sequential repre-

sentation is not necessarily exclusive to network models but could in principle

also arise from single-cell phase precession in a population of cells (see section

“How are theta sequences related to phase precession?” below).145

Johnson and Redish [67] and Gupta and colleagues [68] studied the relation-

ship between theta sequences and behavior using a T-maze spatial alternation

task. In [68], theta sequences represented not only paths ahead of the animal

(prospective coding, see also [67]) but also paths behind (retrospective coding).

Both types of coding occurred preferentially between landmarks or points of150
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special interest such as decision points (for prospective and retrospective coding

at a single-cell level see [69]). Trajectories represented by theta sequences were

also observed in a study where rats were placed on a train and were carried

through a maze during forward and backward travel [43] (Fig. 2 B). Remark-

ably, theta sequences also predicted goal locations as rats performed a value-155

guided decision-making task [70], demonstrating a behavioral relevance beyond

navigation (Fig. 2 C).

How are theta sequences related to phase precession?

Phase precession is a property of the spiking activity of a single cell (what-

ever mechanism generates it) whereas theta sequences are defined only in a160

population of cells. A population of phase-precessing cells with similar entry

phase also shows theta sequences. Notably, phase precession can exist even if

the entry phase is variable (from trial to trial and/or across cells) but theta

sequences cannot.

Feng et al. [71] explored the relationship between theta sequences and phase165

precession and showed that theta sequences require experience whereas phase

precession can be observed even in novel environments (see also [72]). For

theta sequences, it is necessary that the cells involved have a similar entrance

theta phase (as in Fig. 1); thus phase-locking at field entrance develops with

experience to produce the theta sequence [71]. A similar dissociation between170

phase precession and theta sequences was found by Middleton et al. [73] who

showed that silencing CA3 input to CA1 disrupts theta sequences in CA1 while

sparing phase precession, which presumably was either generated de novo in

CA1 or inherited from MEC [40, 32, 33].

It is still unresolved whether theta sequences reflect a network structure and175

are thus distinct from multiple single-cells’ phase precession. If theta sequences

are generated in a population of recurrently connected cells as dictated by net-

work models of phase precession [64], there should be a sequential structure

above and beyond what is implied from cellular models. Foster and Wilson [66]

reported such excess sequential structure by showing that the disruption of theta180
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sequences via shuffling does not affect theta phase-position correlations. Chad-

wick et al. [34] challenged this conclusion by showing that applying the same

shuffling procedure to an ensemble of simulated independent phase-precessing

cells leads to the same result.

An important assumption of network models of phase precession is that the185

connectivity between place cells is asymmetric and therefore is learned. Thus

phase precession may have a learning-independent and a learning-dependent

component [30]. It may be possible to map these components to the findings by

Feng et al.[71] who showed that phase precession develops into theta sequences

as a function of experience.190

In conclusion, there is evidence that theta sequences code for behaviorally

relevant variables [74, 75]. However, an important issue is still unresolved: is

phase precession mediating the encoding of sequences, or is phase precession the

by-product of retrieving those sequences?

Interfering with phase precession195

Although there is no consensus on the mechanisms generating phase preces-

sion, it has been possible to alter the entorhinal-hippocampal circuitry in specific

ways that resulted in abnormal phase precession. Robbe and Buzsáki [76] exam-

ined the effect of cannabinoids on the spatial coding properties of place cells in

the hippocampus, as well as on memory and navigation in a spatial-alternation200

task: the administration of a cannabinoid agonist impaired rats in perform-

ing the delayed spatial-alternation task while leaving the place-field (i.e., rate)

representation essentially intact. However, on a theta time scale, which is the

time scale relevant for phase precession, there were alterations of the dynamics

as measured by the sequence compression factor (Box 1). Similar results on205

aberrant phase precession and compression of temporal sequences were found in

epileptic rats [77]. Furthermore, in [76] there was a strong correlation between

the percentage of correct trials and the theta-scale sequence compression index,

suggesting that the theta-scale coding was necessary to perform the task.
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Wang et al. [42] found a similar dissociation between a place code and210

theta-time scale activity. They inactivated the medial septum of rats, and this

manipulation abolished theta sequences and episode fields during wheel running

and disrupted the animal’s behavior in a memory task (Fig. 2 D), but spared

the place-cell representation when the rats were navigating in a maze.

Overall, the results from the above studies suggest that it is possible to inter-215

fere with theta-time scale dynamics while sparing the place-code representation.

However, it is not possible to conclude that the disruption in the sequential rep-

resentation was the cause of the behavioral impairments. For example, medial-

septum inactivation [42] also disrupts theta oscillations, which alone could have

caused the deficits. Furthermore, the above experiments cannot distinguish be-220

tween the encoding and retrieval interpretations of phase precession because the

interference with this phenomenon occurred during both phases; this issue can

therefore only be resolved by experiments that selectively interfere with phase

precession either during encoding or retrieval.

Concluding remarks225

The study of phase precession has shed light on hippocampal dynamics, on

memory-related and goal-related behaviors, and on the computational roles of

oscillations in cognition [78]. Whether phase precession enables sequence learn-

ing, is a signature of a retrieval process, or neither, remains an open question.

Overall, to unravel functional roles of phase precession, it should be studied230

in the context of hippocampus-dependent tasks (e.g. [3, 42, 70]) that allow for

the isolation of internal memory or decision-making processes from other pro-

cesses such as sensory-motor feedback or path integration; furthermore, phase

precession should be studied in conjunction with other temporal patterns ob-

served in the hippocampal formation that have been also linked to synaptic235

plasticity during memory encoding and/or retrieval, such as sharp wave-ripples

and gamma oscillations in the local field potential [79, 64].

A fruitful approach towards elucidating the function of phase precession
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comes from studies dissociating theta-time scale coding from behavioral-time

scale coding to interfere selectively with phase precession [76, 42]. Moreover, the240

manipulation of phase precession at specific times with respect to a task might

enable one to distinguish contributions to encoding, maintenance, and retrieval

of memories. Substantial progress on this front could result from pinning down

the mechanisms of phase-precession generation to selectively interfere with phase

precession in different parts of the brain in search for specific deficits.245

Starting from place fields and synaptic plasticity, phase precession is an ap-

pealing phenomenon to explain the formation of behavioral sequences; it remains

to be quantified whether other theories that do not utilize phase precession (e.g.,

[80]) are also feasible. A better understanding of first, the behavioral correlates

of phase precession and, second, the means to interfere with phase precession250

will help guide future research on hippocampal dynamics and its relationship to

navigation and episodic memory.

BOX 1: Temporal compression

Time lag (s)

-0.5 0 0.5 1
0

1

T

τ

C
ro

s
s
-c

o
rr

e
la

ti
o

n

  
 (

n
o

rm
a

liz
e

d
)

Temporal compression refers to the theta-time scale representation of a

behavioral-time scale place-field sequence. To quantify temporal compression,255

one can use the cross-correlogram of a pair of phase-precessing cells with over-

lapping place fields (see schematic above). The time T at which the maximum

of the envelope of the cross-correlogram occurs represents the separation in time

of the two place-field peaks and is referred to as the behavioral time lag [65].

Because the cells exhibit phase precession, the cross-correlogram also has a260

temporal structure at the theta-time scale. The time of the first peak (with

respect to a reference at time lag 0) is called the theta time lag τ . In the case of
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place fields of equal size, τ is simply the time lag within one theta cycle between

the spikes of the two place cells (Fig. 1 B and [81]). For a given population of

N cells with overlapping place fields, the quantities Ti and τi for i = 1, ..., N265

cells are linearly correlated [65, 82]. Temporal compression is then quantified

via the correlation coefficient (compression index) and the slope (compression

factor) of the T vs. τ relationships.

References and recommended reading

Papers of particular interest, published within the period of review, have270

been highlighted as:

• of special interest

•• of outstanding interest

Conflict of interest statement

Nothing declared.275

Acknowledgments

We thank Eric Reifenstein and Tiziano D’Albis for comments on the manuscript.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG)

[grant numbers GRK 1589/2, KE 788/3-1] and the Bundesministerium für Bil-

dung und Forschung (BMBF) [grant numbers 01GQ1001A, 01GQ0972].280

References
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[65] G. Dragoi, G. Buzsáki, Temporal encoding of place sequences by hippocam-

pal cell assemblies, Neuron 50 (1) (2006) 145–157. doi:10.1016/j.neuron.

2006.02.023.

[66] D. J. Foster, M. A. Wilson, Hippocampal theta sequences, Hippocampus

17 (11) (2007) 1093–1099. doi:10.1002/hipo.20345.545

[67] A. Johnson, A. D. Redish, Neural ensembles in CA3 transiently encode

paths forward of the animal at a decision point, J Neurosci 27 (45) (2007)

12176–12189. doi:10.1523/JNEUROSCI.3761-07.2007.

[68] A. S. Gupta, M. A. van der Meer, D. S. Touretzky, A. D. Redish, Segmen-

tation of spatial experience by hippocampal theta sequences, Nat Neurosci550

15 (7) (2012) 1032–1039. doi:10.1038/nn.3138.

[69] K. W. Bieri, K. N. Bobbitt, L. L. Colgin, Slow and fast gamma rhythms co-

ordinate different spatial coding modes in hippocampal place cells, Neuron

82 (3) (2014) 670–681. doi:10.1016/j.neuron.2014.03.013.

[70] A. M. Wikenheiser, A. D. Redish, Hippocampal theta sequences reflect555

current goals, Nat Neurosci 18 (2) (2015) 289–294,

•• Theta sequences can encode prospective choices based on value.

. doi:10.1038/nn.3909.

[71] T. Feng, D. Silva, D. J. Foster, Dissociation between the experience-

dependent development of hippocampal theta sequences and single-trial560

phase precession, J Neurosci 35 (12) (2015) 4890–4902,

• The existence of phase precession is not trivially predictive of theta se-

quences, as the latter develops with experience. Phase precession is observed

in novel environments, but theta sequences are only observed after repeated

21

http://dx.doi.org/10.1002/hipo.22355
http://dx.doi.org/10.1002/hipo.22355
http://dx.doi.org/10.1002/hipo.22355
http://dx.doi.org/10.1016/j.neuron.2006.02.023
http://dx.doi.org/10.1016/j.neuron.2006.02.023
http://dx.doi.org/10.1016/j.neuron.2006.02.023
http://dx.doi.org/10.1002/hipo.20345
http://dx.doi.org/10.1523/JNEUROSCI.3761-07.2007
http://dx.doi.org/10.1038/nn.3138
http://dx.doi.org/10.1016/j.neuron.2014.03.013
http://dx.doi.org/10.1038/nn.3909


exposures to the environment.565

. doi:10.1523/JNEUROSCI.2614-14.2015.

[72] S. Cheng, L. M. Frank, New experiences enhance coordinated neural activ-

ity in the hippocampus, Neuron 57 (2) (2008) 303–313. doi:10.1016/j.

neuron.2007.11.035.

[73] S. J. Middleton, T. J. McHugh, Silencing CA3 disrupts temporal coding in570

the CA1 ensemble, Nat Neurosci 19 (7) (2016) 945–951,

• CA3 input is required for coordinated temporal coding in CA1, but not

for phase precession in CA1.

. doi:10.1038/nn.4311.

[74] A. M. Wikenheiser, A. D. Redish, Decoding the cognitive map: ensem-575

ble hippocampal sequences and decision making, Curr Opin Neurobiol 32

(2015) 8–15. doi:10.1016/j.conb.2014.10.002.
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Figure 1: Sketch of phase precession, temporal compression, and theta sequences. A, Phase-

time plot of spikes (black dots) of three place cells (colored lines) that exhibit phase precession

within their overlapping place fields. Across theta cycles (vertical dashed lines), spikes arrive

at earlier and earlier phases with respect to the theta oscillation (black curve on top). Entry

phase for the three place cells is the same. B, Firing-rate activity (colored lines) of the

three place cells in A illustrating temporal compression. For clarity, single spikes (vertical

bars) occur preferentially at the peaks of the firing-rate curves. The symbol T denotes the

separation in time between two consecutive place-field centers, and τ is the theta-time-scale

separation between two spikes corresponding to two consecutive place fields within a theta

cycle. C, Theta sequences allow the representation of traversed place fields at a theta time

scale. Here, rank is correlated with spike time within a theta cycle, the defining feature of a

theta sequence [66].
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Figure 2: Examples of theta-time-scale dynamics with behavioral relevance. A, Ordered

sequences of place fields (black to gray, top) are also represented by sequences of spikes within

single theta cycles (empty and filled circles, bottom). ([42]; reproduced with permission from

Nature Publishing Group). B, Theta sequences during backward travel ([43]; reproduced

with permission from Nature Publishing Group). LFP theta oscillations and spikes of 34

simultaneously recorded CA1 pyramidal cells (top). A Bayesian decoder uses a fraction of the

ongoing theta cycle, six in total, to estimate the positions ahead or behind the rat (bottom). A

sweep refers to a position-reconstruction for each theta cycle and red (blue) denotes maximum

(minimum) probability for the decoded position. C, Spikes within a theta cycle represent

trajectories ahead of the animal and can reflect current goals ([70]; reproduced with permission

from Nature Publishing Group). The ‘x’ marks the current position of a rat that traverses

a T-maze, and colored dots correspond to cells active at points ahead of the animal on the

track. The order of the dots on the track corresponds to the order of the spikes within a theta

cycle. D, Left, behavioral versus theta-time scale pair-wise cross-correlation peak before (top),

during (middle), and after (bottom) muscimol injection into the medial septum while rats were

running on a wheel. Right, behavioral performance during a two-armed, delayed alternation

memory task, which included running on a wheel during the delay.([42]; reproduced with

permission from Nature Publishing Group).
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