J. Neurophysiol., 119: 1422-1436, 2018. doi:10.1152/jn.00175.2017

Contribution of action potentials to the extracellular field potential in the nucleus laminaris of barn owl.

P.T. Kuokkanen, G. Ashida, A. Kraemer, T. McColgan, K. Funabiki, H. Wagner, C. Koeppl, C.E. Carr, R. Kempter

Extracellular field potentials (EFP) are widely used to evaluate in vivo neural activity, but identification of multiple sources and their relative contributions is often ambiguous, making the interpretation of the EFP difficult. We have therefore analyzed a model EFP from a simple brainstem circuit with separable pre- and postsynaptic components to determine if we could isolate its sources. Our previous papers had shown that the barn owl neurophonic largely originates with spikes from input axons and synapses that terminate on the neurons in the nucleus laminaris (NL) (Kuokkanen et al., 2010, 2013; McColgan et al., 2017). To determine how much the postsynaptic NL neurons contributed to the neurophonic, we recorded EFP responses in NL in vivo. Power spectral analyses showed that a small spectral component of the evoked response, between 200 and 700 Hz, could be attributed to the NL neurons' spikes, while NM spikes dominate the EFP at frequencies >1 kHz. Thus, spikes of NL neurons and NM axons contribute to the EFP in NL in distinct frequency bands. We conclude that if the spectral components of source types are different and if their activities can be selectively modulated, the identification of EFP sources is possible.