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! This is the last assignment of the Programming Course. The projects will be available

at the beginning of June at http://itb.biologie.hu-berlin.de/∼kempter/Teaching/2003 SS/.

We will give a brief introduction to all projects on June 5, 2003 during the regular course

hours. You can sign up for one project, and start working on it right away.

12. Random distributions

The random number generator of Matlab, >> rand, produces uniformly distributed random

numbers (called u here) in the open interval ]0, 1[. Try! Then restart Matlab and try again.

Do you get the same ‘random’ numbers?

How can we obtain random variables t that are drawn from any given probability distribu-

tion f(t)? This can be done by solving the integral equation

t∫

−∞

dt′f(t′) = u, (1)

for t, where u = rand is a given random number. If you are ambitious to understand this,

proceed with exercise 15.

13. Homogeneous Poisson Process

• Derive an algorithm for producing random numbers t drawn from the probability

distribution f(t) = λ0 exp(−λ0 t) for t ≥ 0 and f(t) = 0 for t < 0 (solution: t =

−[log(1− u)]/λ0). The random numbers t can be interpreted as the intervals between

events (or spikes) of a homogeneous Poisson process with rate λ0, and f(t) is the

inter-spike interval (ISI) distribution.

• Implement a Matlab function named Poisson that takes the rate λ0 as input, and

returns an ISI.

• Produce a 10-second Poisson spike train with rate λ0 = 10 Hz using a while loop that

terminates when the 10-second period is over (hint: >> help while).

• Plot the histograms of the above spike train (bin width 50 ms) and ISI distribution

(bin width 2 ms).

• Produce a 10-second Poisson spike train with rate 10 Hz and absolute refractoriness

of (unphysiological) 20 ms. Again, plot the histogram and ISI distribution.

14. Inhomogeneous Poisson Process

We start from the inter-spike interval distribution f(t) = λ0 exp (−λ0 t) of a homogeneous

Poisson process that has generated a set {si} of spike times (1 ≤ i ≤ N) with a constant

1



rate λ0 (see exercise 13). An inhomogeneous Poisson process produces spikes with a time-

dependent rate λ(t) that can be any smooth enough function. The set {ti} of spike times of

the inhomogeneous Poisson process can be obtained from the homogeneous Poisson process

{si} by using the integral transformation si =
∫ ti
t0

dt λ(t)/λ0, or the recursion formula

si = si−1 +
∫ ti
ti−1

dt λ(t)/λ0. In order to generate and analyze an inhomogeneous Poisson

process, please proceed as follows:

• Produce a 1-second homogeneous Poisson spike train {si} with rate λ0 = 100 Hz.

• Write the Matlab function timewarp that transforms the set of spike times {si} into

the set {ti} of spike times of an inhomogeneous Poisson process with rate λ(t) =

r [1 + cos(2π f t)] where r = 100 Hz and f = 3.3 Hz. Hint: Numerically integrate

the above transformation with step width ∆t = 2 ms by means of a while loop that

terminates as soon as the sum I(ni) =
∑ni

n=0
∆t λ(t0 + n∆t)/λ0 is larger than si. At

this point we have ti ≈ ni∆t.).

• Produce 20 more 1-second spike trains {ti} at rate r = 10 Hz and plot the average

rate 〈ρ(t)〉.
• Calculate and plot the average spike autocorrelation function (see last week’s Solution)

of the 20 spike trains. What do large peaks near ±1 s mean?

• Calculate and plot the average spike stimulus correlation function

Qρλ(s) = T−1

∫ T

0

dt 〈ρ(t + s)λ(t)〉

Hint: T=1 s.

15. One for the specialists (you won’t need Matlab)

• Invert the integral Equation (1) for two more examples:

a) f(t) = 1/∆ for 0 ≤ t ≤ ∆ and f(t) = 0 otherwise.

b) f(t) = t/∆ for 0 ≤ t ≤
√

2∆ and f(t) = 0 otherwise.

• Plot both the probability density f(t) and the cumulative distribution function
∫ t

−∞
dt′ f(t′)

for one of the two examples above (−1 ≤ t ≤ 3, ∆ = 2), and provide a graphical ex-

planation for the solution of Equation (1).

• Try to derive Equation (1). Start with the normalization condition
∫

f(t′)dt′ = 1 and

proceed with the appropriate integral parameter transformations.

Dr. R. Kempter, phone 8924, room 2315 r.kempter@biologie.hu-berlin.de

Dr. C. Leibold, phone 8925, room 2315 c.leibold@biologie.hu-berlin.de

Processing and discussion of the exercises on 22.05.2003, 815
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