Humboldt-Universität zu Berlin
Exercise Set 1
Institute for Theoretical Biology

Computational Neuroscience IV:
 Analysis of Neural Systems

Dr. R. Kempter, Prof. Dr. A.V.M. Herz

Probability Density and Expectations

For a probability density function (pdf) p_{x} of a random variable x, the expectation of a function $g(x)$ is denoted by

$$
E\{g(x)\}:=\int_{-\infty}^{+\infty} g(\xi) p_{x}(\xi) \mathrm{d} \xi
$$

We define the mean, second moment, and the variance of x as $m_{x}=E\{x\}, r_{x x}=E\left\{x^{2}\right\}$, and $\sigma^{2}=$ $E\left\{\left(x-m_{x}\right)^{2}\right\}$, respectively. Probability densities are always normalized: $E\{1\}=1$. The generalization to random vectors \mathbf{x} is provided below.

1. Linearity of Expectations

Let $x_{i}(i=1, \ldots, m)$ be a set of different, but not independent, random variables, i.e. the vector $\mathbf{x}:=\left(x_{1}, \ldots, x_{m}\right)^{T}$ is random with pdf $p_{\mathbf{x}}$. Prove that the expectations satisfy the linearity property

$$
E\left\{\sum_{i=1}^{m} a_{i} x_{i}\right\}=\sum_{i=1}^{m} a_{i} E\left\{x_{i}\right\}
$$

where the a_{i} are arbitrary scalar coefficients.

2. Moments

Explicitly compute the mean, second moment, and variance of a random variable distributed uniformly in the interval $[a, b]$ for $b>a$.

Joint and Marginal Densities

The marginal densities $p_{x}(\xi)$ and $p_{y}(\eta)$ of the random variables x and y are obtained from their joint density $p_{x, y}(\xi, \eta)$ through integration:

$$
p_{x}(\xi)=\int_{-\infty}^{\infty} p_{x, y}(\xi, \eta) \mathrm{d} \eta, \quad p_{y}(\eta)=\int_{-\infty}^{\infty} p_{x, y}(\xi, \eta) \mathrm{d} \xi .
$$

3. Marginal Density

Calculate the marginal densities of

$$
p_{x, y}(\xi, \eta)=\left\{\begin{array}{cl}
\frac{3}{7}(2-\xi)(\xi+\eta) & \text { for } \quad \xi \in[0,2], \eta \in[0,1] \\
0 & \text { otherwise. }
\end{array}\right.
$$

Uncorrelatedness and Independence

Two scalar random variables x and y are uncorrelated if their covariance $c_{x y}$ is zero. The covariance is defined as

$$
c_{x y}:=E\left\{\left(x-m_{x}\right)\left(y-m_{y}\right)\right\} .
$$

The random variables x and y are said to be independent if and only if their joint density factorizes into the product of their marginal densities,

$$
p_{x, y}(\xi, \eta)=p_{x}(\xi) p_{y}(\eta)
$$

for all ξ and for all η.

4. Independence

Show that independent random variables x and y satisfy the basic property

$$
E\{g(x) h(y)\}=E\{g(x)\} E\{h(y)\}
$$

where $g(x)$ and $h(y)$ are absolutely integrable functions. Use the generalization of expectations to two random variables, $E\{g(x) h(y)\}=\int \mathrm{d} \xi \int \mathrm{d} \eta p_{x, y}(\xi, \eta) g(\xi) h(\eta)$.
5. Independence Implies Uncorrelatedness
a) Prove that independence of x and y implies uncorrelatedness.
b) Give an example to show that uncorrelatedness does not imply independence. For example, assume that the pair (x, y) takes on discrete values $(0,1),(0,-1),(1,0),(-1,0)$ with probability $1 / 4$ each.

6. Not Independent

Argue that the random variables x and y in Problem 3 are not independent.

7. Orthonormal Transformations (Rotations)

Assume that x_{1} and x_{2} are zero-mean, correlated random variables. Any orthonormal transformation of x_{1} and x_{2} can be represented in the form

$$
\begin{aligned}
& y_{1}=+x_{1} \cos \alpha+x_{2} \sin \alpha \\
& y_{2}=-x_{1} \sin \alpha+x_{2} \cos \alpha
\end{aligned}
$$

where the parameter α defines a rotation angle of coordinate axes. Let the variances be $E\left\{x_{1}^{2}\right\}=\sigma_{1}^{2}>0$, $E\left\{x_{2}^{2}\right\}=\sigma_{2}^{2}>0$, and the covariance be $E\left\{x_{1} x_{2}\right\}=\rho \sigma_{1} \sigma_{2}$. Find the angle α for which y_{1} and y_{2} become uncorrelated.

Dr. R. KEmpter, phone 2093-8925, room 2315, r.kempter (AT) biologie.hu-berlin.de
Prof. Dr. A.V.M. Herz, phone 2093-9112, room 2325, a.herz(AT) biologie.hu-berlin.de

Problems handed out on Monday, 24.04.2006.
Solutions to be handed in by Friday, 05.05.2006, $8^{30} \mathrm{am}$.
Discussion of the problems on Friday, 05.05.2006, $8^{30}-10^{00} \mathrm{am}$ in front of room 2317 I-W (Zwischengeschoß).

