

Humboldt-Universität zu Berlin Institute for Theoretical Biology Exercise Set 1 April–24-2006

Computational Neuroscience IV: Analysis of Neural Systems Dr. R. KEMPTER, PROF. Dr. A.V.M. HERZ

Probability Density and Expectations

For a probability density function (pdf) p_x of a random variable x, the expectation of a function g(x) is denoted by

$$E\{g(x)\} := \int_{-\infty}^{+\infty} g(\xi) \, p_x(\xi) \, \mathrm{d}\xi$$

We define the mean, second moment, and the variance of x as $m_x = E\{x\}$, $r_{xx} = E\{x^2\}$, and $\sigma^2 = E\{(x - m_x)^2\}$, respectively. Probability densities are always normalized: $E\{1\} = 1$. The generalization to random vectors **x** is provided below.

1. Linearity of Expectations

Let x_i (i = 1, ..., m) be a set of different, but not independent, random variables, i.e. the vector $\mathbf{x} := (x_1, ..., x_m)^T$ is random with pdf $p_{\mathbf{x}}$. Prove that the expectations satisfy the linearity property

$$E\left\{\sum_{i=1}^{m} a_i x_i\right\} = \sum_{i=1}^{m} a_i E\{x_i\} ,$$

where the a_i are arbitrary scalar coefficients.

2. Moments

Explicitly compute the mean, second moment, and variance of a random variable distributed uniformly in the interval [a, b] for b > a.

Joint and Marginal Densities

The marginal densities $p_x(\xi)$ and $p_y(\eta)$ of the random variables x and y are obtained from their joint density $p_{x,y}(\xi,\eta)$ through integration:

$$p_x(\xi) = \int_{-\infty}^{\infty} p_{x,y}(\xi,\eta) \,\mathrm{d}\eta \,, \qquad p_y(\eta) = \int_{-\infty}^{\infty} p_{x,y}(\xi,\eta) \,\mathrm{d}\xi \,.$$

3. Marginal Density

Calculate the marginal densities of

$$p_{x,y}(\xi,\eta) = \begin{cases} \frac{3}{7}(2-\xi)(\xi+\eta) \text{ for } \xi \in [0,2], \eta \in [0,1] \\ 0 & \text{otherwise.} \end{cases}$$

Uncorrelatedness and Independence

Two scalar random variables x and y are *uncorrelated* if their covariance c_{xy} is zero. The covariance is defined as

$$c_{xy} := E\{(x - m_x)(y - m_y)\}$$

The random variables x and y are said to be *independent* if and only if their joint density factorizes into the product of their marginal densities,

$$p_{x,y}(\xi,\eta) = p_x(\xi) \, p_y(\eta)$$

for all ξ and for all η .

4. Independence

Show that independent random variables x and y satisfy the basic property

$$E\{g(x) h(y)\} = E\{g(x)\} E\{h(y)\}$$

where g(x) and h(y) are absolutely integrable functions. Use the generalization of expectations to two random variables, $E\{g(x) h(y)\} = \int d\xi \int d\eta p_{x,y}(\xi, \eta) g(\xi) h(\eta)$.

5. Independence Implies Uncorrelatedness

a) Prove that independence of x and y implies uncorrelatedness.

b) Give an example to show that uncorrelatedness does *not* imply independence. For example, assume that the pair (x, y) takes on discrete values (0, 1), (0, -1), (1, 0), (-1, 0) with probability 1/4 each.

6. Not Independent

Argue that the random variables x and y in Problem 3 are not independent.

7. Orthonormal Transformations (Rotations)

Assume that x_1 and x_2 are zero-mean, correlated random variables. Any orthonormal transformation of x_1 and x_2 can be represented in the form

$$y_1 = +x_1 \cos \alpha + x_2 \sin \alpha$$
$$y_2 = -x_1 \sin \alpha + x_2 \cos \alpha$$

where the parameter α defines a rotation angle of coordinate axes. Let the variances be $E\{x_1^2\} = \sigma_1^2 > 0$, $E\{x_2^2\} = \sigma_2^2 > 0$, and the covariance be $E\{x_1 x_2\} = \rho \sigma_1 \sigma_2$. Find the angle α for which y_1 and y_2 become uncorrelated.

DR. R. KEMPTER, phone 2093-8925, room 2315, r.kempter(AT)biologie.hu-berlin.de PROF. DR. A.V.M. HERZ, phone 2093-9112, room 2325, a.herz(AT)biologie.hu-berlin.de

Problems handed out on Monday, 24.04.2006.

Solutions to be handed in by Friday, 05.05.2006, 8^{30} am.

Discussion of the problems on Friday, 05.05.2006, $8^{30} - 10^{00}$ am in front of room 2317 I-W (Zwischengeschoß).