

Humboldt-Universität zu Berlin Institute for Theoretical Biology

Exercise Set 2 April–25–2006

Computational Neuroscience IV: Analysis of Neural Systems Dr. R. KEMPTER, PROF. Dr. A.V.M. HERZ

Mean Vector, Correlation, and Covariance Matrix

The first moment of an *n*-dimensional random vector \mathbf{x} with pdf $p_{\mathbf{x}}$ is called the mean vector $\mathbf{m}_{\mathbf{x}}$. It is defined as the expectation of \mathbf{x} ,

$$\mathbf{m}_{\mathbf{x}} = E\{\mathbf{x}\} = \int p_{\mathbf{x}}(\boldsymbol{\xi}) \, \boldsymbol{\xi} \, \mathrm{d}\boldsymbol{\xi} \,,$$

where each component m_{x_i} of $\mathbf{m}_{\mathbf{x}}$ is given by $m_{x_i} = E\{x_i\} = \int_{-\infty}^{+\infty} p_{x_i}(\xi) \xi \,\mathrm{d}\xi$ for $i = 1, \ldots, n$.

The second moment of **x** is called the $n \times n$ correlation matrix

$$\mathbf{R}_{\mathbf{x}} = E\{\mathbf{x}\,\mathbf{x}^T\} \;,$$

where the correlation r_{ij} between the *i*th and *j*th component of **x** is given by $r_{ij} = \int d\xi \int d\eta \, p_{x_i,x_j}(\xi,\eta)$.

The second *central* moment of \mathbf{x} is the covariance matrix

$$\mathbf{C}_{\mathbf{x}} = E\{(\mathbf{x} - \mathbf{m}_{\mathbf{x}}) (\mathbf{x} - \mathbf{m}_{\mathbf{x}})^T\} .$$

- 1. Show that $\mathbf{C}_{\mathbf{x}}$ and $\mathbf{R}_{\mathbf{x}}$ satisfy the relation $\mathbf{R}_{\mathbf{x}} = \mathbf{C}_{\mathbf{x}} + \mathbf{m}_{\mathbf{x}} \mathbf{m}_{\mathbf{x}}^{T}$.
- 2. Consider an *n*-dim random vector **x** with diagonal covariance matrix $\mathbf{C}_{\mathbf{x}} = \operatorname{diag}\{\sigma_{x_1}^2, \sigma_{x_2}^2, \dots, \sigma_{x_n}^2\}$. Show that the variance σ_y^2 of the sum $y = \sum_{i=1}^n x_i$ equals $\operatorname{tr}\{\mathbf{C}_{\mathbf{x}}\}$, where $\operatorname{tr}\{\mathbf{C}_{\mathbf{x}}\} := \sum_{i=1}^n E\{(x_i m_{x_i})^2\}$.
- **3.** Show that two (zero-mean) random variables that have a jointly gaussian distribution are statistically independent if and only if they are uncorrelated. (Hint: the gaussian pdf in the *n*-dimensional case is

$$p_{\mathbf{x}}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} (\det \mathbf{C}_{\mathbf{x}})^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{m}_{\mathbf{x}})^T \mathbf{C}_{\mathbf{x}}^{-1}(\mathbf{x} - \mathbf{m}_{\mathbf{x}})\right)$$

Uncorrelatedness means that the matrix C_x is diagonal and hence nonsingular. Show that this implies that the joint pdf can be factorized.)

Eigenvectors and Eigenvalues

An eigenvector \mathbf{w} of a square matrix \mathbf{A} is a non-zero vector that satisfies

$$\mathbf{A}\,\mathbf{w} = \lambda\,\mathbf{w}$$

where λ is the eigenvalue associated with that eigenvector. For a real, symmetric ($\mathbf{A} = \mathbf{A}^T$), and positive semi-definite matrix ($\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$ for all *n*-vectors $\mathbf{x} \ne 0$, which implies det $\mathbf{A} \ge 0$), such as a correlation matrix, eigenvalues are real and non-negative, and eigenvectors associated with different eigenvalues are mutually orthogonal.

4. Consider a two-dimensional gaussian random vector \mathbf{x} with mean $\mathbf{m}_{\mathbf{x}} = (2, 1)^T$ and covariance matrix

$$\mathbf{C}_{\mathbf{x}} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \ .$$

Find the eigenvalues and normalized eigenvectors of C_x . Show that the eigenvectors are orthogonal. Indicate the shape of the gaussian density through a contour line, and plot \mathbf{m}_x as well as the eigenvectors.

- 5. Reconsider problem 7 from exercise sheet 1, where we had $\mathbf{C}_{\mathbf{x}} = [(\sigma_1^2, \rho \sigma_1 \sigma_2)^T, (\rho \sigma_1 \sigma_2, \sigma_2^2)^T]$:
 - a) Calculate the eigenvalues of C_x .
 - b) Derive the allowed range for the so-called 'correlation coefficient' ρ using the fact that $\mathbf{C}_{\mathbf{x}}$ has non-negative eigenvalues? (Answer: $-1 \le \rho \le 1$)
 - c) Calculate the eigenvalues and eigenvectors of $\mathbf{C}_{\mathbf{x}}$ in the special case $\sigma_1 = \sigma_2 = 1$, and indicate the shape of a gaussian pdf for $\rho \in \{-1, -0.9, 0, 0.5\}$.
- 6. What conditions should the elements of the matrix

$$\mathbf{R}_{\mathbf{x}} = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

satisfy so that $\mathbf{R}_{\mathbf{x}}$ is a valid correlation matrix of a two-dimensional random vector \mathbf{x} ?

7. Compute a whitening transformation for the random vector \mathbf{x} with covariance matrix

$$\mathbf{C_x} = \left[\begin{array}{cc} 2.5 & 1.5\\ 1.5 & 2.5 \end{array} \right] \ .$$

Higher-Order Moments

The *j*th moment α_j of a scalar random variable *x* with pdf $p_x(\xi)$ is defined by $\alpha_j = E\{x^j\}$. The *j*th central moment μ_j of *x* is

$$\mu_j = E\{(x - \alpha_1)^j\} = \int_{-\infty}^{+\infty} \mathrm{d}\xi \, (\xi - \alpha_1)^j \, p_x(\xi), \text{ for } j = 1, 2, \dots$$

- 8. The third central moment μ_3 is called skewness. Show that the skewness of a random variable having symmetric pdf is zero.
- 9. Related to the fourth central moment μ_4 is the kurtosis, which is defined in the zero-mean case by

$$\operatorname{kurt}(x) = E\{x^4\} - 3[E\{x^2\}]^2$$
.

Show that the kurtosis of a gaussian random variable is zero. Hint: use $\frac{d}{dx}e^{-x^2/(2\sigma^2)} = -xe^{-x^2/(2\sigma^2)}/\sigma^2$ and perform a partial integration in the calculation of α_4 .

DR. R. KEMPTER, phone 2093-8925, room 2315, r.kempter(AT)biologie.hu-berlin.de PROF. DR. A.V.M. HERZ, phone 2093-9112, room 2325, a.herz(AT)biologie.hu-berlin.de

Problems handed out on Monday, 24.04.2006.

Solutions to be handed in by Monday, 08.05.2006, $12^{15}~\mathrm{pm}$

Discussion and presentation of the problems on Friday, 12.05.2006, $8^{30} - 10^{00}$ am in front of room 2317 I-W (Zwischengeschoß).