Humboldt-Universität zu Berlin
Exercise Set 2
Institute for Theoretical Biology
April-25-2006

Computational Neuroscience IV:
Analysis of Neural Systems

Dr. R. Kempter, Prof. Dr. A.V.M. Herz

Mean Vector, Correlation, and Covariance Matrix

The first moment of an n-dimensional random vector \mathbf{x} with $\operatorname{pdf} p_{\mathbf{x}}$ is called the mean vector $\mathbf{m}_{\mathbf{x}}$. It is defined as the expectation of \mathbf{x},

$$
\mathbf{m}_{\mathbf{x}}=E\{\mathbf{x}\}=\int p_{\mathbf{x}}(\boldsymbol{\xi}) \boldsymbol{\xi} \mathrm{d} \boldsymbol{\xi}
$$

where each component $m_{x_{i}}$ of $\mathbf{m}_{\mathbf{x}}$ is given by $m_{x_{i}}=E\left\{x_{i}\right\}=\int_{-\infty}^{+\infty} p_{x_{i}}(\xi) \xi \mathrm{d} \xi$ for $i=1, \ldots, n$.
The second moment of \mathbf{x} is called the $n \times n$ correlation matrix

$$
\mathbf{R}_{\mathbf{x}}=E\left\{\mathbf{x} \mathbf{x}^{T}\right\}
$$

where the correlation $r_{i j}$ between the i th and j th component of \mathbf{x} is given by $r_{i j}=\int \mathrm{d} \xi \int \mathrm{d} \eta p_{x_{i}, x_{j}}(\xi, \eta)$.
The second central moment of \mathbf{x} is the covariance matrix

$$
\mathbf{C}_{\mathbf{x}}=E\left\{\left(\mathbf{x}-\mathbf{m}_{\mathbf{x}}\right)\left(\mathbf{x}-\mathbf{m}_{\mathbf{x}}\right)^{T}\right\}
$$

1. Show that $\mathbf{C}_{\mathbf{x}}$ and $\mathbf{R}_{\mathbf{x}}$ satisfy the relation $\mathbf{R}_{\mathbf{x}}=\mathbf{C}_{\mathbf{x}}+\mathbf{m}_{\mathbf{x}} \mathbf{m}_{\mathbf{x}}{ }^{T}$.
2. Consider an n-dim random vector \mathbf{x} with diagonal covariance matrix $\mathbf{C}_{\mathbf{x}}=\operatorname{diag}\left\{\sigma_{x_{1}}^{2}, \sigma_{x_{2}}^{2}, \ldots, \sigma_{x_{n}}^{2}\right\}$. Show that the variance σ_{y}^{2} of the sum $y=\sum_{i=1}^{n} x_{i}$ equals $\operatorname{tr}\left\{\mathbf{C}_{\mathbf{x}}\right\}$, where $\operatorname{tr}\left\{\mathbf{C}_{\mathbf{x}}\right\}:=\sum_{i=1}^{n} E\left\{\left(x_{i}-m_{x_{i}}\right)^{2}\right\}$.
3. Show that two (zero-mean) random variables that have a jointly gaussian distribution are statistically independent if and only if they are uncorrelated. (Hint: the gaussian pdf in the n-dimensional case is

$$
p_{\mathbf{x}}(\mathbf{x})=\frac{1}{(2 \pi)^{n / 2}\left(\operatorname{det} \mathbf{C}_{\mathbf{x}}\right)^{1 / 2}} \exp \left(-\frac{1}{2}\left(\mathbf{x}-\mathbf{m}_{\mathbf{x}}\right)^{T} \mathbf{C}_{\mathbf{x}}^{-1}\left(\mathbf{x}-\mathbf{m}_{\mathbf{x}}\right)\right)
$$

Uncorrelatedness means that the matrix $\mathbf{C}_{\mathbf{x}}$ is diagonal and hence nonsingular. Show that this implies that the joint pdf can be factorized.)

Eigenvectors and Eigenvalues
An eigenvector \mathbf{w} of a square matrix \mathbf{A} is a non-zero vector that satisfies

$$
\mathbf{A} \mathbf{w}=\lambda \mathbf{w}
$$

where λ is the eigenvalue associated with that eigenvector. For a real, symmetric $\left(\mathbf{A}=\mathbf{A}^{T}\right)$, and positive semi-definite matrix ($\mathbf{x}^{T} \mathbf{A} \mathbf{x} \geq 0$ for all n-vectors $\mathbf{x} \neq 0$, which implies det $\mathbf{A} \geq 0$), such as a correlation matrix, eigenvalues are real and non-negative, and eigenvectors associated with different eigenvalues are mutually orthogonal.
4. Consider a two-dimensional gaussian random vector \mathbf{x} with mean $\mathbf{m}_{\mathbf{x}}=(2,1)^{T}$ and covariance matrix

$$
\mathbf{C}_{\mathbf{x}}=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right] .
$$

Find the eigenvalues and normalized eigenvectors of $\mathbf{C}_{\mathbf{x}}$. Show that the eigenvectors are orthogonal. Indicate the shape of the gaussian density through a contour line, and plot $\mathbf{m}_{\mathbf{x}}$ as well as the eigenvectors.
5. Reconsider problem 7 from exercise sheet 1 , where we had $\mathbf{C}_{\mathbf{x}}=\left[\left(\sigma_{1}^{2}, \rho \sigma_{1} \sigma_{2}\right)^{T},\left(\rho \sigma_{1} \sigma_{2}, \sigma_{2}^{2}\right)^{T}\right]$:
a) Calculate the eigenvalues of $\mathbf{C}_{\mathbf{x}}$.
b) Derive the allowed range for the so-called 'correlation coefficient' ρ using the fact that $\mathbf{C}_{\mathbf{x}}$ has non-negative eigenvalues? (Answer: $-1 \leq \rho \leq 1$)
c) Calculate the eigenvalues and eigenvectors of $\mathbf{C}_{\mathbf{x}}$ in the special case $\sigma_{1}=\sigma_{2}=1$, and indicate the shape of a gaussian pdf for $\rho \in\{-1,-0.9,0,0.5\}$.
6. What conditions should the elements of the matrix

$$
\mathbf{R}_{\mathbf{x}}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

satisfy so that $\mathbf{R}_{\mathbf{x}}$ is a valid correlation matrix of a two-dimensional random vector \mathbf{x} ?
7. Compute a whitening transformation for the random vector \mathbf{x} with covariance matrix

$$
\mathbf{C}_{\mathbf{x}}=\left[\begin{array}{ll}
2.5 & 1.5 \\
1.5 & 2.5
\end{array}\right] .
$$

Higher-Order Moments

The j th moment α_{j} of a scalar random variable x with pdf $p_{x}(\xi)$ is defined by $\alpha_{j}=E\left\{x^{j}\right\}$. The j th central moment μ_{j} of x is

$$
\mu_{j}=E\left\{\left(x-\alpha_{1}\right)^{j}\right\}=\int_{-\infty}^{+\infty} \mathrm{d} \xi\left(\xi-\alpha_{1}\right)^{j} p_{x}(\xi), \text { for } j=1,2, \ldots
$$

8. The third central moment μ_{3} is called skewness. Show that the skewness of a random variable having symmetric pdf is zero.
9. Related to the fourth central moment μ_{4} is the kurtosis, which is defined in the zero-mean case by

$$
\operatorname{kurt}(x)=E\left\{x^{4}\right\}-3\left[E\left\{x^{2}\right\}\right]^{2} .
$$

Show that the kurtosis of a gaussian random variable is zero. Hint: use $\frac{\mathrm{d}}{\mathrm{d} x} \mathrm{e}^{-x^{2} /\left(2 \sigma^{2}\right)}=-x \mathrm{e}^{-x^{2} /\left(2 \sigma^{2}\right)} / \sigma^{2}$ and perform a partial integration in the calculation of α_{4}.

Dr. R. Kempter, phone 2093-8925, room 2315, r.kempter (at) biologie.hu-berlin.de
Prof. Dr. A.V.M. Herz, phone 2093-9112, room 2325, a.herz(AT)biologie.hu-berlin.de

Problems handed out on Monday, 24.04.2006.
Solutions to be handed in by Monday, 08.05.2006, $12^{15} \mathrm{pm}$
Discussion and presentation of the problems on Friday, 12.05.2006, $8^{30}-10^{00} \mathrm{am}$ in front of room 2317 I-W (Zwischengeschoß).

