Humboldt-Universität zu Berlin
Exercise Set 3
Institute for Theoretical Biology

Computational Neuroscience IV: Analysis of Neural Systems

Dr. R. Kempter, Prof. Dr. A.V.M. Herz

Principal Component Analysis and Whitening

Whitening means that we linearly transform a zero-mean random vector \mathbf{x} with n elements by multiplying it with some $n \times n$-matrix \mathbf{V} so that the n-vector $\mathbf{z}=\mathbf{V} \mathbf{x}$ has a covariance matrix $\mathbf{C}_{\mathbf{z}}=\mathbf{I}$.

Let $\mathbf{E}=\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right)$ be the matrix whose columns are the unit-norm eigenvectors of $\mathbf{C}_{\mathbf{x}}$, and let $\mathbf{D}=$ $\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ be the diagonal matrix of (positive) eigenvalues of $\mathbf{C}_{\mathbf{x}}$. An important instance of \mathbf{V} is the matrix $\mathbf{E D} \mathbf{D}^{-1 / 2} \mathbf{E}^{T}$, which is called the inverse square root $\mathbf{C}_{\mathbf{x}}^{-1 / 2}$ of the covariance matrix $\mathbf{C}_{\mathbf{x}}$.

1. The whitening matrix \mathbf{V} is not unique. Show that $\mathbf{U V}$ is also a whitening matrix if \mathbf{U} is an orthogonal matrix $\left(\mathbf{U}^{T} \mathbf{U}=\mathbf{U} \mathbf{U}^{T}=\mathbf{I}\right)$ and \mathbf{V} is an arbitrary whitening matrix.
2. The vector $\hat{\mathbf{x}}=\sum_{i=1}^{m}\left(\mathbf{e}_{i}^{T} \mathbf{x}\right) \mathbf{e}_{i}$ is called the projection of \mathbf{x} onto the subspace spanned by the first m eigenvectors $(m \leq n)$. Show that the mean-square (reconstruction) error is

$$
E\left\{|\mathbf{x}-\hat{\mathbf{x}}|^{2}\right\}=\sum_{i=m+1}^{n} d_{i}
$$

Hint: $\operatorname{tr}\left\{\mathbf{C}_{\mathbf{x}}\right\}=E\left\{\mathbf{x}^{T} \mathbf{x}\right\}=\sum_{i=1}^{n} d_{i}$.
3. An important practical problem in PCA is how to choose m, i.e. to find a limit below which the eigenvalues are so small as to be insignificant. Sometimes an optimal m can be found from prior information about the vector \mathbf{x}. For instance, assume that \mathbf{x} is of length n and obeys a signal-noise model

$$
\mathbf{x}=\sum_{i=1}^{m} \mathbf{a}_{i} s_{i}+\mathbf{n}
$$

where $m<n$. The \mathbf{a}_{i} are some fixed, pairwise orthogonal vectors that span an m-dimensional signal subspace, and the random vector $\mathbf{s}=\left(s_{1}, \ldots, s_{m}\right)^{T}$ is white. The term \mathbf{n} is white noise, for which $E\left\{\mathbf{n n}^{T}\right\}=\sigma^{2} \mathbf{I}$ holds. Show that
a) the covariance matrix of \mathbf{x} is $\mathbf{C}_{\mathbf{x}}=\sum_{i=1}^{m} \mathbf{a}_{i} \mathbf{a}_{i}^{T}+\sigma^{2} \mathbf{I}$.
b) the eigenvalues are constant beyond index m : $d_{1} \geq d_{2} \geq \ldots \geq d_{m}>d_{m+1}=\ldots=d_{n}=\sigma^{2}$.

Higher-Order Moments

4. Show that for two zero-mean, independent random variables s_{1} and s_{2},
a) $\operatorname{kurt}\left(s_{1}+s_{2}\right)=\operatorname{kurt}\left(s_{1}\right)+\operatorname{kurt}\left(s_{2}\right)$ and
b) $\operatorname{kurt}\left(\alpha s_{1}\right)=\alpha^{4} \operatorname{kurt}\left(s_{1}\right)$, where α is constant.
5. Nongaussianity can be measured by the kurtosis. To use kurtosis for ICA estimation of sources \mathbf{s}, we need to prove that the maxima of the function

$$
F_{q}(\mathbf{q})=\left|\operatorname{kurt}\left(\mathbf{q}^{T} \mathbf{s}\right)\right|=\left|q_{1}^{4} \operatorname{kurt}\left(s_{1}\right)+q_{2}^{4} \operatorname{kurt}\left(s_{2}\right)\right|
$$

for $|\mathbf{q}|=1$ are obtained when only one of the components of $\mathbf{q}=\left(q_{1}, q_{2}\right)^{T}$ is nonzero.
a) Make the change of variables $t_{i}=q_{i}^{2}$. What is the geometrical form of the constraint set of $\mathbf{t}=\left(t_{1}, t_{2}\right)^{T}$?
b) Assume that $\operatorname{kurt}\left(s_{1}\right)>\operatorname{kurt}\left(s_{2}\right)>0$. What is the geometrical shape of sets $F_{t}(\mathbf{t})=$ const.? By a geometrical argument, show that the maximum of $F_{t}(\mathbf{t})$ is obtained when one of the t_{i} is one and the other one is zero.
c) Assume that $\operatorname{kurt}\left(s_{1}\right)<\operatorname{kurt}\left(s_{2}\right)<0$. Use the same logic as in b).
d) Assume that the kurtoses have different signs. What is the shape of sets $F_{t}(\mathbf{t})=$ const. now?

Information Theory

The differential entropy H of a continuous-valued random vector \mathbf{x} with density $p_{\mathbf{x}}$ is defined as

$$
H(\mathbf{x})=-\int p_{\mathbf{x}}(\boldsymbol{\xi}) \log p_{\mathbf{x}}(\boldsymbol{\xi}) \mathrm{d} \boldsymbol{\xi}
$$

The negentropy is defined as

$$
J(\mathbf{x})=H\left(\mathbf{x}_{\text {gauss }}\right)-H(\mathbf{x})
$$

where $\mathbf{x}_{\text {gauss }}$ is a gaussian random vector of the same covariance matrix $\boldsymbol{\Sigma}$ as \mathbf{x}.
6. Show that the entropy is not scale-invariant, i.e. it changes as we linearly transform to a different coordinate system $\mathbf{y}=\mathbf{A x}$, where \mathbf{A} is invertible. Hint: Use the density of a transformation, $p_{\mathbf{y}}(\boldsymbol{\eta})=$ $|\operatorname{det} \mathbf{A}|^{-1} p_{\mathbf{x}}\left(\mathbf{A}^{-1} \boldsymbol{\eta}\right)$, and prove $H(\mathbf{y})=H(\mathbf{x})+\log |\operatorname{det} \mathbf{A}|$.
7. Prove $H\left(\mathbf{x}_{\text {gauss }}\right)=\frac{1}{2} \log |\operatorname{det} \boldsymbol{\Sigma}|+\frac{n}{2}[1+\log 2 \pi]$. Hint: use the definition of a gaussian pdf from Exercises 2 .
8. Show that the negentropy is scale-invariant: $J(\mathbf{A} \mathbf{x})=J(\mathbf{x})$.

Mutual information ("Transinformation") is a measure of the information that members of a set of random variables have about the other random variables in the set. The mutual information I between n scalar random variables, $x_{i}, i=1, \ldots, n$, is

$$
I\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{n} H\left(x_{i}\right)-H(\mathbf{x})
$$

9. Show that the following relation holds:

$$
I\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\int p_{\mathbf{x}}(\boldsymbol{\xi}) \log \frac{p_{\mathbf{x}}(\boldsymbol{\xi})}{p_{1}\left(\xi_{1}\right) p_{2}\left(\xi_{2}\right) \cdots p_{n}\left(\xi_{n}\right)} \mathrm{d} \boldsymbol{\xi}
$$

Dr. R. Kempter, phone 2093-8925, room 2315, r.kempter(AT) biologie.hu-berlin.de
Prof. Dr. A.V.M. Herz, phone 2093-9112, room 2325, a.herz(AT)biologie.hu-berlin.de
Problems handed out on Monday, 08.05.2006.
Solutions to be handed in by Monday, $15.05 .2006,12^{15} \mathrm{pm}$.
Discussion and presentation of the problems on Friday, 19.05.2006, $8^{30}-10^{00} \mathrm{am}$ in front of room 2317 I-W (Zwischengeschoß).

