Principal Component Analysis and Whitening

Whitening means that we linearly transform a zero-mean random vector \(\mathbf{x} \) with \(n \) elements by multiplying it with some \(n \times n \)-matrix \(\mathbf{V} \) so that the \(n \)-vector \(\mathbf{z} = \mathbf{V} \mathbf{x} \) has a covariance matrix \(\mathbf{C}_z = \mathbf{I} \).

Let \(\mathbf{E} = (\mathbf{e}_1, \ldots, \mathbf{e}_n) \) be the matrix whose columns are the unit-norm eigenvectors of \(\mathbf{C}_x \), and let \(\mathbf{D} = \text{diag}(d_1, \ldots, d_n) \) be the diagonal matrix of (positive) eigenvalues of \(\mathbf{C}_x \). An important instance of \(\mathbf{V} \) is the matrix \(\mathbf{E} \mathbf{D}^{-1/2} \), which is called the inverse square root \(\mathbf{C}_x^{-1/2} \) of the covariance matrix \(\mathbf{C}_x \).

1. The whitening matrix \(\mathbf{V} \) is not unique. Show that \(\mathbf{U} \mathbf{V} \) is also a whitening matrix if \(\mathbf{U} \) is an orthogonal matrix \((\mathbf{U}^T \mathbf{U} = \mathbf{U} \mathbf{U}^T = \mathbf{I}) \) and \(\mathbf{V} \) is an arbitrary whitening matrix.

2. The vector \(\hat{\mathbf{x}} = \sum_{i=1}^{m} (\mathbf{e}_i^T \mathbf{x}) \mathbf{e}_i \) is called the projection of \(\mathbf{x} \) onto the subspace spanned by the first \(m \) eigenvectors \((m \leq n) \). Show that the mean-square (reconstruction) error is

\[
E\{|\mathbf{x} - \hat{\mathbf{x}}|^2\} = \sum_{i=m+1}^{n} d_i .
\]

Hint: \(\text{tr}\{\mathbf{C}_x\} = E\{\mathbf{x}^T \mathbf{x}\} = \sum_{i=1}^{n} d_i \).

3. An important practical problem in PCA is how to choose \(m \), i.e. to find a limit below which the eigenvalues are so small as to be insignificant. Sometimes an optimal \(m \) can be found from prior information about the vector \(\mathbf{x} \). For instance, assume that \(\mathbf{x} \) is of length \(n \) and obeys a signal-noise model

\[
\mathbf{x} = \sum_{i=1}^{m} \mathbf{a}_i \mathbf{s}_i + \mathbf{n}
\]

where \(m < n \). The \(\mathbf{a}_i \) are some fixed, pairwise orthogonal vectors that span an \(m \)-dimensional signal subspace, and the random vector \(\mathbf{s} = (s_1, \ldots, s_m)^T \) is white. The term \(\mathbf{n} \) is white noise, for which \(E\{\mathbf{n}^T \mathbf{n}\} = \sigma^2 \mathbf{I} \) holds. Show that

a) the covariance matrix of \(\mathbf{x} \) is \(\mathbf{C}_x = \sum_{i=1}^{m} \mathbf{a}_i \mathbf{a}_i^T + \sigma^2 \mathbf{I} \).

b) the eigenvalues are constant beyond index \(m \): \(d_1 \geq d_2 \geq \ldots \geq d_m > d_{m+1} = \ldots = d_n = \sigma^2 \).

Higher-Order Moments

4. Show that for two zero-mean, independent random variables \(s_1 \) and \(s_2 \),

a) \(\text{kurt}(s_1 + s_2) = \text{kurt}(s_1) + \text{kurt}(s_2) \) and

b) \(\text{kurt}(\alpha s_1) = \alpha^4 \text{kurt}(s_1) \), where \(\alpha \) is constant.
5. Nongaussianity can be measured by the kurtosis. To use kurtosis for ICA estimation of sources s, we need to prove that the maxima of the function

$$F_q(q) = \text{kurt}(q^T s) = |q_1^4 \text{kurt}(s_1) + q_2^4 \text{kurt}(s_2)|$$

for $|q| = 1$ are obtained when only one of the components of $q = (q_1, q_2)^T$ is nonzero.

a) Make the change of variables $t_i = q_i^2$. What is the geometrical form of the constraint set of $t = (t_1, t_2)^T$?

b) Assume that $\text{kurt}(s_1) > \text{kurt}(s_2) > 0$. What is the geometrical shape of sets $F_t(t) = \text{const.}$? By a geometrical argument, show that the maximum of $F_t(t)$ is obtained when one of the t_i is one and the other one is zero.

c) Assume that $\text{kurt}(s_1) < \text{kurt}(s_2) < 0$. Use the same logic as in b).

d) Assume that the kurtoses have different signs. What is the shape of sets $F_t(t) = \text{const.}$ now?

Information Theory

The differential entropy H of a continuous-valued random vector x with density p_x is defined as

$$H(x) = - \int p_x(\xi) \log p_x(\xi) \, d\xi .$$

The negentropy is defined as

$$J(x) = H(x_{\text{gauss}}) - H(x)$$

where x_{gauss} is a gaussian random vector of the same covariance matrix Σ as x.

6. Show that the entropy is not scale-invariant, i.e. it changes as we linearly transform to a different coordinate system $y = A x$, where A is invertible. Hint: Use the density of a transformation, $p_y(\eta) = |\det A|^{-1} p_x(A^{-1} \eta)$, and prove $H(y) = H(x) + \log |\det A|$.

7. Prove $H(x_{\text{gauss}}) = \frac{1}{2} \log |\det \Sigma| + \frac{n}{2} [1 + \log 2\pi]$. Hint: use the definition of a gaussian pdf from Exercises 2.

8. Show that the negentropy is scale-invariant: $J(A x) = J(x)$.

Mutual information (“Transinformation”) is a measure of the information that members of a set of random variables have about the other random variables in the set. The mutual information I between n scalar random variables, $x_i, i = 1, \ldots, n$, is

$$I(x_1, x_2, \ldots, x_n) = \sum_{i=1}^n H(x_i) - H(x)$$

9. Show that the following relation holds:

$$I(x_1, x_2, \ldots, x_n) = \int p_x(\xi) \log \frac{p_x(\xi)}{p_1(\xi_1) p_2(\xi_2) \cdots p_n(\xi_n)} \, d\xi .$$

Dr. R. Kempter, phone 2093-8925, room 2315, r.kempter(AT)biologie.hu-berlin.de
Prof. Dr. A.V.M. Herz, phone 2093-9112, room 2325, a.herz(AT)biologie.hu-berlin.de

Problems handed out on Monday, 08.05.2006.
Solutions to be handed in by Monday, 15.05.2006, 1215 pm.
Discussion and presentation of the problems on Friday, 19.05.2006, 830 – 1000 am in front of room 2317 I-W (Zwischengeschoß).