

Humboldt-Universität zu Berlin Institute for Theoretical Biology Exercise Set 4 Summer 2006, May 15

Computational Neuroscience IV: Analysis of Neural Systems Dr. R. KEMPTER, PROF. Dr. A.V.M. HERZ

Maximum Likelihood Estimation

The Maximum Likelihood (ML) estimate $\hat{\theta}_{ML}$ of the parameter vector θ is chosen to be the value $\hat{\theta}_{ML}$ that maximizes the conditional probability or 'likelihood function'

$$p(\mathbf{x}_T|\boldsymbol{\theta}) = p(x(1), x(2), \dots, x(T)|\boldsymbol{\theta})$$

of the T measurements $\mathbf{x}_T = (x(1), x(2), \dots, x(T))^T$. The ML estimator corresponds to the value $\hat{\boldsymbol{\theta}}_{ML}$ that makes the obtained measurements most likely. Often it is convenient to deal with the log-likelihood function $\log p(\mathbf{x}_T | \boldsymbol{\theta})$. The ML estimator is usually found from the solutions of the likelihood equation

$$\frac{\partial}{\partial \boldsymbol{\theta}} \log p(\mathbf{x}_T | \boldsymbol{\theta}) \Big|_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}_{ML}} = 0$$

1. Let the probability density function (pdf) p of a scalar-valued random variable z be

$$p(z|\theta) = \theta^2 z \exp(-\theta z), \quad z \ge 0, \quad \theta > 0.$$

Determine the ML estimate of the parameter θ . There are available T independent measurements $z(1), \ldots, z(T)$ on z.

In the ML framework of ICA, we denote by \tilde{p}_i the assumed densities of the independent components, and by $G'_i(s_i) := \partial/\partial s_i [\log \tilde{p}_i(s_i)]$ the derivative of non-polynomial moments G_i used for the estimation. Constrain the estimates of the independent components to be uncorrelated, zero-mean, and to have unit variance. Then the ML estimator is locally consistent¹, if the assumed densities \tilde{p}_i fulfill

$$E\{s_i G'_i(s_i) - G''_i(s_i)\} > 0.$$
(1)

- 2. Why is it not correct to use $G(y) = y^4$ within the ML framework? What would be a possible choice for a subgaussian distribution?
- **3.** Take G'(y) = -y. What is the interpretation of this choice in the ML framework? Conclude from condition (1) that G' must be nonlinear.
- 4. Show that for a gaussian random variable s_i of zero mean and unit variance, above condition (1) on the non-polynomial moments G cannot be fulfilled for any G. Hint: show that the expectation in (1) is zero.

¹ML estimators are called consistent if $\hat{\theta}_{ML}$ converges to the true value of θ when the number of measurements grows infinitely large.

Kullback-Leibler divergence and Jensen's inequality

The Kullback-Leibler divergence between two *n*-dimensional pdf's $p^{(1)}$ and $p^{(2)}$ is defined as

$$\delta(p^{(1)}, p^{(2)}) = \int \mathrm{d}\boldsymbol{\xi} \, p^{(1)}(\boldsymbol{\xi}) \, \log \frac{p^{(1)}(\boldsymbol{\xi})}{p^{(2)}(\boldsymbol{\xi})}$$

The Kullback-Leibler distance is always nonnegative, and zero if and only if the two distributions are equal. It can thus be considered as a kind of (non-symmetric) distance between the two pdf's. This feature is a consequence of the (strict) convexity of the negative logarithm and Jensen's inequality

$$E\{f(y)\} \ge f(E\{y\})$$

which holds for any strictly convex function f and any random variable y.

5. Using Jensen's inequality, show that the Kullback-Leibler divergence is nonnegative. Hint: take $f(y) = -\log y$ and $y = p^{(2)}(\boldsymbol{\xi})/p^{(1)}(\boldsymbol{\xi})$.

Infomax principle

6. The input x and the output y of a so-called 'noisy graded-response neuron' is given by

$$y = \phi(x) + n$$

where n is gaussian noise and ϕ is some sigmoidal scalar function, i.e., ϕ is monotonically increasing and fulfills $\lim_{\xi \to -\infty} \phi(\xi) = 0$ and $\lim_{\xi \to +\infty} \phi(\xi) = 1$. In order to have an efficient information flow from input to output the transfer function ϕ can be adapted. Efficient information transmission requires that we maximize the mutual information of input and output. To derive the corresponding optimal ϕ proceed as indicated below.

- a) Argue that the joint pdf $p_{x,y}(\xi,\eta)$ of the input and the output can be written as $p_{x,y}(\xi,\eta) = p_n(\eta \phi(\xi)) p_x(\xi)$, where p_n is the pdf of the noise.
- b) Show that the joint entropy H(x, y) of input and output is constant, i.e., independent of ϕ .
- c) Show that maximizing the mutual information I(x, y) of input and output is equivalent to maximizing the entropy H(y) of the output.
- d) Calculate the entropy H(y) of the output. Hint: use the entropy of an invertible transformation $u = \psi(v)$: $H(u) = H(v) + E\{\log |\psi'(v)|\}$ where ψ' is the derivative of ψ .
- e) Prove that the maximum of the entropy of the output is reached if and only if $\phi'(x) = p_x(x)$.

DR. R. KEMPTER, phone 2093-8925, room 2315, r.kempter(AT)biologie.hu-berlin.de PROF. DR. A.V.M. HERZ, phone 2093-9112, room 2325, a.herz(AT)biologie.hu-berlin.de

Problems handed out on Monday, 15.05.2006.

Solutions to be handed in by Monday, 22.05.2006, 12^{15} pm.

Discussion and presentation of the problems on Friday, 26.05.2006, $8^{30} - 10^{00}$ am in front of room 2317 I-W (Zwischengeschoß).