

Humboldt-Universität zu Berlin Institute for Theoretical Biology Exercise Set 6 Summer 2006, May 29

Computational Neuroscience IV: Analysis of Neural Systems

DR. R. KEMPTER, PROF. DR. A.V.M. HERZ

Estimation Theory

Assume that the parameters $\boldsymbol{\theta}$ and the observations \mathbf{x}_T have the joint pdf $p_{\boldsymbol{\theta},\mathbf{x}}(\boldsymbol{\theta},\mathbf{x}_T)$. A theoretically significant, conceptually simple, general, and unbiased estimator of $\boldsymbol{\theta}$ is the **minimum mean-square error** (MSE) estimator $\hat{\boldsymbol{\theta}}_{MSE}$, which minimizes $E\{|\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}|^2\}$). This MSE estimator is given by the conditional expectation

$$\hat{\boldsymbol{\theta}}_{MSE} = E_{\boldsymbol{\theta}|\mathbf{x}} \{\boldsymbol{\theta}|\mathbf{x}_T\},\tag{1}$$

which is an expectation with respect to the so-called *posterior density* $p_{\theta|\mathbf{x}}$. The posterior density can be derived from Bayes' formula,

$$p_{\boldsymbol{\theta}|\mathbf{x}}(\boldsymbol{\theta}|\mathbf{x}_T) = \frac{p_{\mathbf{x}|\boldsymbol{\theta}}(\mathbf{x}_T|\boldsymbol{\theta}) p_{\boldsymbol{\theta}}(\boldsymbol{\theta})}{p_{\mathbf{x}}(\mathbf{x}_T)}.$$
(2)

The computation of $\hat{\boldsymbol{\theta}}_{MSE}$ is difficult in practice because we may only know or assume the *prior distribution* $p_{\boldsymbol{\theta}}$ of the parameters $\boldsymbol{\theta}$ and the *conditional distribution* $p_{\mathbf{x}|\boldsymbol{\theta}}$ of the observations \mathbf{x}_T given $\boldsymbol{\theta}$. The denominator is computed by integrating the numerator, $p_{\mathbf{x}}(\mathbf{x}_T) = \int d\boldsymbol{\theta}' p_{\mathbf{x}|\boldsymbol{\theta}}(\mathbf{x}_T|\boldsymbol{\theta}') p_{\boldsymbol{\theta}}(\boldsymbol{\theta}')$. This integral and the one in (1) are usually difficult to evaluate.

To simplify the problem, one could instead estimate the parameter vector $\boldsymbol{\theta}$ that maximizes the posterior density $p_{\boldsymbol{\theta}|\mathbf{x}}$ in (2). Because $p_{\mathbf{x}}$ in (2) does not depend on $\boldsymbol{\theta}$, it is sufficient to maximize the numerator of (2), which is

$$p_{\mathbf{x}|\boldsymbol{\theta}}(\mathbf{x}_T|\boldsymbol{\theta}) p_{\boldsymbol{\theta}}(\boldsymbol{\theta}) = p_{\boldsymbol{\theta},\mathbf{x}}(\boldsymbol{\theta},\mathbf{x}_T).$$
(3)

Maximizing $p_{\theta|\mathbf{x}}$ we obtain the **maximum a posteriori (MAP)** estimator $\hat{\theta}_{MAP}$ of θ . Furthermore, if the prior p_{θ} is unknown, one can maximize $p_{\mathbf{x}|\theta}$ alone, which leads to the **maximum likelihood (ML)** estimator $\hat{\theta}_{ML}$ of θ .

1. Let the joint pdf of the parameter θ and the random variable x be

$$p_{\theta,x}(\theta, x) = \begin{cases} 8 \, \theta x & \text{for } 0 < \theta \le x < 1, \\ 0 & \text{otherwise.} \end{cases}$$

- a) Indicate the region where $p_{\theta,x}$ is nonzero in the x- θ plane.
- b) Find the conditional density $p_{x|\theta}$ and show that it is normalized. Plot $p_{x|\theta}$ as a function of x for different values of θ . Hint: take care of the constraints on x and θ .
- c) From $p_{x|\theta}$ derive the ML estimate $\hat{\theta}_{ML}$ of θ given x. Plot $p_{x|\theta}$ as a function of θ for different values of x and argue why the 'naive' likelihood equation (cf. Exercises 4) leads to a wrong result here.
- d) Compute the posterior density $p_{\theta|x}$ and derive the MAP estimate $\hat{\theta}_{MAP}$ of θ given x. Plot $p_{\theta|x}$ as a function of θ for different values of x.
- e) Compute the optimal mean-square error estimate $\hat{\theta}_{MSE}$ of θ given x.

Estimation of Noise-Free Independent Components

In noisy ICA, where gaussian "sensor" noise \mathbf{n} with covariance $\boldsymbol{\Sigma}$ is added to the observations \mathbf{x} ,

$$\mathbf{x} = \mathbf{A}\mathbf{s} + \mathbf{n} ,$$

it is not enough to estimate the mixing matrix \mathbf{A} because we get noisy estimates of the independent components \mathbf{s} . Therefore, we would like to obtain estimates of the original ICs that are somehow optimal, i.e., contain minimum noise.

We assume that we already have estimated **A**. Given the data \mathbf{x}_T where the subscript indicates that we have T independent measurements $\mathbf{x}(t)$ (t = 1, ..., T), we can use the MAP method to estimate the 'parameters' **s**. The conditional density $p_{\mathbf{x},\mathbf{A}|\mathbf{s}}(\mathbf{x}_T,\mathbf{A}|\mathbf{s}_T) \propto \prod_{t=1}^T \exp[-||\mathbf{x}(t) - \mathbf{As}(t)||_{\Sigma^{-1}}^2/2]$ of \mathbf{x}_T and **A** given \mathbf{s}_T is gaussian, where $||\mathbf{m}||_{\Sigma^{-1}}^2$ is defined as $\mathbf{m}^T \Sigma^{-1} \mathbf{m}$. We also assume that we know the 'prior' distribution $p_{\mathbf{s}}(\mathbf{s}_T)$.

2. Show that the MAP log-likelihood is given by

$$\log L(\mathbf{s}) = -\sum_{t'=1}^{T} \left[\frac{1}{2} ||\mathbf{x}(t') - \mathbf{A}\mathbf{s}(t')||_{\Sigma^{-1}}^2 + \sum_{i=1}^{n} f_i(s_i(t')) \right] + C$$

where C is an irrelevant constant. What is f_i ?

3. To compute the MAP estimator $\hat{\mathbf{s}}(t)$, we take the gradient of the log-likelihood with respect to the elements of $\mathbf{s}(t)$ and equate this to 0. Show that this leads to an implicit condition on $\hat{\mathbf{s}}$ of the form

$$\mathbf{A}^{T} \mathbf{\Sigma}^{-1} \mathbf{A} \hat{\mathbf{s}}(t) - \mathbf{A}^{T} \mathbf{\Sigma}^{-1} \mathbf{x}(t) + \mathbf{f}'(\hat{\mathbf{s}}(t)) = 0$$
(4)

where the derivative, denoted by \mathbf{f}' , is applied separately to each component of the vector $\hat{\mathbf{s}}(t)$. This gives a nonlinear generalization of classic Wiener filtering. Hint: for a constant vector \mathbf{w} , a constant matrix \mathbf{W} , and some scalar function g, use

$$\frac{\partial [\mathbf{w}^T \mathbf{s}(t')]}{\partial \mathbf{s}(t)} = \mathbf{w} \,\delta_{t,t'} , \quad \frac{\partial [\mathbf{s}^T(t') \,\mathbf{W} \,\mathbf{s}(t')]}{\partial \mathbf{s}(t)} = \left[\mathbf{W} \,\mathbf{s}(t) + \mathbf{W}^T \,\mathbf{s}(t)\right] \,\delta_{t,t'} , \text{and} \quad \frac{\partial g}{\partial \mathbf{s}} = \left(\frac{\partial g}{\partial s_1}, \dots, \frac{\partial g}{\partial s_n}\right)^T .$$

- 4. In order to interpret this result, consider Equation (4) in the 1-dimensional case where $\mathbf{A} = 1$, $\mathbf{\Sigma} = \sigma^2$, and $p_s(s') = \exp(-\sqrt{2}|s'|)/\sqrt{2}$ is Laplacian. Our goal is to find an estimate \hat{s} of s given x.
 - a) Plot x as a function of \hat{s} where we can write formally $x = g^{-1}(\hat{s})$ with some 'inverse' function g^{-1} .
 - b) Plot \hat{s} as a function of x. Show that this 'shrinkage' function can be approximated by $\hat{s} = g(x)$ where $g(x) = \operatorname{sign}(x) \max(0, |x| - \sqrt{2\sigma^2})$.
 - c) Plot the Laplacian pdf (supergaussian) and interpret the result in b) in the limits of small noise $(\sigma^2 \ll 1)$ and large noise $(\sigma^2 \gg 1)$
- 5. Repeat the calculations of Problem 4 for a uniform pdf, $p_s(s') = 1/2$ for $|s'| \le 1$. Hint: use $\vartheta'(x) = \delta(x)$ where ϑ is the step function and δ is the Dirac delta function.
- 6. Which simplifying assumptions are necessary to derive from Equation (4) the 'linear-least square' estimator $\hat{\mathbf{s}}(t) = \mathbf{A}^{-1}\mathbf{x}(t)$? First state conditions for which the prior on the densities of $\hat{\mathbf{s}}$ can be neglected! Then write down an explicit equation for $\hat{\mathbf{s}}$. Finally, derive conditions on $\boldsymbol{\Sigma}$ and \mathbf{A} .

DR. R. KEMPTER, phone 2093-8925, room 2315, r.kempter(AT)biologie.hu-berlin.de PROF. DR. A.V.M. HERZ, phone 2093-9112, room 2325, a.herz(AT)biologie.hu-berlin.de

Problems handed out on Monday, 29.05.2006. Solutions to be handed in by Monday, 12.06.2006, 12^{15} pm. Discussion and presentation of the problems on Friday, 16.06.2006, $8^{30} - 10^{00}$ am in front of room 2317 I-W (Zwischengeschoß).