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Estimation Theory

Assume that the parameters θ and the observations xT have the joint pdf pθ,x(θ,xT ). A theoretically
significant, conceptually simple, general, and unbiased estimator of θ is the minimum mean-square error
(MSE) estimator θ̂MSE, which minimizes E{|θ − θ̂|2}). This MSE estimator is given by the conditional
expectation

θ̂MSE = Eθ|x{θ|xT }, (1)

which is an expectation with respect to the so-called posterior density pθ|x. The posterior density can be
derived from Bayes’ formula,

pθ|x(θ|xT ) =
px|θ(xT |θ) pθ(θ)

px(xT )
. (2)

The computation of θ̂MSE is difficult in practice because we may only know or assume the prior distribution

pθ of the parameters θ and the conditional distribution px|θ of the observations xT given θ. The denominator
is computed by integrating the numerator, px(xT ) =

∫

dθ
′ px|θ(xT |θ′) pθ(θ′). This integral and the one in (1)

are usually difficult to evaluate.

To simplify the problem, one could instead estimate the parameter vector θ that maximizes the posterior
density pθ|x in (2). Because px in (2) does not depend on θ, it is sufficient to maximize the numerator of
(2), which is

px|θ(xT |θ) pθ(θ) = pθ,x(θ,xT ). (3)

Maximizing pθ|x we obtain the maximum a posteriori (MAP) estimator θ̂MAP of θ. Furthermore, if
the prior pθ is unknown, one can maximize px|θ alone, which leads to the maximum likelihood (ML)

estimator θ̂ML of θ.

1. Let the joint pdf of the parameter θ and the random variable x be

pθ,x(θ, x) =

{

8 θx for 0 < θ ≤ x < 1,
0 otherwise.

a) Indicate the region where pθ,x is nonzero in the x-θ plane.

b) Find the conditional density px|θ and show that it is normalized. Plot px|θ as a function of x for
different values of θ. Hint: take care of the constraints on x and θ.

c) From px|θ derive the ML estimate θ̂ML of θ given x. Plot px|θ as a function of θ for different values
of x and argue why the ‘naive’ likelihood equation (cf. Exercises 4) leads to a wrong result here.

d) Compute the posterior density pθ|x and derive the MAP estimate θ̂MAP of θ given x. Plot pθ|x as
a function of θ for different values of x.

e) Compute the optimal mean-square error estimate θ̂MSE of θ given x.



Estimation of Noise-Free Independent Components

In noisy ICA, where gaussian “sensor” noise n with covariance Σ is added to the observations x,

x = As + n ,

it is not enough to estimate the mixing matrix A because we get noisy estimates of the independent
components s. Therefore, we would like to obtain estimates of the original ICs that are somehow optimal,
i.e., contain minimum noise.

We assume that we already have estimated A. Given the data xT where the subscript indicates that we have
T independent measurements x(t) (t = 1, . . . , T ), we can use the MAP method to estimate the ‘parameters’
s. The conditional density px,A|s(xT ,A|sT ) ∝ ∏T

t=1
exp[−||x(t) − As(t)||2

Σ−1/2] of xT and A given sT is

gaussian, where ||m||2
Σ−1 is defined as mTΣ−1m. We also assume that we know the ‘prior’ distribution

ps(sT ).

2. Show that the MAP log-likelihood is given by

log L(s) = −
T

∑

t′=1

[

1

2
||x(t′) −As(t′)||2

Σ−1 +

n
∑

i=1

fi(si(t
′))

]

+ C

where C is an irrelevant constant. What is fi?

3. To compute the MAP estimator ŝ(t), we take the gradient of the log-likelihood with respect to the
elements of s(t) and equate this to 0. Show that this leads to an implicit condition on ŝ of the form

ATΣ−1Aŝ(t) −ATΣ−1x(t) + f ′(ŝ(t)) = 0 (4)

where the derivative, denoted by f ′, is applied separately to each component of the vector ŝ(t). This
gives a nonlinear generalization of classic Wiener filtering. Hint: for a constant vector w, a constant
matrix W, and some scalar function g, use

∂[wT s(t′)]

∂s(t)
= w δt,t′ ,

∂[sT (t′)Ws(t′)]

∂s(t)
=

[

Ws(t) + WT s(t)
]

δt,t′ , and
∂g

∂s
=

(

∂g

∂s1

, . . . ,
∂g

∂sn

)T

.

4. In order to interpret this result, consider Equation (4) in the 1-dimensional case where A = 1, Σ = σ 2,
and ps(s

′) = exp(−
√

2|s′|)/
√

2 is Laplacian. Our goal is to find an estimate ŝ of s given x.

a) Plot x as a function of ŝ where we can write formally x = g−1(ŝ) with some ‘inverse’ function g−1.

b) Plot ŝ as a function of x. Show that this ‘shrinkage’ function can be approximated by ŝ = g(x)
where g(x) = sign(x) max(0, |x| −

√
2σ2).

c) Plot the Laplacian pdf (supergaussian) and interpret the result in b) in the limits of small noise
(σ2 � 1) and large noise (σ2 � 1)

5. Repeat the calculations of Problem 4 for a uniform pdf, ps(s
′) = 1/2 for |s′| ≤ 1. Hint: use ϑ′(x) = δ(x)

where ϑ is the step function and δ is the Dirac delta function.

6. Which simplifying assumptions are necessary to derive from Equation (4) the ‘linear-least square’ esti-
mator ŝ(t) = A−1x(t) ? First state conditions for which the prior on the densities of ŝ can be neglected!
Then write down an explicit equation for ŝ. Finally, derive conditions on Σ and A.
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Problems handed out on Monday, 29.05.2006. Solutions to be handed in by Monday, 12.06.2006, 1215 pm.
Discussion and presentation of the problems on Friday, 16.06.2006, 830 − 1000 am in front of room 2317 I-W
(Zwischengeschoß).


