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Multiple electrodes are now a standard tool in neuroscience
research that make it possible to study the simultaneous
activity of several neurons in a given brain region or across
different regions. The data from multi-electrode studies present
important analysis challenges that must be resolved for optimal
use of these neurophysiological measurements to answer
questions about how the brain works. Here we review statistical
methods for the analysis of multiple neural spike-train data and
discuss future challenges for methodology research.

Neurophysiologists often administer a stimulus and simultaneously
record neural activity from a brain region believed to respond to that
stimulus. The stimulus can be physical in nature, such as light used to
stimulate retinal or lateral geniculate neurons, or sound used to stimu-
late neural activity in the auditory cortex. It can also be abstract or cog-
nitive, such as in a working memory task, which elicits neural activity
in the hippocampus or pre-frontal cortex. The experimental question
can be addressed by characterizing the relation between the stimulus
and the individual or ensemble neural responses and/or the relation
among the spiking activity of the neurons in the ensemble. In contrast
to studying the spiking activity from a single neuron, the recent advent
of multiple-electrode recording1 makes it possible to study the simul-
taneous spiking activity of many neurons (more than 20). This allows
us to understand how groups of neurons act in concert to define the
function of a given brain region. Simultaneous recording of multiple
neurons offers new promise for investigating fundamental questions,
provided the challenging problem of analyzing multiple simultane-
ously recorded spike trains can be properly addressed.

In probability theory and statistics, a time series of discrete events,
such as a spike train, is called a point process2. Hence, ensembles of
spike trains from simultaneously recorded neurons are multi-
dimensional point-process time series. These time series are both
dynamic and stochastic. That is, their properties change through time
in a manner that can often be characterized by a probability model
describing the likelihood of spikes at a given time. These data present

new analysis challenges because most standard signal processing tech-
niques are designed primarily for continuous-valued data and not
point processes. Thus, standard methods are of limited use in analyz-
ing multiple neural spike train data. Moreover, because brain regions
represent relevant biological signals in the spiking patterns of their
constituent neurons, proper analysis of these data requires accurately
characterizing the neural interactions.

Spike sorting: identification and classification of spike events
In neurophysiological experiments, individual spikes are not directly
recorded. This is because when multiple electrodes are implanted, the
extracellular voltage potentials recorded on any electrode represent
the simultaneous electrical activity of an unknown number of neu-
rons. From these voltage traces, the spike events or action potentials
must be identified, the number of neurons being recorded must be
determined, and each spike must be assigned to the neuron that pro-
duced it3–5. This three-stage process, termed ‘spike sorting’ (Fig. 1a,b)
is the mandatory first step in all multiple spike train data analyses.
The accuracy of the spike sorting critically affects the accuracy of all
subsequent analyses.

Many algorithms are used for spike sorting and at present, there is
no consensus as to which are best. Different algorithms applied to the
same data set can yield different results, illustrating the many com-
plexities of the spike-sorting problem. First, clusters of voltage traces
that summarize the spike events often violate the frequently made
assumption of stable, Gaussian errors in model-based parametric
algorithms. Because neuronal properties and experimental condi-
tions evolve, these clusters change over time. Second, identifying the
number of neurons is a challenging problem. One strategy is to
assume a number of neurons well in excess of the number believed to
be in the data, and then combine clusters that are sufficiently close
using a stopping criterion5. An alternative Monte Carlo–based strat-
egy has been recently proposed, but has yet to be widely tested6.
Third, dual intracellular-extracellular recording studies have shown
that spike sorting, particularly for large numbers of neurons, has a
non-zero error rate because the probability distribution of spike
shapes from different neurons share some degree of overlap4. Finally,
multiple electrodes with different geometries and numbers of elec-
trodes usually require different sorting algorithms.

Cross-correlogram and cross-intensity function
Most current methods for neural spike train data analysis assess only
associations between pairs of neurons. As is true for continuous-
valued data, techniques to measure the association between neural
spike trains can be divided into time-domain and frequency-

Emery N. Brown is in the Neuroscience Statistics Research Laboratory,
Department of Anesthesia and Critical Care, Massachusetts General Hospital,
and the Division of Health Sciences and Technology, Harvard Medical School,
Massachusetts Institute of Technology, Boston, Massachusetts 02114, USA.
Robert E. Kass is in the Department of Statistics, Carnegie Mellon University and
the Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania 15208,
USA. Partha P. Mitra is at the Cold Spring Harbor Laboratory, Cold Spring Harbor,
New York 11724, USA.
e-mail: brown@neurostat.mgh.harvard.edu

Published online 27 April 2004; doi:10.1038/nn1228

P E R S P E C T I V E

456 VOLUME 7 | NUMBER 5 | MAY 2004  NATURE NEUROSCIENCE

S C A L I N G U P N E U R O S C I E N C E
©

20
04

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

en
eu

ro
sc

ie
nc

e



domain methods. The most commonly used time-domain method for
measuring association between neurons is the unnormalized cross-
correlogram (Fig. 1c)7. Given a pair of neural spike trains and a speci-
fied bin width, the un-normalized cross-correlogram is the
cross-covariance between the two binned spike trains computed at a
series of lags. The method assumes that the two spike trains are sta-
tionary. That is, it is assumed that the stochastic properties of the neu-
rons do not change in time. In many cases, this ‘stationarity’
assumption can be hard to justify, given that the neural responses are
elicited by time-varying stimuli and frequently adapt with time in
response to the same stimulus. Non-stationarity has been addressed by
performing the covariance analyses in moving windows; however, this
requires a substantial amount of data.

A related measure of association between two stationary point
processes (spike trains) is the cross-intensity function8. This function
estimates the spike rate of one neuron at different lags relative to the

spiking activity of a second neuron. Despite being designed expressly to
measure association between two point processes, being simple to com-
pute and having associated confidence interval estimates, this method
has received only limited use in neural data analysis. Both the cross-cor-
relogram and the cross-intensity function are histogram-based, and
provide only measures of paired associations of neural activity.

Joint peri-stimulus time histogram
The joint peri-stimulus time histogram (JPSTH)9 (Fig. 1d) is for a
pair of neurons a logical extension of the single-neuron PSTH9–11.
Whereas the PSTH displays the spike count per unit time t at each
time t, the JPSTH is a two-dimensional histogram that displays the
joint spike count per unit time at each time u for neuron 1 and time v
for neuron 2. The main diagonal of the JPSTH (the ‘PST coincidence
histogram’) displays for each time t the observed rate at which both
neurons fire simultaneously (to within the accuracy of the binwidth
of the histogram). A modification of the JPSTH, termed the normal-
ized JPSTH, is also used12. The normalized JPSTH subtracts from the
joint firing rate the firing rate expected under independence, and then
divides by the product of the two standard deviations (of the two neu-
ronal firing rates) to correct for the possibility that two independent
neurons with jointly elevated firing rates can appear to be strongly
associated. The normalized JPSTH at the time pair (u, v) is the
Pearson correlation (computed across trials) of the firing of neuron 1
at time u with that of neuron 2 at time v. Summing the diagonals of
the normalized JPSTH produces the normalized cross-correlogram.

Although the normalized JPSTH and the normalized cross-
correlogram (Fig. 1) are useful, both have limitations. First, the
Pearson correlation is only one of many possible measures of associa-
tion, and different measures can produce different results, the accu-
racy of which depends on the underlying mechanism that produces
the joint spiking activity13. Second, statistical significance testing can
be performed in several ways with these methods and again, the
results can differ depending on the assumptions and the methods. A
new approach to significance testing using recently developed
smoothing procedures and a bootstrap significance test can yield
greater statistical power11. The bootstrap is a broadly applicable sim-
ulation method for estimating uncertainty in a statistical analysis.
Third, the normalized JPSTH and cross-correlogram assume that all
trials are statistically indistinguishable7. If, instead, there is detectable
trial-to-trial variation in the neural firing rates, then this variation
can appear artifactually as synchrony or time-lagged joint firing7,14. A
fourth, crucial consideration is that whereas all spike train analysis is
predicated on good spike sorting, the accuracy of spike time informa-
tion is particularly important when searching for synchrony or time-
lagged joint firing. The effects of spike overlap, which are problematic
for most spike-sorting algorithms, can produce spurious correlations
between pairs of neurons15.

Spike pattern classification methods
Algorithms to detect precise patterns of spike timing are another
method of measuring associations among neural spike trains10,16,17.
The appeal of these methods is that they provide a way of evaluating
higher-order neural interactions, that is, greater than pairwise, in
ensemble spiking activity18. For example, these methods can be used
to assess the statistical significance of spike triplet occurrences sepa-
rated by precise interspike intervals or the occurrence of similar pat-
terns among two or more neurons (Fig. 1b)19. Methods for identifying
statistically conspicuous spike coincidences have also been developed.
Such coincidences have been labeled ‘unitary events’ when they occur
more frequently than would be predicted by chance under the null
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Figure 1 Transition from voltage signal recordings to measures of
association for three neural spike trains. (a) Voltage trace containing the
spike events of three different neurons recorded on the same electrode.
Each colored star indicates a different neuron. (b) Application of a spike
sorting algorithm that identifies the spike events, determines the number 
of neurons and assigns each spike event to a particular neuron. The dotted
vertical lines show a spike triplet identified by a spike pattern classification
method. (c–f) Measures of association between the spike trains from Cell 1
and Cell 2 computed using an unnormalized cross-correlogram (c), a 
JPSTH (d), a parametric model fit by maximum likelihood (e) and a cross-
coherence function (f, solid black line) and confidence bounds (f, thin
black line). The horizontal line in c is the upper 95% confidence bound.
Correlations above this line are significantly different from zero.
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hypothesis that spike times are independ-
ent20–22. Their occurrence is then studied in
relation to behavioral events. The delicate sta-
tistical issue involved in applying spike pat-
tern classification methods is choosing the
complexity or size of the pattern, and formu-
lation of the null hypothesis and test statistic
so that the procedure has the correct signifi-
cance level under reasonably general assump-
tions. For this reason, some findings from
these analyses have at times been criticized as
suffering from statistical artifacts23. An alter-
native approach to test for synchrony is to
build a distribution of spike trains under a
null hypothesis by ‘jittering’ the observed
spike trains randomly within a small time
window. This intuitive idea has recently been
formalized and extended to cover several
practical data analysis scenarios24.

Likelihood methods
Likelihood methods are central tools for
modeling and analysis in statistical research25.
Most likelihood methods assume a specific
parametric probability model for a process
under study (Fig. 1e). The likelihood is the
joint probability density of the experimental
data arising from this process viewed as a
function of the model’s unknown or free
parameters. These free parameters may be
estimated from the experimental data by for-
mal estimation procedures such as method of moments or maximum
likelihood. If the probability model is a good approximation to the
process being studied, then use of the likelihood is an optimal way of
analyzing the data being generated by the process25. Likelihood meth-
ods for point processes have been used to analyze single neural spike
train data8,26–29, and in a few instances to model two or more simulta-
neously recorded neurons8,30. Likelihood methods hold important
promise for this and other neuroscience data analysis problems
because they provide in a coherent framework a wide range of well-
developed statistical methods for data analysis, including assessing
model goodness-of-fit, constructing confidence intervals and testing
hypotheses8,29. The challenge in using likelihood point process meth-
ods to analyze multiple neural spike trains is defining multiviariate
point process models that accurately represent joint neural spiking
activity and devising efficient algorithms for model fitting30.

Frequency-domain methods
Under the assumption of stationarity, as in the case of continuous-
valued data, a frequency domain analysis of ensemble neural spiking
activity can be conducted by taking the Fourier transform of the spike
trains, and using these to compute the spectrum of the individual
trains and the cross-spectrum or coherence between each spike train
pair8,31,32. The coherence is a simple frequency-dependent correla-
tion measure of association between two processes (Fig. 1f). It has two
important advantages over the time domain counterpart: the normal-
ization is not bin-size dependent, and it can be pooled across neuron
pairs. It also allows for analysis of point processes, continuous-valued
processes, and hybrid point and continuous-valued pairs using the
same measure. Error estimates and confidence intervals can be com-
puted for spectra and coherence estimates from theoretical formulae

that are valid when the numbers of spikes in the spike trains are large,
or from bootstrap/jackknife procedures (Fig. 1f)33.

Stimulus-driven non-stationarity is an important feature of neural
spike train data, and may be analyzed using moving window estimates
of spectra (spectrograms) and coherences (coherograms)34. A key
technical yet practical point for use of time-frequency spectral esti-
mates, including moving window and wavelet-based estimates35, is
that they must obey the uncertainty principle, which puts a lower
bound on the area of the point spread functions of these estimates at
all points in the time-frequency plane (∆f∆t ≥ 1). Moving window
estimates computed in the frequency domain are often less biased
than the corresponding time-domain estimates. Thus, even time
domain functions, such as the cross-correlogram and the PSTH, may
be optimally estimated by inverse Fourier-transforming the corre-
sponding frequency-domain functions. One principled approach to
estimating the frequency-domain quantities is by using multitaper
techniques36. These methods have also proved useful in estimating
coherence between spike trains and local field potentials37 and are
well-suited for error analyses using bootstrap/jacknife procedures.

Neural spike train decoding
Decoding algorithms are the mathematical techniques used in neuro-
science to study how spike train firing patterns from a single neu-
ron38,39 or an ensemble of neurons40 represent external stimuli and
biological signals. The decoding analysis proceeds typically in two
stages: the encoding stage (Fig. 2a) and the decoding stage (Fig. 2b).
In the encoding stage, neural spiking activity is characterized as a
function of the biological signal. In the decoding stage, the relation is
inverted, and the signal is estimated from the spiking activity of the
neurons. Developed initially to study how movements are represented
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Figure 2 Decoding of position from ensemble rat neural spiking activity40,50. (a) Encoding analysis 
in which the relation between the biological stimulus (trajectory of the rat in the environment, solid
black line in the Position panel) and spiking activity (Spikes panel) is estimated as place receptive
fields for three neurons. (b) Decoding analysis in which the estimated place receptive fields are used
in a Bayesian decoding algorithm to compute the predicted position (thin black line) of the rat in the
environment from new spiking activity of the neural ensemble recorded during the decoding stage.
The predicted position is compared with the observed position (thick black line) during the decoding
stage. The blue oval defines a 95% confidence region centered at that location.
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by neurons in the motor cortex, the population vector is one of the
earliest decoding techniques41,42. To decode the neural spiking activ-
ity at any time t, one computes the population vector (the normalized
dot product of the observed spiking activity in a time window with
the firing functions for each neuron) for different values of the signal.
The value of the signal for which the dot product is the largest is taken
to be the decoded estimate of the signal.

Reverse correlation is a linear regression–based decoding algorithm
that has been used to study how groups of neurons represent infor-
mation in the visual and motor systems and to control neural pros-
thetic devices38,39,43–46. The appeal of this widely used approach is
that binning the spike trains to create continuous-valued regressors
avoids use of an explicit encoding model and makes it possible to use
standard linear regression theory to fit the model and assess the accu-
racy of the decoding. Moreover, computation of the regression coeffi-
cients implicitly takes account of pairwise correlations in the neural
activity. The linear construction of the population vector makes it a
special case of the reverse correlation methods.

Decoding algorithms that are based on Bayes’ theorem, the elemen-
tary probability rule for computing the probability of one event given
another event, offer a general approach to estimating the representa-
tion of a biological signal in ensemble spiking activity40,47–51. They
have been used successfully to study how neural ensembles in the hip-
pocampus represent an animal’s position in an environment40,47,50

(Fig. 2) and to characterize how motor commands are represented by
ensembles of neurons in primary motor cortex49,51. The encoding
stage can use likelihood methods to compute the probability of the
spiking activity given the signal, and the decoding stage computes the
probability of the signal given the spiking activity. The appeal of the
Bayesian approach is that it uses probability models to represent dif-
ferent sources of information in the problem, and it formulates
decoding in the theoretical framework of other filtering and smooth-
ing methods in statistics and signal processing. When the proposed
model is a reasonable approximation to the data, the Bayesian
approach, like the likelihood methods, has many optimality proper-
ties, including efficiency, which, in the decoding problem, means that
its signal estimates have the smallest possible uncertainty25. An
important conceptual difference between the Bayesian and reverse
correlation decoding methods is that under the standard assumptions
of regression theory, the neural firing rates used in a reverse correla-
tion analysis are assumed to be non-random, known constants. In
contrast, the Bayesian approach models the spike trains as a stochastic
point process and the biological signal as a stochastic process based
on its known properties.

Information theory
Information theory measures are used widely in analyses of neural
spike train data39,52–54. These include the entropy to quantify spike
train variability, and mutual information to measure the association
between two processes, such as between two spike trains or between a
spike train and a stimulus. These measures have been applied exten-
sively to study how much information a single spike train conveys
about a biological signal by using histogram-based methods to esti-
mate empirically the relevant probability densities. Use of the infor-
mation measures is grounded in thinking about those parts of the
nervous system, such as visual pathways, that may be modeled as
communication channels39 with a rationale that analyses may be con-
ducted free of assumptions about detailed system properties55. There
are limitations to this approach. For any neural system, the optimal
word length (histogram binwidth) is an unknown that must be esti-
mated taking account that the data requirements for histogram esti-

mation increase exponentially with the word length. The data
requirements are far greater for extending this approach to estimating
mutual information between multiple spike trains and a biological
signal54. Information theory methods summarize complex functional
relationships between the spike train and the signal as single num-
bers. Moreover, whether sensory pathways can be treated using infor-
mation theory as in conventional communications analyses has
recently been questioned56.

One approach to extending the use of information theory to analyze
multiple spike trains may arise from developing probability models of
joint spiking activity and likelihood methods to estimate these models.
An advantage of modeling explicitly the joint probability density
between the ensemble spiking activity and the biological signal is that
the mutual information and any other relevant functions of this 
probability density can be computed directly once this probability
density has been estimated. Parametric models may then offer insight
into how to construct their more flexible, model-free counterparts.

Future challenges for multiple spike train data analysis
Simultaneous recording of multiple spike trains from several neurons
offers a window into how neurons work in concert to generate spe-
cific brain functions. Without substantial methodology research in
the future, our ability to understand this function will be significantly
hampered because current methods fall short of what is ultimately
required for the analysis of multiple spike train data. With the excep-
tion of spike pattern classification methods, decoding algorithms,
partial coherence estimation8 and certain graphical methods57, cur-
rent techniques for spike train analysis are designed to analyze—at
most—pairs of neurons. Therefore, the future challenge is to design
methods that truly allow neuroscientists to perform multivariate
analyses of multiple spike train data. This development must be done
taking explicit account of the questions being studied and the experi-
mental protocols being used.

Because the accuracy of the spike sorting significantly affects the
accuracy of the experimental data, development of the best possible
spike-sorting algorithms must be an important goal. The complexity
of the spike-sorting problem increases with number of electrodes in
the recording systems. There should be systemic study of spike-
sorting algorithms taking account of different electrode numbers and
configurations, recording conditions and brain regions. A harder, yet
no less important, challenge is to devise accurate, real-time spike-
sorting algorithms to enable multiple spike trains to be inputs to neu-
ral prosthetic devices or brain-machine interfaces42,45,46. Real-time
spike sorting could also lead to real-time data analysis, and possibly to
real-time changes in experimental protocols.

Graphical methods57 for multivariate point process data are
important for screening data for errors and inconsistencies prior to
analysis, postulating preliminary models and formulating meaningful
displays to report findings.

Multiple spike trains are multivariate point processes, yet research in
statistics and signal processing on multivariate point process models
has not been nearly as extensive as research on models of multivariate
continuous-valued processes. Therefore, developing multivariate
point process models should be a primary focus of methodology
research for multiple neural spike trains. Because there is a canonical
representation of univariate and multivariate point processes in terms
of the conditional intensity function2,29, developing strategies to con-
struct parametric models of conditional intensity functions and likeli-
hood-based estimation methods seems a good way to proceed2,8,27–30.
Other avenues of investigation could include lattice or spin models
from statistical physics58 and multivariate binary data models from
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statistics59. Whatever the approach, the objective must be to develop
tractable methods for estimating high-dimensional interactions
among groups of neurons from their spike train recordings.
Furthermore, because plasticity in neural dynamics makes non-sta-
tionarity in neural data a rule rather than an exception, developing
explicit adaptive estimation algorithms to track these dynamics for
multivariate point processes is another important research problem60.

Dynamical systems and neural network models have long been cen-
tral in providing quantitative characterizations of neural processes61,62.
Research on data analysis methodology should be conducted in concert
with this modeling research63. Multiple-electrode recordings combined
with statistical methods explicitly designed to analyze multiple spike
train data will offer a better opportunity to explicitly link experimenta-
tion and computational modeling by using the information from
experiments to quantify better predictions from more complex models,
refine model formulation and, as a consequence, design better experi-
ments. Similarly, the computational models can suggest formulations
of the statistical methods that may enhance their success at extracting
salient features in experimental data.

Although the objective of most current neurophysiological experi-
ments is to relate relevant biological stimuli to ensemble spiking activ-
ity, experiments that record simultaneous multimodality data such as
neurophysiological, functional imaging and behavioral data are
becoming more common64. Developing appropriate statistical meth-
ods to analyze simultaneous multimodality recordings will require
innovative approaches to integrate information properly across the
different temporal and spatial scales of various data sources.

There are many benefits of developing multivariate methods for
multiple spike train data analysis. First, methods specifically tailored
to analyze multiple spike train data will allow neuroscientists to
make precise statements of how reliably findings from a given exper-
iment can be stated in terms of standard statistical summaries.
Practically speaking, this means that even for this complex, high-
dimensional modeling problem, the analysis reports standard errors
for firing rates and time constant parameters, provides confidence
intervals for measures of neural interactions and associations, and
gives quantitative assessments of how well a given model describes
the experimental data29. Second, more accurate quantitative sum-
maries will allow neuroscientists to make more reliable statements
about how strongly experimental findings support hypotheses or
proposed mechanisms. For example, would an analysis measuring
time-varying interactions among three or more neurons rather than
pairwise correlations offer new insight into the mechanism of per-
sistent activity seen in the oculomotor system65?

Third, more accurate multivariate quantitative summaries will
make it easier to relate ensemble neural dynamics (within and
between specific brain regions) to behavior and to relevant biological
stimuli. As an illustration, applying these methods to the study of
simultaneously recorded neural activity in the parietal and primary
motor cortices could help reveal how these two brain regions com-
municate during formulation and execution of motor commands.
Fourth, as the number of neurons whose interactions can be accu-
rately measured increases, neuroscientists will be able to increase the
complexity of the experiments they design, and as a consequence, the
questions they investigate. Fifth, more reliable data analyses will pro-
vide more refined quantitative constraints and perhaps parameter
values for dynamical models of neural systems. Finally, improved
multiple spike train data analysis methods, particularly spike-sorting
and decoding algorithms, will have immediate, significant implica-
tion for improving the design and implementation of neural pros-
thetic devices and brain–computer interfaces42,45,46.

Multiple spike train recordings are an important component of the
data explosion that is currently occurring in neuroscience. Therefore,
devising systematic research programs for neuroscience data analysis
akin to those currently being undertaken in genomics and bioinfor-
matics is a must. Several initiatives to support such research have
already been proposed by the US National Institutes of Health
(http://grants1.nih.gov/grants/guide/pa-files/PA-04-006.html) and
National Science Foundation (www.nsf.gov/bio/progdes/biocrcn.
htm). Specific initiatives to encourage quantitative scientists (statisti-
cians, physicists, engineers, computer scientists and mathematicians)
to undertake data analysis research in neuroscience should be part of
these current and future programs. Neuroscience training for statisti-
cians and incentives to involve them more directly in neuroscience
data analysis research should be a priority. Finally, courses on the
analysis of neuroscientific data (www.mbl.edu/education/courses/
special_topics/neufo.html) should be part of the curriculum in neu-
roscience programs, as are courses on computational modeling. This
will ensure that instruction in the most contemporary data analysis
principles and methods are an integral part of undergraduate, gradu-
ate and postdoctoral training in neuroscience, and in the disciplines
that support computational research in this field.
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