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ReviewDeciphering the Molecular Basis
of Memory Failure in Alzheimer’s Disease

ways involving the gene products have been delineated,
and specific treatments directed at these pathways have
even begun to enter human trials. Engineered mouse
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Brigham and Women’s Hospital and models have enabled a controlled temporal dissection

of the pathogenic processes that cannot be achievedHarvard Medical School
Boston, Massachusetts 02115 by studying human brain tissue at the end of a disease.

And increasingly finer anatomical, biochemical, and2 Laboratory for Neurodegenerative Research
The Conway Institute of Biomolecular electrophysiological analyses have focused on early

stages of disease evolution—in mice and sometimesand Biomedical Research
University College Dublin even in humans who have died (for other reasons) in the

presymptomatic or initial clinical phase of a disorder.Belfield
Dublin 4 Perhaps the example of greatest relevance to under-

standing the neurobiology of memory arises from theRepublic of Ireland
effort to decipher Alzheimer’s disease. In contrast to
other syndromes of cognitive failure in humans, such
as frontotemporal dementia, multi-infarct dementia,Acutely developing lesions of the brain have been

highly instructive in elucidating the neural systems Creutzfeld-Jacob disease, and Lewy body dementia,
Alzheimer’s disease characteristically produces a re-underlying memory in humans and animal models.

Much less has been learned from chronic neurodegen- markably pure impairment of declarative memory in its
earliest stages. If one could understand precisely inerative disorders that insidiously impair memory. But

the advent of a detailed molecular hypothesis for the which neural circuits and by what molecular mecha-
nisms this insidious loss of memory evolves, one mightdevelopment of Alzheimer’s disease and the creation

of compelling mouse models thereof have begun to simultaneously derive information about the require-
ments for normal memory function in adult humans andchange this situation. Experiments in rodents suggest

that soluble oligomers of the amyloid � protein (A�) learn about ways to prevent this catastrophe. Here, we
will attempt to distill a rapidly expanding and often bewil-may discretely interfere with synaptic mechanisms

mediating aspects of learning and memory, including dering array of experimental and clinical observations
into a conceptual model of why memory is impaired inlong-term potentiation. In humans, memory impair-

ment correlates strongly with cortical levels of soluble victims of Alzheimer’s disease. Then, we will discuss
what one might do about it.A� species, which include oligomers. Local inflamma-

tory changes, neurofibrillary degeneration, and neuro-
transmitter deficits all contribute to memory impair- The Tragedy of Alzheimer’s Disease
ment, but available evidence suggests that these Few diagnoses in medicine bring more anguish and fore-
develop as a consequence of early A� accumulation. boding to patient and family than does Alzheimer’s dis-
Accordingly, attempts to slow memory and cognitive ease (AD). This most common of the late-life dementias
loss by decreasing cerebral A� levels have entered slowly robs individuals of their most human qualities—
human trials. memory, insight, judgment, abstraction, and language.

And beyond the personal devastation of this ultimately
Since before the time of Broca and Wernicke, students fatal disorder, its commonness produces a societal bur-
of the nervous system have sought to understand nor- den of major proportions. In the year 2000, there were
mal function by meticulously analyzing dysfunction. The an estimated 4.5 million persons with AD in the United
study of disease has provided crucial information about States, and this number is set to triple to 13 million or
the structure and activities of the healthy brain. In the more by 2050 if no therapy intervenes (Hebert et al.,
case of memory, acute brain lesions—usually vascular 2004). Based on such estimates in the American popula-
or traumatic in origin—have yielded powerful insights tion, there may already be well over 30 million victims
into some of the networks and mechanisms underlying worldwide. The prevalence of AD rises steadily with age,
the formation, consolidation, storage, and retrieval of affecting roughly 1% to 3% of the American population
different forms of human memory. Less has been between ages 60 and 70, some 3% to 12% of those
learned by studying chronic neurodegenerative dis- between 70 and 80, and upward of 25% to 35% of those
eases, in part because they develop very slowly and over 85 (Evans et al., 1989; Kukull and Bowen, 2002).
produce complex mixtures of cognitive symptoms, but The precise onset of clinical AD is very difficult to
primarily because their underlying pathophysiology has discern by both patient and family. The earliest symp-
remained inaccessible. toms are often manifested as subtle, intermittent deficits

But this situation is changing quickly. In the past de- in the remembrance of minor events of everyday life,
cade or so, genes causing familial forms of some de- referred to as loss of episodic memory. (The nature of the
menting disorders have been identified, protein path- memory deficits in both AD patients and nondemented

aged subjects and their neuroanatomical correlates are
reviewed elsewhere in this volume [Buckner, 2004, this*Correspondence: dselkoe@rics.bwh.harvard.edu (D.J.S.); dwalsh@

rics.bwh.harvard.edu (D.M.W.) issue of Neuron].) Early warning signs are frequently
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dismissed as a normal aspect of aging, but as memory �-secretase enzymes (Glenner and Wong, 1984; Haass
loss slowly accelerates, the potential gravity of the situa- et al., 1992; Kang et al., 1987). Antibodies to A� have
tion becomes apparent. Usually, new patients present revealed innumerable deposits in the brains of AD pa-
to the physician in excellent neurological condition, with tients—and to a lesser extent normal aged humans—
no deficits other than difficulty encoding some new that are not fibrillar (i.e., are not amyloid per se) but rather
memories. Speech and language, muscle tone and comprise amorphous, granular masses of apparently
strength, sensation and reflexes are all initially normal. prefibrillar forms of A� (called diffuse plaques) (Dickson,
After many months of gradually progressive impairment 1997; Duyckaerts et al., 1998).
of first declarative and then also nondeclarative mem-
ory, other cognitive symptoms appear and slowly ad- Alzheimer’s Disease as a Disorder
vance. Over a further period of years or even a decade of Synaptic Function
or more, a profound dementia develops that affects mul- Virtually since the time of Alzheimer, neuropathologists
tiple cognitive and behavioral spheres and is often ac- have sought to establish semiquantitative correlations
companied by extrapyramidal motor signs, slowed gait, between the progressive memory and cognitive symp-
and incontinence (Morris and Rubin, 1991; Romanelli et toms of AD and the morphological alterations found in
al., 1990). Death usually comes by way of minor respira- cortical biopsies and in the autopsied brain. Many stud-
tory complications, such as aspiration or pneumonia, ies have examined the relationship between cognitive
often in the middle of the night. impairment and plaque and tangle counts, and while

Pathologically, the Alzheimer brain at end stage is in general, the number of NFTs correlates better with
characterized by atrophy of the hippocampal formation severity of dementia than the number of amyloid
and cerebral cortex and ventricular enlargement, all plaques, arguably the best statistical correlations occur
greater than expected for age. Microscopically, there between measures of synaptic density and degree of
are decreases in the numbers of neuronal cell bodies dementia (e.g., Coleman and Yao, 2003; DeKosky and
in the limbic and association cortices and in certain Scheff, 1990; Terry et al., 1991). Quantification using
subcortical nuclei that project to them (e.g., Gomez- electron microscopy or immunohistochemical staining
Isla et al., 1997; Khachaturian, 1985; Uylings and de for synaptic markers has documented significant de-
Brabander, 2002), although this perikaryal loss can be creases in synaptic density in the association cortices
difficult to appreciate without performing formal stereo- and hippocampus of AD brain (Bertoni-Freddari et al.,
logical quantification. The most obvious and diagnostic 1989; Davies et al., 1987; DeKosky and Scheff, 1990;
microscopic changes in the AD brain are the senile (amy- Masliah et al., 1990, 2001; Sze et al., 1997; Terry et al.,
loid) plaques and neurofibrillary tangles (NFT) to which 1991). Moreover, the decrease in synapse number and
Alzheimer first called attention (Alzheimer, 1907; Kidd, density seems disproportionate to the loss of neuronal
1964; Terry, 1963). These two lesions usually occur in cell bodies (Davies et al., 1987; DeKosky and Scheff,
very substantial numbers in the hippocampus, amygdala 1990; Bertoni-Freddari et al., 1996), suggesting that
association cortices, and certain subcortical nuclei, and pruning of synaptic endings may precede the demise
they are often accompanied by variable numbers of am- of the neuron in the disease process. Furthermore, some
yloid-bearing meningeal and cortical microvessels (i.e., changes in the brains of AD patients and APP transgenic
congophilic amyloid angiopathy [CAA]). Staining AD mice suggest that synaptic function is compromised
brain sections with silver-protein solutions like Biel- prior to the physical degeneration of the synapses (e.g.,
schowsky’s silver impregnation reveals the NFT and the Palop et al., 2003; Westphalen et al., 2003; Yao et al.,
abnormal axons and dendrites (dystrophic neurites) that

2003).
surround many of the amyloid plaques but that are also
scattered widely in the cortical neuropil. By electron

Amyloid � Protein as an Instrumentmicroscopy, NFT and some dystrophic neurites can be
of Synaptic Attackseen to contain bundles of paired, helically wound �10
In the AD brain after death, one can observe many abnor-nm filaments (PHF) intermixed with some straight �10
malities that would be expected to have interfered withnm filaments. The highly insoluble filaments of the NFT
memory function. These include swollen and tortuousmay be left behind as “ghost tangles” following the death
dendrites and axons, activated microglia and reactiveof the neurons in which they originally formed (Braak et
astrocytes containing inflammatory mediators (e.g., cy-al., 1994).
tokines, acute phase proteins) and free radicals, neurofi-The principal subunit of the PHF is the microtubule-
brillary tangles, and deficits of several neurotransmittersassociated protein tau, which undergoes hyperphos-
attributable to synaptic and perikaryal loss. How canphorylation and detachment from microtubles to form
one begin to make sense of the number and complexitythese abnormal filaments (for reviews, see Lee et al.,
of potentially adverse influences on memory function?2001; Mandelkow et al., 2003). Inheritance of missense
And how might one decipher the cause of the earliestor splicing mutations in the human tau gene causes
memory symptoms, not only in AD but also in the morerare but devastating forms of frontotemporal dementia
subtle amnestic syndrome of mild cognitive impairment(Hutton et al., 1998; Lee et al., 2001; Poorkaj et al., 1998;
(MCI), a frequent prelude to—or first clinical stage of—Spillantini et al., 1998), whereas the tau that accumulates
AD? For many investigators, answers to these two ques-in AD is invariably wild-type. The plaque and vascular
tions have emerged from detailed analyses of the mo-amyloid deposits of AD are principally composed of
lecular pathology of these disorders coupled withthe 42 and 40 residue amyloid � proteins (A�) that
identification of genetic factors that predispose stronglyare generated constitutively by sequential proteolysis

of the �-amyloid precursor protein (APP) by the �- and to the development of AD. And while controversy re-
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mains, one can synthesize the results of such studies Maat-Schieman et al., 1994; Maat-Schieman et al., 1992;
into a hypothesis that the gradual accumulation of A� Tagliavini et al., 1999), and in each case, these increase
in brain regions important for memory initiates the AD the steady-state levels of A� and/or its propensity to
syndrome. polymerize (Clements et al., 1993; De Jonghe et al., 1998;

Diverse lines of evidence now suggest that A� plays Fraser et al., 1992; Van Nostrand et al., 2001; Watson
a central role in the pathogenesis of neuronal dysfunc- et al., 1999; Nilsberth et al., 2001). Studies of genetically
tion in AD (for reviews, see Hardy and Allsop, 1991; manipulated mice reveal that the apoE protein, particu-
Hardy and Selkoe, 2002; Selkoe, 1991). The salient larly the E4 isoform, facilitates the formation or stability
points of support for the “amyloid hypothesis” (more of A� fibrils (Fagan et al., 2002), and apoE may play
correctly, the A� hypothesis) of AD can be summarized an important role in the extracellular clearance of A�
briefly. First, A� is the subunit of the amyloid that is (DeMattos et al., 2004; Koistinaho et al., 2004). In short,
progressively deposited in myriad neuritic plaques in all four confirmed genetic factors underlying inherited
the limbic and association cortices of all AD patients forms of AD increase the production and/or accelerate
(Glenner and Wong, 1984; Masters et al., 1985). Second, the aggregation of A�, and this can be detected in hu-
synthetic A� peptides are toxic to hippocampal and mans well before the onset of clinical symptoms.
cortical neurons, both in culture and in vivo (e.g., Geula Despite the evidence summarized above, the A� hy-
et al., 1998; Lorenzo and Yankner, 1994; Pike et al., pothesis remains controversial (Lee et al., 2003; Mesu-
1991). Third, the APP gene is on human chromosome lam, 1999; Neve and Robakis, 1998), not least because
21q (Goldgaber et al., 1987; Kang et al., 1987; Robakis the quantity and temporal progression of amyloid
et al., 1987; Tanzi et al., 1987), and its duplication leads plaques do not show a simple relationship to the clinical
to the typical AD neuropathology that invariably devel- progression of the disease (Braak and Braak, 1998).
ops in middle-aged patients with trisomy 21 (Down’s Extensive cortical plaques, mostly of the diffuse type,
syndrome) (Mann et al., 1984; Mann, 1988). Importantly, are detected in a significant proportion of the nonde-
in a rare case of the translocation form of Down’s syn- mented elderly (Knopman et al., 2003). We will now re-
drome in which the distal location of the chromosome view a range of studies that suggest that the relatively
21q breakpoint left the patient diploid for the APP gene, weak correlation between cerebral amyloid plaque bur-
no signs of dementia developed, and amyloid deposition den and severity of memory and cognitive impairment
and AD-type neuropathology were essentially absent may be explained by evidence that A� neurotoxicity can
from the brain upon death at age 78 (Prasher et al., be mediated by multiple different assembly forms of the
1998). Fourth, inherited mutations in the APP gene that peptide and that impaired memory may be attributable,
all localize within or immediately flanking the A� region at least in part, to soluble oligomers that can initiate
alter the amounts or aggregation properties of A� and downstream changes. This concept is worthy of focus
are sufficient to precipitate premature AD (Goate et al., in view of very recent information that therapeutically
1991; Levy et al., 1990). Fifth, inherited mutations within lowering cortical A� levels in some AD patients may
the presenilin (PS) 1 and 2 genes increase the A�42/ actually be associated with stabilization of memory and
A�40 ratio throughout life and cause very early and ag- cognitive decline (Hock et al., 2003; Nicoll et al., 2003;
gressive forms of AD (Lemere et al., 1996; Levy-Lahad Gilman et al., 2004).
et al., 1995; Rogaev et al., 1995; Scheuner et al., 1996;
Sherrington et al., 1995). In this regard, presenilin has

Studies of Human Brain Tissue and AD Mousebeen found to be the active site component of the prote-
Models Suggest that Soluble Forms of A�ase (�-secretase) which generates A� (Esler et al., 2000;
Perturb Synaptic Form and FunctionLi et al., 2000; Wolfe et al., 1999). Sixth, inheritance of
An early hint that soluble, nonfibrillar assemblies of A�one or two �4 alleles of apolipoprotein E (Apo E) is a
might play a role in memory impairment came from anal-strong genetic risk factor for AD (Corder et al., 1993;
yses of human brains that demonstrated robust correla-Saunders et al., 1993; Strittmatter et al., 1993) and in-
tions between cortical levels of soluble A� and the extentcreases cerebral A� burden in humans (Rebeck et al.,
of synaptic loss and severity of cognitive impairment1993; Schmechel et al., 1993). And seventh, mice trans-
(Lue et al., 1999; McLean et al., 1999; Wang et al., 1999).genic for mutant human APP show a time-dependent
In such studies, the term soluble A� is an operationalincrease in extracellular A� and develop certain neuro-
definition, embracing all forms of A� that remain in aque-pathological and even behavioral changes reminiscent
ous solution following high-speed centrifugation of brainof AD (Games et al., 1995; Hsia et al., 1999; Hsiao et al.,
extracts (Kuo et al., 1996; Lue et al., 1999; McLean et1996; Johnson-Wood et al., 1997; Moechars et al., 1999;
al., 1999; Wang et al., 1999). To date, most analysesSturchler-Pierrat et al., 1997).
of soluble A� levels have employed quantification byBoth the APP mutations that flank the C terminus
ELISAs that cannot disclose the aggregation state ofof the A� region and the mutations in PS1 and PS2
the species detected. Thus, while such studies cannotselectively increase the cellular production of A� termi-
attribute synaptic and cognitive changes to a specificnating at amino acid 42 (Borchelt et al., 1996; Duff et
assembly form of A�, the solubility of the A� species inal., 1996; Scheuner et al., 1996; Citron et al., 1997). The
aqueous buffer following ultracentrifugation (typically,increase in A�42 is particularly noteworthy, because this
�100,000 � g for �1 hr) indicates that the samples areform of A� is far more prone to oligomerization and fibril
free of amyloid fibrils, which pellet quantitatively at theseformation than is the more abundantly produced A�40
forces. In one study, when this buffer-soluble fraction ofpeptide (Bitan et al., 2003; Burdick et al., 1992; Jarrett
AD cerebral cortex was examined by sensitive Westernet al., 1993). Five APP point mutations occur within the

A� sequence (Cras et al., 1998; Kamino et al., 1992; blotting, not only monomeric A� (4 kDa) but also SDS-
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stable oligomers (�8 and �12 kDa) were detected statistical significance was seen in the neocortex, where
the A� plaques disrupted local cytoarchitecture, and in(McLean et al., 1999). Similar oligomers have also been

detected in the hippocampal CA1 region and entorhinal certain subregions such as the piriform and entorhinal
cortices (Calhoun et al., 1998). Similar selective neuronalcortex of humans in the absence of amyloid plaques

and, in many cases, in the absence of NFTs as well loss in CA1 of hippocampus and certain subregions of
the neocortex has been observed in AD brains (Calhoun(Funato et al., 1999). The latter result suggests that the

accumulation of A� oligomers may occur very early in et al., 1998), suggesting that the predominance of ma-
ture (amyloid fibril-rich) plaques in the APP23 line leadsthe disease process in humans.

Given the many obstacles to assessing disease pro- to some neuronal loss in areas of vulnerability. In other
APP transgenic lines, more diffuse and less maturegression dynamically in the human brain, significant ef-

fort has been expended to create mouse models that plaques occur than in the APP23 mice, and such lines
generally do not show measurable loss of neuronal cellmight replicate aspects of AD pathogenesis. A sizeable

number of mouse lines transgenic for human APP have bodies (Calhoun et al., 1998; Games et al., 1995; Irizarry
et al., 1997b).been generated. Most of these models recapitulate

some, but not all, of the neuropathological features of In accord with these observations, a study using triple
immunolabeling confocal microscopy and cross-corre-the human disease. Experience suggests that mouse

models with expression of human APP well above en- lation density map analysis reported a significant reduc-
tion in neuronal density (as assessed by staining fordogenous levels usually show pathological and behav-

ioral abnormalities, but the amount of APP overexpres- Neuro N) around Thioflavin S-positive A� deposits in AD
brain and also in the brains of 12-month-old “bigenic”sion required to induce easily detectable phenotypes

depends upon the background strain of the mouse mice that express mutant human PS1 plus APP (Urbanc
et al., 2002). In these mice, significant decreases in neu-(Hsiao, 1998). Typically, animals with APP levels four

to five times higher than endogenous develop amyloid ronal density were detected within plaques, in propor-
tion to the density and size of the deposits. Modelingplaque pathology similar to that observed in AD, with

the A�42/40 peptide ratio apparently being the critical the spatial relationship between neurons and Thioflavin
S-positive deposits suggested that A� fibrils were asso-determinant (Mucke et al., 2000). Both diffuse and ma-

ture (fibrillar) plaques are usually present in such mice, ciated with loss of neurons within the plaque, but this
toxicity did not extend beyond the deposit itself. Be-with an age-dependent increase in the number and den-

sity of such plaques being an invariant feature (Games cause Thioflavin S-positive plaques occupy only �2%
of the mouse cortical area, the resultant neuronal loss iset al., 1995; Hsia et al., 1999; Hsiao et al., 1996; Johnson-

Wood et al., 1997; Moechars et al., 1999; Sturchler- modest and would not be easily detected with standard
stereological methods. Similarly, in AD brains, ThioflavinPierrat et al., 1997). Mature plaques are stained by Thi-

oflavin S and silver solutions and display birefringence S-positive amyloid plaques have been estimated to oc-
cupy only around 4% of cortical area (Urbanc et al.,under polarized light upon labeling with Congo red.

These mouse plaques, like those in AD, also show reac- 2002); as a result, the local neurotoxicity of these
plaques alone cannot account for the total neuronal losstive astrocytes (stained by antibodies to glial fibrillary

acidic protein), activated microglia, and surrounding observed in AD brains. Although it is likely that fibrillar
A� in mature plaques confers cytotoxicity, it is worthneuritic dystrophy, but no PHF in neurites or tangles

have been observed without also overexpressing mu- emphasizing that amyloid fibrils are dynamic structures
and may actually act as local reservoirs of potentiallytant human tau (Games et al., 1995; Hsia et al., 1999;

Hsiao et al., 1996; Moechars et al., 1999; Sturchler-Pier- cytotoxic low molecular weight A� assemblies. It re-
mains unclear which additional A� assemblies and/orrat et al., 1997). “Bigenic” mice expressing mutant hu-

man APP plus human tau bearing the P301L mutation other molecular events may mediate the substantial
neuronal loss observed in late-stage AD brains (Everallthat causes a form of frontotemporal dementia (Lewis

et al., 2001) or “trigenic” mice expressing mutant APP, et al., 1997; Gomez-Isla et al., 1997) or mediate the
deficits in synaptic markers observed in certain APPmutant PS1, and P301L tau (Oddo et al., 2003) develop

NFTs reminiscent of those seen in AD and at a rate much transgenic mice prior to the appearance of A� deposits.
In a mouse line transgenic for APP bearing the Val717-accelerated compared to mice expressing P301L tau

alone. The rapidity of evolution and spatial pattern of Phe FAD mutation (designated “lond 2 mice”), it took
�12 months for A� plaques to develop, and yet from 3A� deposition varies among different APP transgenic

lines, being generally dependent on the transgene pro- months onward, the animals showed cognitive impair-
ment and decreased long-term potentiation (LTP), anmoter, the level of expression achieved, and the

mouse strain. electrophysiological correlate of aspects of learning and
memory (Moechars et al., 1999). When these lond 2 miceIn most APP transgenic models, neuronal loss has not

been observed by the use of conventional stereological were crossed with neuron-specific PS1-deficient mice,
the offspring showed no A� deposition at age 18techniques (e.g., Irizarry et al., 1997a, 1997b). However,

at least one mouse line (called APP23) that expresses months, and LTP was virtually normal (Dewachter et al.,
2002). The latter finding suggests a critical role for A�mutant human APP exhibits significant neuronal loss in

the CA1 region of hippocampus at age 14–18 months per se in the block of LTP, because eliminating PS1 (and
thus markedly lowering �-secretase activity) still leaves(Calhoun et al., 1998). In these mice, A� is deposited

almost exclusively in the form of Thioflavin-positive production of full-length APP and its major soluble deriv-
ative (APPs-�) unchanged and actually elevates levelsplaques (Sturchler-Pierrat et al., 1997), and the cell loss

is observed primarily in the vicinity of such hippocampal of the C99 and C83 C-terminal fragments of APP. These
results help address the appropriate concern that APPdeposits. Additional neuronal loss that did not reach
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of the remaining synapses. Examining APP transgenic
as well as APP � PS “bigenic” mouse lines, Dickey and
colleagues reported that certain gene products associ-
ated with synaptic plasticity and memory consolidation
were suppressed at a time when synaptophysin expres-
sion was still normal (Dickey et al., 2003, 2004). These
variations among studies could result from discrepan-
cies in experimental design, particularly, differences in
the ages at which the mice were tested and from strain
differences, as it is known that susceptibility to neuronal
injury can vary widely across mouse strains (Schau-
wecker and Steward, 1997).

It will now be important to compare quantitative immu-
nohistochemistry for synaptophysin and other synaptic
proteins to electrophysiological measures of synaptic
strength prior to the development of amyloid pathologyFigure 1. Superficial Granule Cells of the Dentate Gyrus Show Re-
in various APP transgenic models, to determine to whatduction in Dendrite Length Many Months Before A� Deposits Are

Detected extent functional changes precede structural changes
in synapses. Available data suggest that diffusible, prefi-Superficial granule cells from PD-APP mice (A) exhibit a significant

reduction in extent of dendritic trees in comparison to nontransgenic brillar A� assemblies may affect both the form and func-
control mice (B). (Adapted from Wu et al., 2004). tion of synapses in transgenic models, but the effects

seem to vary with age, strain, and brain region.
Particularly compelling evidence for neuronal/synap-transgenic mice overproduce not only A� but also APP

tic functional compromise by A� species other than fi-and APPs-�, making it difficult to attribute deficits to A�
brillar plaques arose from a report that deficits of mem-alone. However, the enhancement of neuropathological
ory function in APP transgenic mice were reversed byand behavioral phenotypes in APP transgenic mice
a single intraperitoneal injection of anti-A� antibodiesachieved by coexpressing A�42-elevating PS1 mis-
(Dodart et al., 2002). In these acute (�24 hr) experiments,sense mutations (which do not alter APP and APPs-�
brain amyloid burden was not decreased (as expected),levels) again implicates A� in such deficits.
suggesting that the antibody must be acting on soluble,In support of the occurrence of deficits in synaptic
diffusible species of A� and that sequestration or clear-function that precede the development of A� deposits,
ing of these intermediates allowed an overnight returnyoung (4- to 5-month-old) PD-APP transgenic mice
to near-normal performance in an object recognition(which express V717F mutant human APP) were found
task (Figure 2). Another transgenic model, C. elegansto have enhanced paired-pulse facilitation, distorted re-
that express human A�1-42 in body wall muscle usingsponses to high-frequency stimulation bursts, and im-
a myosin promoter-A� minigene, provides additional ev-paired LTP (Larson et al., 1999; N. Shinsky et al., 2002,
idence that soluble A� assemblies are cytotoxic in vivo,Soc. Neurosci., abstract Volume 28). Moreover, morpho-
as these animals display a paralysis phenotype that de-logical analyses of 3-month-old PD-APP mice revealed
velops well before any amyloid deposits are detecteda structural compromise of dentate granule cells many
(Drake et al., 2003).months in advance of amyloid deposition (Figure 1).

There was a �12% decrease in total dendrite length of
granule cells, with superficial granule cells in the poste- Cell-Derived Oligomers of Human A� Disrupt

Both Synaptic Plasticity and the Memoryrior region of the dorsal blade showing a massive 32%
reduction in dendrite length (Wu et al., 2004). of Learned Behavior

Although the studies reviewed above suggest that solu-Further support for a role of soluble A� species in
Alzheimer-like neuronal dysfunction comes from the oc- ble, prefibrillar assemblies can induce early neuronal

alterations, the specific nature of the A� species mediat-currence of progressive learning deficits, along with de-
clines in synaptic transmission and synaptophysin and ing these changes and their mechanisms of action have

not been defined. To model A�-mediated neurotoxicity,MAP-2 immunostaining, in the hippocampal CA1 region
of APP V717F transgenic mice at times well before any many investigators have used synthetic peptides (for

a review, see Walsh et al., 2003). At ambient or bodyamyloid plaques are observed (Hsia et al., 1999; Mucke
et al., 2000; Palop et al., 2003). These deficits then in- temperature and at concentrations �10–20 	M, syn-

thetic A�1-40 and A�1-42 each self-associate to formcreased with age but did not correlate with plaque num-
ber. One study reported a change in basal synaptic low-n oligomers, protofibrils, and fibrils. An important

caveat when considering the cellular effects of differenttransmission without a change in LTP (Hsia et al., 1999),
whereas another in a separate mouse line bearing the A� assemblies is the highly dynamic nature of A� aggre-

gation. Because intermediates can further associate intosame APP mutation found no change in basal synaptic
transmission but an impairment of LTP (Chapman et al., higher ordered aggregates and fibrils can dissociate, it

is difficult to unambiguously ascribe cytopathological1999). In the latter mice, no perikaryal loss was observed
(Irizarry et al., 1997b), and the changes in LTP were activity to a discrete species. Nonetheless, several

groups have attempted to isolate prefibrillar syntheticascribed to functional changes in synapses, whereas in
the former mice, there was evidence of synaptic loss A� assemblies and probe their synaptotoxic activity. In

1998, Lambert and colleagues presented the first experi-without a change in the electrophysiological properties
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Figure 2. Soluble Prefibrillar Assemblies of A� Disrupt Object Recognition Memory

APP transgenic mice (24-month-old) (n 
 8 per group) were injected with anti-A� monoclonal antibody m266 or PBS once per week for 6
weeks. Behavioral testing was done 3 days after the last injection. Similar results were obtained after just a single injection of the same
antibody. (A) Performance in the object recognition task is expressed as a recognition index corresponding to the percentage of time spent
exploring a novel object versus a familiar object during the test session. A recognition index of 50% indicates that the mice do not discriminate
between the novel and the familiar object. Object recognition memory performance of mice treated with m266 is significantly better (p � 0.01,
ANOVA) than that of mice treated with PBS. (B) Anti-A� immunostained sagittal brain sections from mice treated with PBS (left) or the m266
antibody (right) show that passive immunization did not detectably alter the cerebral burden of A� deposits. (Adapted from Dodart et al., 2002).

mental evidence that certain soluble, nonfibril assem- membrane depolarizations, indicating that PF can alter
membrane excitability (Hartley et al., 1999). This excit-blies of synthetic A� (which they called A�-derived dif-
ability was entirely reversible and was concentrationfusible ligands, or ADDLs) could be neurotoxic (Lambert
dependent, with activity starting at low micromolar con-et al., 1998). ADDLs are formed by incubating synthetic
centrations. Moreover, PF appear to have inherent elec-A�1-42 in ice-cold Ham’s F12 medium, yielding spheri-
trophysiological activities distinct from fibrils, becausecal structures of �5 nm diameter, with the A� species
the addition of the specific NMDA antagonist, D-APV,migrating on SDS-PAGE at �4, 8, 16, and 18 kDa. ADDLs
attenuated PF-stimulated neuronal activity by 72%,have been shown to cause neuronal death in culture, to
whereas the same dose reduced fibril-induced activityblock LTP (Lambert et al., 1998; Wang et al., 2002), and
by only 38% (Ye et al., 2004). In contrast, the applicationto inhibit reduction of MTT by neural cell lines (Lambert
of the non-NMDA antagonist NBQX produced only aet al., 1998; Stine et al., 2003). When incubated with
23% decline in PF-induced activity but decreased fibril-organotypic mouse brain slices at 500 nM for 45–60 min,
induced activity by some 50%. These data suggest thatcell loss was not evident, but a near-complete block of
glutamate receptor channels are involved in PF-inducedLTP was observed (Lambert et al., 1998; Wang et al.,
neuronal excitability and that synthetic PF and fibrils2002). It is conceivable that, during their incubation with
may act, at least in part, via different neurobiologicalneurons, ADDLs may form larger A� assemblies; how-
mechanisms.ever, the electrophysiological experiments were per-

While the studies just described provide strong evi-formed over a short time course (1–2 hr) and at concen-
dence that soluble prefibrillar assemblies of synthetictrations (�500 nM) well below the critical concentration
A� such as ADDLs and PF can alter synaptic function,for synthetic A� fibril formation in vitro, suggesting that
there is as yet no confirmation that these species actu-ADDLs are themselves synaptotoxic.
ally occur in nature. As an alternative experimental ap-Assembly intermediates of synthetic A� termed pro-
proach to dissect the biological properties of early A�tofibrils (PF) can also rapidly alter neuronal function.
assemblies, we chose to study the activity of naturally

When viewed by electron microscopy or atomic force
produced, cell-derived A� oligomers. We took advan-

microscopy, PF range from spherical assemblies of �5 tage of a cell line expressing mutant (V717F) human APP
nm diameter to short, flexible rods of up to 200 nm in that generates SDS-stable low-n oligomers intracellu-
length (Harper et al., 1997; Walsh et al., 1997). Unlike larly and secretes a portion of them into the medium.
ADDLs, PF can be generated in vitro under a variety of Small aliquots (1.5–5.0 	l) of conditioned medium (CM)
biochemical conditions, and their rate of formation is containing low- or subnanomolar concentrations of
dependent on A� concentration, pH, and ionic strength these entirely soluble oligomers were microinjected in-
(Harper et al., 1999). PF appear to behave as true fibril tracerebroventricularly into rats and found to inhibit the
intermediates in that they can both form fibrils and dis- maintenance of hippocampal LTP in vivo (Walsh et al.,
sociate to lower molecular weight species (Harper et al., 2002). Evidence that the failure to sustain LTP was medi-
1999; Walsh et al., 1999). Using whole-cell patch-clamp ated by the A� oligomers in the CM emerged from bio-
recordings, PF composed of A�1-40 induced an instan- chemical manipulation of the sample. Immunodepletion
taneous increase in excitatory postsynaptic currents of the CM with A�-specific antibodies prevented the
(EPSCs) in rat cortical neurons (Hartley et al., 1999). block of LTP, whereas immunodepletion of the abundant
Fibril preparations also enhanced EPSCs, whereas soluble APPs-� derivative had no effect. Most impor-
monomeric A� had no effect. In a whole-cell current- tantly, preincubation of the CM with insulin degrading
clamp recording mode, application of PF induced an enzyme (IDE), a protease that efficiently degrades A�

monomer but not oligomers, did not alter the LTP effect.instantaneous increase in action potentials and large
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Although these results provide direct evidence that indicators of behavioral compromise in APP transgenic
diffusible, low-n oligomers of human A�, in the complete mice (Kawarabayashi et al., 2004), consistent with our
absence of A� monomers, protofibrils, or fibrils, confer finding that dimers and trimers of A� can interfere with
“synaptotoxicity,” we sought to provide further support the memory of a learned behavior.
for this hypothesis. To this end, we employed size exclu- In view of the mounting evidence that A� oligomers
sion chromatography (SEC) to fractionate the CM (using can alter synaptic function in vivo, much work is now
nondenaturing, nondisaggregating buffers) and showed needed to identify the molecular mediators of these ad-
that the block of LTP was specifically mediated by the verse effects. This quest has begun, and certain neu-
low-n oligomers, not by A� monomers or any larger ronal cell surface receptors as well as certain second
aggregates (Walsh et al., 2004). Taken together, these messenger signaling pathways have begun to be impli-
results demonstrate that a biochemically defined, oligo- cated (see, for example, Wang et al., 2004; Dickey et
meric assembly of naturally secreted human A� alters al., 2003; Vitolo et al., 2002). It remains to be clarified
hippocampal synaptic plasticity in vivo. The same se- whether the rather hydrophobic A� oligomers operate
creted oligomeric forms of A� also inhibit LTP in vitro through one (or a small number of) biochemically spe-
in hippocampal slices from both rat (Wang et al., 2004) cific neuronal receptor(s) or, perhaps more likely, per-
and mouse (Walsh et al., 2004). turb nonspecifically several receptors/channels nor-

Whether LTP is a valid electrophysiological surrogate mally required for triggering signaling events that result
of learning and memory processes is still contentious in encoding of memories.
(reviewed in Dudai, 2002). Therefore, we proceeded to
assess whether an impairment of short-term memory How Can We Neutralize the Effects of Soluble
similar to that associated with progressive A� accumula- A� Oligomers on Hippocampal
tion in MCI and early AD could actually be induced di- Synaptic Function?
rectly by soluble A� oligomers. To determine the effects A� is produced at discrete sites within living cells as a
of physiological levels of naturally secreted human A� monomer (Walsh et al., 2000), and it appears to enter
upon a complex learned behavior, we again microin- rapidly into an equilibrium with dimers and trimers intra-
jected the CM of the APP-expressing cells into the ven- cellularly (Walsh et al., 2002), a process similar to that
tricles of rats. A barrier to studying this problem has described for synthetic A� peptides in vitro (Bitan et al.,
been the lack of a sufficiently sensitive assessment pro- 2003). At least some of these natural, low-n oligomers
cedure capable of measuring transient cognitive changes are highly stable (via strong hydrophobic interactions
in rodents over time and treatment conditions. To over- and/or covalent cross-links), and a portion of these is
come this problem, we utilized the alternating lever cy- subsequently secreted from the cell (Luo et al., 2002;
clic ratio (ALCR) test, a procedure proven to be 1–2 Walsh et al., 2002). Importantly, such SDS-stable oligo-
orders of magnitude more sensitive than previously pub- mers have been detected inside cultured fetal human
lished methods for measuring drug effects on cognitive neurons and in human CSF, indicating that they can
function in rats (O’Hare et al., 1996; Richardson et al., arise in and be released by human neurons (Walsh et
2002). In the ALCR paradigm, rats learn a complex se-

al., 2000). As discussed above, the secreted oligomers
quence of lever-pressing requirements. The animals

have been shown to interact with neurons, altering their
must alternate between two levers, switching to the sec-

normal physiology (Walsh et al., 2002) and even inducing
ond lever after pressing the first lever enough times to

transient impairment of memory (Cleary et al., 2004).get a food pellet. The number of presses required for
Based on these findings and the other experimentaleach food reward proceeds from 2 to 56, incorporating

observations reviewed herein, we propose that analo-intermediate values based on the quadratic function,
gous synaptic changes may contribute to the develop-x2 � x. One cycle is an entire ascending and descending
ment of the earliest symptoms of MCI and AD by subtlysequence of these response requirements (e.g., 2, 6, 12,
altering neurotransmission and perhaps initiating syn-20, 30, 42, 56, 56, 42, 30, 20, 12, 6, and 2 presses per
aptic remodeling, akin to the early (preplaque) changesfood reward). Six such full cycles are presented during
observed in A�-overproducing transgenic mice (Hsia eteach session. Errors are scored when the rat perseveres
al., 1999; Lanz et al., 2003; Mucke et al., 2000). Theseon a lever after reward, i.e., does not alternate (a “per-
effects of diffusible A� oligomers could account for theseveration error”), or when an animal switches levers
subtle impairments of memory function documented inbefore completing the required number of presses on
APP transgenic mice (e.g., Chen et al., 2000; Janus etthat lever (a “switching error”). Rats microinjected with
al., 2000; Morgan et al., 2000) and perhaps in MCI andthe A�-containing CM showed a marked increase in
AD subjects themselves. Thereafter, steadily rising con-both switching and perseveration errors when tested
centrations of soluble monomers and oligomers may2 hr after injection, but recovered to baseline when re-
allow increasing self-association, leading gradually totested 24 hr later (Cleary et al., 2004). Evidence that this
first diffuse and then fibrillar extracellular plaques, whichtransient interruption of a learned behavior was attribut-
could themselves act as reservoirs for diffusible oligo-able to A� oligomers came from the findings that immu-
mers that may further disrupt neuronal circuits.nodepleting the CM of A� rendered the CM inactive,

In view of these considerations, a particularly attrac-and, more specifically, that SEC fractions containing
tive therapeutic approach would be to prevent the for-oligomers induced the deficits, whereas monomer-con-
mation of potentially synaptotoxic oligomers. �-Secre-taining fractions from the same SEC run had no effect
tase inhibitors can markedly decrease A� oligomer(Cleary et al., 2004). Independently, Kawarabayashi and
formation by cultured cells at doses that still allow ap-colleagues reported that the appearance of dimeric A�

in cortical lipid raft fractions coincides with the first preciable monomer production (Walsh et al., 2002), and
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Figure 3. Several Different Pathogenic Events May Contribute to Synaptic Dysfunction in Alzheimer’s Disease

Different A� assembly forms may mediate diverse cytotoxic effects, including decreased synaptic efficacy, distortion of axonal pathways,
shrinkage of dendritic arbors, activation of microglia, free radical release, and inflammatory changes. The cartoon depicts the distortion of
axonal trajectories observed within amyloid plaques and the periplaque activation of astrocytes, resulting in the release of various cytokines
(Ck), and microglia, resulting in the generation of superoxide radicals (O2.�). Disruption of synaptic efficacy by diffusible, low-n oligomers of
A� is depicted as a decrease in normal transmission at synapses (green cloud) due to the presence of A� dimers and trimers in the cleft that
can contact synaptic plasma membranes. All A� species are shown in red, with amyloid plaques shown as an interwoven mass of fibrils and
soluble A� dimers and trimers depicted as stacked W-shaped structures (suggesting their � sheet-rich structure).

cell-penetrant inhibitors of �-secretase (e.g., Chang et blocking the oligomer-mediated inhibition of hippocam-
pal LTP (Walsh et al., 2004).al., 2004) or other agents that reduce intracellular and/or

extracellular monomer levels below the critical concen- The most clinically tested amyloid-directed therapy,
A� immunization (Hock et al., 2003; Nicoll et al., 2003),tration needed for oligomerization could have similar

effects. Thus, exploitation of the preclinical approaches has been shown in multiple studies of APP transgenic
mice to reduce cerebral A� levels and plaque burdento A� oligomerization we review above could help iden-

tify the minimal oligomer-preventing concentrations of and thus decrease amyloid-associated gliosis and neu-
ritic dystrophy and alleviate memory impairment (e.g.,different amyloid-lowering compounds and thus de-

crease the likelihood of adverse effects in humans. Al- Bard et al., 2000; Chen et al., 2000; Morgan et al., 2000;
Schenk et al., 1999; Weiner et al., 2000). In recent unpub-though no physiological function has been confirmed

for the A� monomer itself, substantial or complete lished experiments, we found that the ventricular coin-
jection of anti-A� monoclonal antibodies with solubledepletion of monomers in vivo could potentially result

in adverse effects. In contrast, A� oligomers presumably A� oligomers in vivo can rescue the oligomer-mediated
block of LTP and also that rats with high circulatingarise solely as a pathological event upon elevation of

monomer concentrations in advanced age and during levels of endogenous anti-A� antibodies (following im-
munization) are similarly protected (I. Klyubin, D.M.W.,the prodromal phase of MCI and AD. Another antiamy-

loid approach for treating AD is the use of peptidomimet- D.J.S., and M. Rowan, unpublished data). These results
suggest that anti-A� antibodies could bind and helpics or other small molecules to inhibit A� aggregation.

For example, certain hydroxyanaline derivatives are ca- clear soluble oligomers of A�, so that the latter are no
longer present at sufficient concentrations to alter syn-pable of inhibiting intracellular oligomer formation and
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