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Source Separation and Clustering
of Phase-Locked Subspaces

Miguel Almeida, Jan-Hendrik Schleimer, José Mario Bioucas-Dias, Member, IEEE, and Ricardo Vigário

Abstract— It has been proven that there are synchrony (or
phase-locking) phenomena present in multiple oscillating systems
such as electrical circuits, lasers, chemical reactions, and human
neurons. If the measurements of these systems cannot detect
the individual oscillators but rather a superposition of them,
as in brain electrophysiological signals (electo- and magneoen-
cephalogram), spurious phase locking will be detected. Current
source-extraction techniques attempt to undo this superposition
by assuming properties on the data, which are not valid when
underlying sources are phase-locked. Statistical independence
of the sources is one such invalid assumption, as phase-locked
sources are dependent. In this paper, we introduce methods
for source separation and clustering which make adequate
assumptions for data where synchrony is present, and show
with simulated data that they perform well even in cases where
independent component analysis and other well-known source-
separation methods fail. The results in this paper provide a proof
of concept that synchrony-based techniques are useful for low-
noise applications.

Index Terms— Clustering, phase locking, source separation,
subspaces, synchrony.

I. INTRODUCTION

IN RECENT years, there has been an increase in scien-
tific interest in the study of synchrony-related phenomena

as well as in the amount of relevant results in this field,
both theoretical and empirical. These phenomena are present
in a multitude of physical substrata. The first detection of
synchrony was made by Huygens in the 17th century, when
he observed that two pendulum clocks interacting through a
common supporting beam would always synchronize after a
brief transient period [1]. Since then, other systems were found
to exhibit similar behavior, such as organ pipes, electrical
circuits, laser beams, astrophysical objects, some types of
fireflies, and human neurons, among others. This behavior
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is often not caused by a strong interaction that forces the
oscillators to oscillate in phase, but by weak interactions
between the individual oscillators which, in time, drift their
individual phases toward one another [1].

Our particular motivation for studying synchrony phenom-
ena comes from the human brain. As an example, it has been
shown that muscle activity measured with an electromyogram
(EMG) and the activity of the motor cortex measured with
an electroencephalogram (EEG) or magnetoencephalogram
(MEG) have coherent oscillations when a person engages in a
motor task. Because these coherent oscillations occur mostly in
the beta-band1 [2]–[5], the cortico-muscular coherence (CMC)
phenomena are also denominated “beta-band synchronization,”
although some studies have shown that they also occur in other
frequency ranges [6], [7]. It was also found that, again during
a motor task, several brain regions oscillate coherently with
one another [5], [8]. In addition, there are multiple indications
that several pathologies, including Alzheimer, Parkinson, and
autism, are correlated with a disruption in the synchronization
profile of the brain [9].

The typical formulation of a synchronization behavior is
based on self-sustained oscillators as individual units. A self-
sustained oscillator is a dynamical system, such as a pendulum
clock, which has an intrinsic energy source and exhibits a
periodic motion when isolated [1]. More rigorously, these
oscillators have a limit cycle, which can be defined as a
periodic trajectory in the oscillator’s phase space. The position
along the limit cycle is the oscillator’s phase. Also, at least in
a small neighborhood of this cycle, a self-sustained oscillator
is stable, which means that, after being slightly perturbed, the
trajectory always returns to the limit cycle after some time.

This return to the limit cycle has two distinct aspects.
Perturbations along the limit cycle do not decay, and will
result in a permanent change to the oscillator’s phase. On
the other hand, perturbations orthogonal to this cycle decay
exponentially.2 For these reasons, a weak interaction can have
a long-lasting effect on an oscillator’s phase, but the influence
on its amplitude can be disregarded.

Assuming a weak, attractive, and time-invariant coupling,
the interaction of N self-sustained oscillators affects their
phases only, and can be described by the Kuramoto model [11]

φ̇i (t) = ωi (t)+ 1

N

N∑

j=1

κi j sin
[
φ j (t)− φi (t)

]
(1)

1The beta-band range of brain signals is loosely defined as 15–30 Hz.
2The direction tangent to the limit cycle has a zero Lyapunov exponent,

while the orthogonal directions have negative Lyapunov exponents [10].
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where φi (t) and ωi (t) are the instantaneous phase and intrinsic
(natural) frequency of oscillator i , and κi j > 0 is called
the coupling coefficient between oscillators i and j . Note
that in this model, the coupling coefficients are constant in
time, which implicitly assumes that the coupling between the
oscillators is stationary in time. We do not address here the
case of time-dependent coupling. The influence on φi is fully
determined by the phase differences between oscillator i and
each of the other oscillators. If oscillator j is slightly ahead
of oscillator i (φ j is slightly larger than φi ), this will make
oscillator i go slightly faster. Conversely, if oscillator j is
slightly behind oscillator i , the latter will slow down. In both
cases, this interaction tends to make the pairs of oscillators
approach each other in phase, and synchrony can occur if
this interaction is enough to compensate the difference in
intrinsic frequencies ωi − ω j , called detuning. Naturally, if
the detuning is large, a weak interaction cannot compensate
it and the oscillators will never synchronize. These ideas are
thoroughly explained in [1] and references therein.

Synchrony has been studied from a theoretical point of view
since the original formulation by Kuramoto. Golomb et al.
[12] have shown that, in a large and sparse neural network
with weak coupling, there is a threshold value of the average
number of synapses a neuron receives, above which synchrony
is established and below which it is not, in a way reminiscent
of Kuramoto’s critical coupling coefficient [11]. The value of
this threshold can be analytically found from the parameters
of an “integrate-and-fire model.” Integrate-and-fire oscillators,
also known as relaxation oscillators, are described in more
detail in the context of synchrony in [1], [13], and [14].

In real applications, it is often the case that one does not
have direct access to the activity of the individual oscillators.
Instead, one only has access to measurements of superpositions
of the individual oscillators. The underlying oscillators are
usually called “sources” in this context. When this is the case,
synchrony between measurements is mostly due not to a true
phase locking of the underlying sources, but instead to the
mixture itself. We will discuss and illustrate this in Section II.

In this paper, we tackle the general problem of analyzing
synchrony of the sources in the special case where the super-
position is an instantaneous linear mixing. Such a problem
is widely called “blind source separation” (BSS), because
one generally only assumes rather generic properties of the
sources, such as statistical independence or temporal structure.
One important example of this problem is in brain electro-
physiological signals (EEG and MEG), where instantaneous
linear mixing is a valid assumption. This comes from the
fact that most of the energy is in frequencies below 1 kHz,
allowing the use of the quasistatic approximation in Maxwell’s
equations [15].

Independent component analysis (ICA) [16] is one of the
most widely used BSS techniques. Traditional ICA approaches
only use probability density function information (such as
kurtosis) and therefore disregard the time dynamics of the
sources. Thus, in applications where phase is relevant, ICA
is not appropriate. A related approach, temporal decorrelation
separation (TDSEP) [17], which is similar to second-order
blind identification (SOBI) [18], is better suited for source

separation where dynamics are relevant. We will refer to these
two approaches as “TD methods.” TD methods extract sources
using information on their autocorrelation function for several
time lags simultaneously. Apart from the independence and
temporal decorrelation criteria, approaches based on nonneg-
ative matrix factorization have also been used (see [19], [20]
for recent examples).

The main novelty of our paper is that it focuses exclusively
on the phase information of the sources. By finding the sources
in an appropriate way, and analyzing the synchrony between
those, we avoid the problem of spurious synchronization
mentioned above, allowing for more contrast between synchro-
nized and nonsynchronized pairs of signals, thus permitting
sharper detection. Two of the methods we propose are source-
separation algorithms based on phase synchrony,3 applicable
when one has a reference signal (Referenced Phase Analysis,
RPA), or in a blind manner (Independent Phase Analysis, IPA).
They are described in Section III-A and III-B, respectively.

We now review previous approaches on synchrony and
coherence (which is a different but related concept), and their
applications on brain signals. Vigário et al. and Meinecke et al.
use TD methods to separate sources and observe that some of
them are coherent [22] or synchronized [23]. This is a valid
approach, but coherence and synchrony come as an epiphe-
nomenon, rather than constituting the main searching criterion.
We wish to focus on approaches that tackle synchrony directly,
so that it is clear why the extracted sources are synchronous.
We will show empirically in this paper that for certain types
of sources TD methods are not adequate for source separation.

Nolte et al. [24] use the imaginary part of the Fourier
coherence (IPC), noting that instantaneous mixing does not
affect this measure. IPC does not work on the source space
but only with the observed mixtures. Nolte et al. argue that
this method should not replace other methods, but should
instead be regarded as a “safe” method due to its low rate
of false positives. In at least one experimental study, the IPC
did not find any consistent results [25]. A drawback of this
approach is that it has no time resolution. Therefore, it is only
mostly applicable to stationary signals, and it will not be able
to resolve nonstationarities. IPC should not be regarded as a
BSS approach but rather as an approach that circumvents the
problems that come from the superposition of the sources.

Allefeld and Kurths [26], [27] have proposed the syn-
chronization cluster analysis (SCA) method, which detects
synchrony through the eigendecomposition of the real-valued
phase-locking factor (PLF) matrix, thus finding dominant
phase-locked populations in the measured signals. This
approach has the drawback of clustering together populations
that are not interacting but that have similar frequencies. One
of the methods we propose [phase SCA (pSCA)] is a gener-
alization of such approach, which circumvents this drawback
by using a complex-valued version of the PLF matrix (see
Section III-C). Both SCA and pSCA are clustering methods
and should not be considered source-separation techniques.

3Phase synchrony is a natural measure of dependence between signals. Other
nonindependent source separation approaches have seen a recent growing
interest, see [21].
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The methods mentioned above vary on how the obtained
phase is used. Apart from the methods we propose, only
SCA focuses exclusively on the phase information. It has
been shown that coupled oscillators can exhibit regimes with
uncorrelated amplitudes but with bounded phase lag [28]. We
therefore argue that there is a need for methods that focus
only on the phase information. The techniques we propose
attempt to fulfill this need: our methods focus on the phase
information, unlike the traditional coherence-based approaches
used in CMC studies. We believe that the proposed methods
can contribute to a more precise characterization of synchrony
in brain–brain or brain–muscle interactions. However, it is
important to keep in mind that the algorithms we introduce
here are applicable to any context where synchrony occurs,
and do not assume anything specific of brain or muscle signals.

This paper is organized as follows. In Section II, we provide
some background on synchrony and related concepts. The
new algorithms we propose are detailed in Section III, along
with results for simulated data. We discuss the algorithms’
limitations and results in Section IV, and present concluding
remarks in Section V. This paper summarizes and extends the
results previously reported in [29]–[33].

II. SYNCHRONY

In this section, we provide some background on phase syn-
chrony. We begin by noting the difference between synchrony
and coherence. We then review the Hilbert transform and
related concepts, introduce the PLF, which is central in the
methods we propose, and define the synchronization matrix.
We conclude with an illustration of the effect of linear mixing
in synchrony.

A. Synchrony is Not Coherence

Terms such as “synchrony” and “coherence” are usually
used to describe quantities related to frequency and phase.
Here we make a formal distinction, to prevent confusion.
Given two real signals x(t) and y(t), with power spectra
Px x(ω) and Pyy(ω), their spectral (or Fourier) coherence, also
called coherence or coherency, is

C(ω) ≡ |Pxy(ω)|2
Px x(ω)Pyy(ω)

where Pxy(ω) is the cross-spectrum between the two signals.
This quantity measures the similarity of two Fourier spectra.
It can be understood as a correlation factor in frequency.

Since the Fourier transform forfeits time resolution, coher-
ence measures are hard to interpret when computed from non-
stationary signals, such as brain signals. However, coherence
measures exhibiting time resolution have been proposed on the
basis of the Morlet wavelet transform. This “wavelet transform
coherence” is quite popular in geophysics [34], [35], but has
also been used in the biomedical field [36].

B. Phase of a Real-Valued Signal

Typically, the signals under analysis are real-valued discrete
signals. To obtain the phase of a real signal, popular choices

include using a complex Morlet (or Gabor) wavelet, which
can be seen as a bank of band-pass filters [37], and using
the Hilbert transform, which has to be applied to a locally
narrowband signal or be preceded by appropriate filtering [38].
The Hilbert transform is then applied to multiple frequency
bands of the original signal. The two approaches have been
shown to be equivalent for the study of brain signals [39], but
they may differ for other kinds of signals. In real applications,
appropriate filtering must be used to ensure that the signals
under analysis are narrowband. In this paper, the analyzed
signals are narrowband by construction, thus we use the
Hilbert transform.

C. Hilbert Transform, Analytic Signal, and Phase

The discrete Hilbert transform xh(t) of a band-limited
discrete-time signal x(t), t ∈ Z, is given by a convolution [40]

xh(t) ≡ x(t) ∗ h(t), where h(t) ≡
{

0, for t = 0
1−eiπ t

π t , for t �= 0.

The Hilbert filter h(t) is not causal and has infinite duration,
which makes direct implementation of the above formula
impossible. In practice, the Hilbert transform is usually com-
puted in the frequency domain, where the above convolution
becomes a product of the discrete Fourier transforms of x(t)
and h(t). A more thorough mathematical explanation of this
transform is given in [38] and [40]. We used the Hilbert
transform as implemented in MATLAB.

The analytic signal of x(t), denoted by x̃(t), is given by
x̃(t) ≡ x(t) + i xh(t), where i = √−1 is the imaginary
unit. The phase of x(t) is defined as the angle of its analytic
signal.

D. PLF

The common feature of our proposed methods is their use of
the PLF, which plays a central role in this paper of synchrony
phenomena [41]. For two oscillators with phases φ1(t) and
φ2(t) for t = 1, . . . , T , the PLF is defined as4

� ≡ 1

T

T∑

t=1

ei[φ1(t)−φ2(t)] =
〈
ei(φ1−φ2)

〉

where 〈·〉 denotes a time-average operation. The PLF obeys
the constraints 0 ≤ |�| ≤ 1. The value of 1 is attained
when the two oscillators are perfectly synchronized, i.e., they
have a constant phase lag. The value of 0 is attained, e.g.,
if the phase difference φ1 − φ2 is uniformly distributed in
[0, 2π]. Values between 0 and 1 indicate partial synchrony.
Just as the coherence can be seen as a correlation factor in
frequency, the PLF can be seen as a correlation factor in
phase. Some authors (e.g., [27] and [41]) use the absolute
value of � as PLF. However, this complex version of the
PLF can be used to obtain better results, as we will show in
Section III-C.

4Recall that in 1 we assumed stationarity of the coupling coefficient, hence
the use of the whole observation period in computing the PLF.
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E. Synchronization Matrix

When one has multiple signals with phases φ1(t), . . . ,
φN (t), it is common to compute all the pairwise PLFs and
store them in a complex synchronization matrix (or PLF
matrix) Q

Q( j, k) ≡
〈
ei(φ j−φk )

〉
=

〈
aaH

〉
(2)

where a ≡ [eiφ1(t) · · · eiφN (t)]T and (.)H denotes the Hermitian.
This matrix has all its diagonal values equal to 1, and it
is Hermitian, which means that all its eigenvalues are real.
Also, for any vector x, xHQx = xH 〈

aaH〉
x = 〈

xHaaHx
〉 =〈∥∥xHa

∥∥2
〉
≥ 0. Therefore Q is positive semidefinite. Unlike

the definition used in [27], in our case this matrix is complex.

F. Effect of Mixing in Synchrony

Two of the methods described in this paper aim at unmixing
linear and instantaneous mixtures of sources, using the PLF as
the main criterion. As motivated above, in EEG and MEG it
is plausible to assume that the observed measurements are the
result of a linear and instantaneous mixture of the underlying
source signals. Thus, it is important to understand the effect
of such mixing on the PLF. Such effect can be summarized
as “tending toward partial synchrony”: if some sources have
low synchrony (PLF ≈ 0), the mixed signals have a higher
PLF, since each source is now present in both mixed signals.
If some sources have high synchrony (PLF ≈ 1), the mixed
signals have a lower PLF, because now each mixed signal has
components from sources that were not phase-locked.

These statements are illustrated in Fig. 1. The top left sub-
figure shows a set of 12 sources. The pairwise PLFs of these
sources are shown in the top middle subfigure, where larger
squares represent higher PLF values. A random linear mixture
of these 12 sources is depicted in the bottom left subfigure,
and the pairwise PLFs of the mixed signals are shown in
the bottom middle subfigure. Note that partial synchrony is
now present in all pairs of measurements. This experiment
illustrates the need for source separation methods that tackle
synchrony problems directly. These methods should not be
regarded as replacements or improvements of techniques such
as ICA or TDSEP, but rather as related techniques that are
applicable for different kinds of data.

III. PLF ALGORITHMS

In this section, we introduce three methods to analyze
synchrony. We show their usefulness with simulated examples
using instantaneous linear mixing.

1) RPA performs nonblind source separation when a refer-
ence signal is available, extracting the projection which
has maximum PLF with the reference.

2) IPA performs blind unmixing of sources that are orga-
nized in subspaces, i.e., sources that have PLFs of 1
or 0 with one another. IPA works in two stages: it first
unmixes the subspaces, and then unmixes the sources
within each subspace.

3) pSCA is a nontrivial generalization of SCA [27]. In
the original formulation of SCA, the essential procedure

is to perform an eigendecomposition of the real-valued
synchronization matrix, i.e., the elementwise absolute
value of the synchronization matrix defined in Section II.
We will show that, instead of forfeiting the phase infor-
mation, when taking the absolute value of the PLF, it is
more useful to include it, to prevent multiple populations
from ending in the same cluster, a problem which was
present in the original SCA and will be illustrated here.

A. Referenced Phase Analysis

In electrophysiological recording signals from the brain,
such as EEG and MEG, we often have not only the scalp
measurements but also a reference signal that provides a hint
of what to look for in the brain. This reference signal could
be, for example, an EMG, collecting information of a muscle’s
activity. The objective of RPA is to extract a source which
is phase-locked to a reference signal [29]. In the context of
brain signals, it would allow, for example, the identification of
which cortical areas are phase-locked to the muscle activity,
evidencing neuronal control of the muscle or sensory feedback
from it.

As usual in linear separation techniques, we assume that
the observations x(t) result from a linear and instantaneous
superposition of the sources s(t), as in

x(t) ≡ As(t)+ n(t) (3)

where n(t) is noise. Throughout this paper, we will only
consider the case where the noise n(t) is negligible.

Also usual in linear separation is a preprocessing step called
“whitening,” or “sphering” [16], which usually results in a
numerically better conditioned problem. We assume, with no
loss of generality, that the data have zero mean. The whitening
procedure starts with the computation of the empirical covari-
ance matrix C = 〈

xxT
〉
. Then one computes the eigenvector

decomposition of C. One can store the eigenvalues of C in a
diagonal matrix D in descending order, and the corresponding
eigenvectors as the columns of a matrix V. Whitened data xw
can be obtained through

xw(t) ≡ D−
1
2 VTx(t). (4)

We assume that we have a reference signal u(t), with its
phase denoted by ψ(t). We define the estimated source as
y(t) ≡ wTx(t), denoting its phase by φ(t), with the dephasing
defined as �φ(t) ≡ φ(t) − ψ(t). We can now compute the
absolute value of the PLF between the estimated source and
the reference signal as

|�| =
∣∣∣∣∣

1

T

T∑

t=1

ei�φ(t)

∣∣∣∣∣ =
∣∣∣∣∣

1

T

T∑

t=1

ỹ(t)ũ∗(t)
|ỹ(t)ũ(t)|

∣∣∣∣∣ =
∣∣∣∣
〈

ỹ(t)ũ∗(t)
|ỹ(t)ũ(t)|

〉∣∣∣∣
(5)

where ỹ and ũ are the analytic signals of y and u, obtained
through the Hilbert transform.

The idea of this algorithm is to maximize |�|, or equivalently
|�|2, with respect to w. The global maximizer, denoted by
wopt, will be the linear combination maximizing the synchrony
between the estimated source y(t) = wopt

Tx(t) and the
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Fig. 1. Dataset used throughout this paper. (First row) Original sources (left) and PLFs between them (right). (Second row) Mixed signals and PLFs between
them. (Third row) Reference signal (left), which is a sinusoid with varying frequency, and its PLF with the 12 sources (right). The reference is phase-locked
with sources 4, 5, and 6. In the second column, the numbers denote the index of the sources, and the area of each square is proportional to the absolute value
of their pairwise PLF.

reference signal. We want to find y(t) only up to scale and
sign, and therefore we constrain w to have unit norm.

The gradient of |�|2 w.r.t. w is given by [42]

∇|�|2 = 2|�|
〈

sin[	−�φ(t)]
Y 2(t)

�x (t)

〉
w (6)

where Y (t) ≡ |ỹ(t)| is the amplitude of the estimated source,
	 ≡ angle(�) is the phase of the PLF, and �x (t) =
xh(t)xT(t) − x(t)xh

T(t) [where xh(t) is the Hilbert trans-
form of x(t)] is a matrix that can be precomputed, because
it depends only on the data. Since x(t) = Re(x̃(t)) and
xh(t) = Im(x̃(t)), it can easily be seen that �xi j (t) =
Xi (t)X j (t) sin(ϕi (t) − ϕ j (t)), where Xi (t) and ϕi (t) are the
amplitude and phase of xi (t).

There are many procedures to find the maximizer of a given
objective function. We chose to use a gradient ascent algorithm
with adaptive step sizes due to its simplicity. A step-by-step
description of RPA is presented in Table I.

If the global maximizer is found, RPA outputs the linear
combination of the data that is maximally phase-locked to
the reference. If two sources are maximally phase-locked to
the reference, there are two correct solutions for the problem,
and the algorithm will output one or the other, depending on
the initialization of the weight vector w. However, the algo-
rithm never outputs linear combinations of the two solutions,
because such mixtures have a lower PLF with the reference.5

1) Application to Simulated Data: We applied the algorithm
described above to a set of noiseless simulated data. The
dataset’s sources have unit variance and varying instantaneous

5An exceptional case is when the two sources have a phase lag of exactly
0 or π between themselves, in which case linear combinations of those two
sources have the same PLF with the reference.
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500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Fig. 2. Results of the RPA algorithm. The algorithm correctly finds the three
sources phase-locked to the reference signal. PLF between the found sources
and reference is 0.999 (chosen as stopping criterion). These three sources
were found on three separate runs of the algorithm.

frequency (see the first row of Fig. 1). The reference signal,
also shown in Fig. 1, is a sinusoid with the same instantaneous
frequency as the fourth, fifth, and sixth source signals, with
exactly zero phase lag with the fourth source.

These sources were mixed without noise, using a random
mixing matrix, with entries uniformly distributed between
−1 and 1. The algorithm was then run on the mixed signals,
which are shown on the second row of Fig. 1. Depending
on the initial conditions, RPA will return one of the three
solutions shown in Fig. 2 each time it is run. The results in
Fig. 2 show that, despite having three sources phase-locked to
the reference (sources 4–6), the algorithm returns one of them
separately without mixing them.

These results show that RPA works as expected in the ideal
noiseless condition.

B. Independent Phase Analysis

In this section, we introduce the IPA algorithm. This algo-
rithm separates sources that are organized in subspaces, such
that the intra-subspace PLFs are 1 and the inter-subspace PLFs
are 0. The general idea is similar to independent subspace
analysis [43]. IPA is a true BSS method, in contrast to RPA
which is not blind. The original formulation of IPA was
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Fig. 3. Three signals, s1, s2, and s3, that are fully phase-locked (PLF = 1),
and a linear combination of them, s4 = s1+s2+s3, that has zero PLF with all
of them. The picture shows the four signals in a frame rotating with angular
speed ω1(t). The PLF between s4 and any of the other three sources is zero
since the average angle between s4 and any other source is zero.

heavily motivated by ICA [30], but it has since been improved
[32], [33].

We assume that a set of sources undergoes linear mixing
as in (3), and also that the data x has been whitened as
in (4). Let the estimated sources be denoted by y(t) ≡
WTx(t) = WTAs(t). Our goal is to find W such that WTA
is a permutation of a diagonal matrix, in which case the
estimated sources y(t) are equal to the original sources s(t) up
to permutation, scaling, and sign. We will limit ourselves to
the case where the number of sources is equal to the number
of measured signals. Therefore, W is a square matrix.

Since the objective of this algorithm is to extract sources
that have pairwise PLFs of 1 or 0, one might initially consider
a cost function that is minimized at those values of PLF.
That was the motivation behind our first attempts to solve
this problem, which met with some success [30], [32]. Unfor-
tunately, that approach gives poor results when the mixing
matrix A is far from orthogonal. This limitation is due to the
following fact: given three phase-locked signals s1, s2, and
s3, it is sometimes possible to construct a linear combination
s4(t) = as1 + bs2 + cs3, such that the PLFs between s4
and s1, s2 and s3 are zero. A simple example, illustrated in
Fig. 3, is

s̃1(t) = (2+ cos(ω2t))eiω1(t)t

s̃2(t) = (2+ sin(ω2t))eiω1(t)t+ π2
s̃3(t) = 2

√
2eiω1(t)t− 3π

4

s̃4(t) = s̃1(t)+ s̃2(t)+ s̃3(t)

= ei(ω1(t)t+ω2t).

The above-mentioned hypothetical cost function would be
unable to distinguish between the correct subspace {s1, s2, s3}
and an incorrect subspace such as {s1, s2, s4}. In more formal
terms, this problem formulation is ill posed.

To prevent this ill-posedness, we have recently proposed that
the full problem be divided into two subproblems [33]: first,
separate the subspaces from one another, even if some mixing
remains within each subspace. Second, unmix the sources
within each subspace, one subspace at a time. The key idea is

that, if the first subproblem is successful, the second part needs
only separate sources that have PLFs equal to 1, therefore
avoiding the above mentioned ill-posedness. We now discuss
each of these subproblems in detail.

1) Inter-Subspace Separation and Subspace Detection: This
first subproblem aims to find an unmixing matrix W such
that the estimated subspaces are correct. We assume that
signals that are in distinct subspaces will have little interaction
with each other, which should usually correspond to different
dynamics in time. Techniques using temporal structure to
perform separation should be adequate to this first subproblem.
Therefore, we chose to use Ziehe et. al. implementation of
TDSEP [17] for this first subproblem, but SOBI [18] can be
used instead. Although we have no theoretical results that
support TDSEPs adequacy to this task, we have repeatedly
observed that it separates subspaces of various sizes quite well.

Detecting the subspace structure (which signals belong to
which subspace) from the results of TDSEP is not trivial and
warrants some discussion. From our experience, TDSEP can
perform the inter-separation very well, but cannot adequately
do the intra-subspace separation. This means that PLF values
within each subspace will be underestimated. One (admittedly
crude) solution for this step is to define a hard PLF threshold,
above which signals are considered synchronized and form
part of the same subspace, and below which they do not.

The matrix resulting from this hard thresholding should be
block-diagonal, with each block having all elements equal to 1.
If this is the case, no inconsistencies were found (i.e., no signal
belongs to two subspaces), and we can move on to the second
subproblem which separates the sources within each subspace
(see Section III-B.2). Let the unmixing matrix estimated by
TDSEP be denoted by Wtdsep.

If the matrix resulting from the thresholding is not block-
diagonal with all blocks filled with 1s, our algorithm considers
that the subspaces were wrongly detected and returns the
results of TDSEP. See Section IV for possible improvements.

2) Intra-Subspace Separation: In the second stage of IPA,
we select the subset of columns of Wtdsep that form the lth
subspace, which is denoted by Sl , and concatenate them into
a rectangular matrix Wtdsep,l. Let Nl denote the number of
signals in Sl and let zl(t) = WT

tdsep,lx(t) be the vector of
sources in Sl estimated by TDSEP.

In this second stage, the goal is to separate the sources in
Sl . This procedure is then repeated for all subspaces found by
TDSEP. As explained above, each source in Sl should have
a PLF of 1 with all other sources in Sl . Generally, TDSEP
will severely underestimate this value (see top row of Fig. 4).
We should therefore unmix the Nl sources found by TDSEP
such that their PLFs are as high as possible. Mathematically,
this corresponds to finding a Nl by Nl matrix Wl such that
the estimated sources in the lth subspace, yl(t) =WT

l zl(t) =
WT

l WT
tdsep,lx(t), have the highest possible PLFs.

It turns out that, if all the sources are in the same subspace
and they are all fully synchronized with each other (PLF = 1),
then the only vector of the form y = Bs such that the
estimated sources y have a PLF of 1 with each other is y = s
up to permutation, scaling, and sign (see Appendix A). An
immediate corollary is that, if the inter-subspace separation
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Fig. 4. (First row) Sources resulting from TDSEP (left). Note that the inter-subspace PLFs (middle) are very close to zero, but the intra-subspace PLFs are
not all close to 1. Further, the intra-space separation is poor, as can be seen from inspection of the product WT

tdsep A (right). (Second row) Results found after
the second stage of the algorithm. The estimated sources (left) are very similar to the original ones. This is corroborated by the PLFs between the estimated
sources (middle) and the final unmixing matrix (right). The permutation of the sources was corrected manually. White squares represent positive values, while
black squares represent negative values.

can fully separate the subspaces from one another, the intra-
subspace separation has a unique solution.

For each subspace l, the objective function to maximize is

Jl = 1− λ
Nl

∑

j,k∈Sl

|� j k|2 + λ log | det Wl | (7)

where
∑

j,k∈Sl
|� j k|2 is the sum over all pairs of sources

in subspace Sl of the square of the absolute PLF between
those sources. We use the Hilbert transform [38] to obtain
the phase values of the estimated sources (see Section II).
The second term prevents the algorithm from finding solutions
which trivially have |� j k| = 1, i.e., “finding the same source
twice,” and λ ∈ [0, 1] is a parameter controlling the relative
weight of the two terms. Each column of Wl is constrained
to have unit norm to prevent trivial decreases of the penalty
term.

Using this formulation, the problem is no longer ill posed
as above, since we no longer consider a PLF of zero as a
valid solution. Furthermore, only a subset of parameters need
be optimized at a time, which can drastically reduce the time
needed to separate a set of sources.

The gradient of Jl relative to a column w j of the matrix
Wl is given by [42] (we omit dependences on l for clarity)

∇w j Jl = 4
1− λ

N2

N∑

k=1

|� j k|
〈
sin

[
� j k −�φ j k(t)

] �z(t)

Y j (t)2

〉
w j

(8)

where � j k is the PLF between two estimated sources j and k,
Y j ≡ |ỹ j |, where ỹ j is the analytic signal of the j th estimated
source, φ j ≡ angle(ỹ j ) and �φ j k(t) ≡ φ j (t) − φk(t) is the
instantaneous phase difference between two estimated sources,
� j k(t) ≡ 〈�φ j k(t)〉 is the average phase difference between
two estimated sources, and �z(t) = zhl(t)zT

l (t)− zl(t)zh
T
l (t),

as in RPA, is a matrix that can be precomputed, because it
depends only on the data resulting from TDSEP.

3) Application to Simulated Data: We present results that
show that IPA can successfully separate sets of sources
with nontrivial subspace structure. After running TDSEP,
we optimize the objective function in (7) using a gradient
ascent algorithm with adaptive step sizes, which runs until a
convergence criterion is met. The parameter λ was hand tuned
for optimal performance. However, similar results are obtained
for λ within a factor of 2 of the optimal value, which in this
case is λ = 0.1.

We simulate the noiseless instantaneous linear mixture of
the 12 sources depicted in the first row of Fig. 1. These
sources are organized in six clusters of sizes 3, 2, and
1. We generate 300 mixing matrices with random entries
taken from the Uniform(−1, 1) distribution, and use those
to generate 300 different datasets. We then run the algo-
rithm once for each mixing matrix, for a total of 300 runs.
Each run takes about 1 min on a modern laptop com-
puter.

The second row of Fig. 1 shows the mixed signals that
are the input to our algorithm. The first row of Fig. 4 shows
the sources estimated by TDSEP. Visual inspection of the
PLFs between these sources (second column) shows that some
of the estimated sources do not have high PLFs. Inspection
of the product WT

tdsepA (third column) reveals a very good
inter-subspace separation, but a poor intra-subspace separation.
Finally, the second row of Fig. 4 reveals that by maximizing
the intra-subspace PLFs we can significantly improve the
separation within each subspace. This is best noted through
the product WTA depicted on the third column.

We analyze the results of IPA using the Amari perfor-
mance index (API) [44], which measures the average rela-
tive contamination in each estimated source from all other
sources. The API is nonnegative and decreases to zero as
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Fig. 5. Histogram of the Amari performance index for 300 runs, corre-
sponding to 300 random mixing matrices for these sources (left), and discrete
Fourier transform of the 1st, 4th, 7th, 9th, 11th, and 12th sources, one from
each subspace (right). The latter illustrates that simple band-pass filters cannot
separate the subspaces.

the separation quality improves. A histogram of the API for
the 300 runs of IPA is shown on Fig. 5. The mode of this
histogram is 0.03, which is also the API of the example in
Fig. 5.

We also measured the performance of TDSEP and IPA using
the well-known signal-to-noise (SNR) criterion. After match-
ing the estimated sources to the true sources, we compute the
SNR of the sources (in energy) estimated by TDSEP and by
IPA.6 The average SNR is 16.78 dB for TDSEP and 24.18
dB for IPA, which shows that IPA yields an average increase
of 7.4 dB of the estimated sources relative to TDSEP alone.
Furthermore, the histograms in Fig. 6 show that the SNR
distribution of TDSEP is skewed toward low values, while the
values from IPA have much less skewness. In other words,
IPA has a much lower probability of yielding very low SNR
values (below, say, 10 dB).

We used a threshold of 0.1 on the squared PLF matrix for
the detection of subspaces. In 7% of the runs, the matrix
resulting from TDSEP and the thresholding is not block-
diagonal with blocks full of ones, and therefore the algorithm
stops. See Section IV for a discussion of this limitation.

C. pSCA

In pSCA, we are interested in clustering a population of
oscillators into synchronous clusters. Contrary to RPA and
IPA, here we assume that the sources are not mixed. It is
important to remark that in SCA and pSCA no whitening is
performed.

We begin by reviewing the original synchronization cluster
analysis (SCA) recently proposed by Allefeld et al. [27] to
automatically cluster a number of oscillators into subpop-
ulations. We empirically show that, for signals that follow
the Kuramoto model, SCA can sometimes cluster oscillators
incorrectly. We will show that under this model the absolute
value of the PLF is not enough to determine whether two
signals are coupled and introduce pSCA as an improved
method that can perform a correct clustering in some of those
situations.

1) SCA: SCA can be seen as a clustering method that
attempts to cluster the original set of oscillators into subpop-
ulations such that the intra-population PLFs are high but the
inter-population PLFs are low.

6See Section IV for more details on the SNR calculation.
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Fig. 6. (Left) Histogram of the signal-to-noise ratio (SNR) between the
sources found by TDSEP and the original sources. (Right) Similar histogram
for the sources found by IPA.

SCA begins with the construction of the real-valued syn-
chronization matrix R

Ri j ≡
∣∣Qi j

∣∣ =
∣∣∣
〈
ei(φi−φ j )

〉∣∣∣ .

Note that this real-valued matrix is the elementwise absolute
value of the complex synchronization matrix Q defined in (2).
The matrix R is symmetric and its elements can only take real
values between 0 and 1.

The main step in SCA consists of an eigendecomposition
of R. As shown in [27], the eigenvalues of this matrix are
real and nonnegative, and their sum obeys tr(R) = N , where
N is the total number of oscillators. The largest eigenvalue
of R, λ1, is an estimate of the strength of the largest cluster,
and the associated eigenvector v1 has in its j th component
the relative participation of oscillator j in cluster 1. Similar
properties hold for the remaining eigenvalues and eigenvectors.
The participation index of oscillator j in cluster k is λkv

2
j k ,

where v j k is the j th entry of the kth eigenvector vk [27].
Each oscillator is attributed to the cluster with which it has
the highest participation index.

Although for many situations SCA works as expected [27],
we now present an example showing that it can produce
incorrect results. The dataset is depicted in Fig. 7. We simulate
the phase of the oscillators using Kuramoto’s model (1). The
intrinsic frequencies were drawn randomly from a Gaussian
with average value 0.003 and standard deviation 0.0005 (neg-
ative values are discarded and sampled again). The initial
phase values are taken from a uniform distribution in [0, 2π].
Oscillators 1–5 are coupled in an “all-with-all” fashion, as
are oscillators 6–8. There is zero coupling between these
two subpopulations. The coupling strength is high enough
to ensure that in each cluster all the oscillators are phase-
locked to their respective clusters. The time series of all
oscillators is shown in Fig. 7, along with their pairwise
PLFs, and their relative phase values. When applied to this
dataset, SCA clusters all eight oscillators into one cluster,
despite finding two eigenvalues larger than 1 (6.35 and 1.64).
Clearly, in this situation the real-valued PLF matrix R does
not contain enough information to perform the clustering. One
simple way to aid in this distinction is to look at the relative
phase values of the eight oscillators, which are shown in the
right subfigure of Fig. 7. In that figure, the relative phase
values are clearly clustered into two groups. This immediately
suggests that phase values can be used to improve these
results.

2) Limitations of SCA: Although SCA was not developed
with the Kuramoto model in mind, there is nothing specific of
this model preventing the application of SCA to oscillators that
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Fig. 7. (Left) Small dataset used to illustrate how pSCA works. Oscillators
1–5 are strongly coupled in an “all-with-all” fashion, as are oscillators 6–8.
Note the transient behavior at the beginning of the observation period. (Center)
Pairwise PLFs between the oscillators. Note that there is partial synchrony
because of the limited time interval. (Right, black thin arrows) Phase values
of the eight oscillators at the end of the observation period. (Thick red arrows)
Mean field of each cluster. (Thick blue double arrow) Mean field of the whole
population.

2 4 6 8
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

2 4 6 8

Fig. 8. (Left) Participation indices for each oscillator for SCA. (Right)
Participation indices for each oscillator for pSCA. The horizontal axis is the
oscillator number. Each oscillator is assigned to the cluster with which it has
the highest participation index. SCA fails to find the two clusters.

follow that model. We now demonstrate that high PLF values,
which are independent of the relative phase difference between
two oscillators, are a necessary but not sufficient condition for
two oscillators to be coupled under the Kuramoto model.

If the intra-cluster coupling within cluster c j is strong
enough and the inter-cluster couplings are weak enough to
be disregarded, and if all intra-cluster interactions have the
same coupling strength κ , a mean field can be defined for that
cluster as

�c j e
i	c j ≡ 1

N j

∑

k∈c j

eiφk

where N j is the number of oscillators in cluster c j . The mean
fields for the above example are shown as thick red arrows
in Fig. 7. The mean field of the whole population of eight
oscillators is represented by the thick blue double arrow. In
this case, the original Kuramoto model (1) can be written as

φ̇i (t) = ωi + 2N jκ�c j sin
[
	c j (t)− φi (t)

]
(9)

for oscillators i ∈ c j [42]. Such formulation allows for
an interpretation of this case as an interaction between the
oscillator and the cluster to which it belongs, instead of the
pairwise interactions. This idea was introduced in [27].

In the equilibrium state, we have

sin(φi −	c j ) =
(

ωi

2N jκ�c j

)
.

Equation (9) thus has two equilibrium solutions, one which
has

∣∣φi − 	c j

∣∣ < π/2 and one with
∣∣φi − 	c j

∣∣ > π/2. The
latter is an unstable equilibrium point, because, if

∣∣φi − 	c j

∣∣
increases, then | sin(φi − 	c j )| will decrease. Therefore, the
interaction term in (9) will be smaller and the oscillator’s phase
will move further away from the mean field.
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Fig. 9. (Left) Pairwise PLFs between 16 oscillators in a second pSCA dataset.
(Center) Results of the original SCA algorithm. SCA detects only two clusters,
with eight oscillators each. (Right) Results of the pSCA algorithm. All the
clusters are correctly detected, and with a larger discriminating power.

A similar reasoning shows that the first solution, with∣∣φi −	c j

∣∣ < π/2, is stable. We can write, for this solution

φi −	c j = arcsin

(
ωi

2N j κ�c j

)
.

This result shows that oscillators for which
∣∣φi −	c j

∣∣ > π/2
cannot physically belong to cluster c j under the Kuramoto
model. Graphically, all the oscillators should be contained in
a half circle around the mean field direction. Therefore, a
common frequency is a necessary but not sufficient condition
for two oscillators to be considered phase-synchronous.

To surpass this limitation, we have developed a more
complete approach. Instead of keeping only the real-valued
PLF matrix R, we use the complex PLF matrix Q to cluster
the oscillators. We now describe the procedure in detail.

3) pSCA: We present a small theoretical introduction to
pSCA, illustrated by two small examples. After this, we
present the general algorithm and show results in simulated
datasets.

Example 1: Find the maximum of the average energy〈|y|2〉 = 〈yy∗〉 of a signal given by the superposition of two
sources with the same frequency: y = αeiωt+βei(ωt+φ), where
α, β ∈ C are the problem variables. To prevent unbounded-
ness, we add the constraint |α|2 + |β|2 = 1.

The Lagrangian for this problem is L = 〈|y|2〉− λ(αeiωt +
βei(ωt+φ) − −1); the conditions ∂L/∂α∗ = ∂L/∂β∗ =
∂L/∂λ∗ = 0 yield7 (λ−1)α = βeiφ, (λ−1)β = αe−iφ, |α|2+
|β|2 = 1.

The solutions of these equations are of the form |α| =
|β| = 1/

√
2 and β = αe−iφ , such that y = αeiωt + βei(ωt+φ)

becomes the sum of two signals exactly in phase. Intuitively,
we can say that this maximization problem finds the best
coefficients to compensate the dephasing of the sources.

Example 2: We now consider three oscillators: the first two
with a frequency ω and the third with a frequency ω + �ω,
where �ω > 0, all with the same amplitude and initial phase.
Suppose the signals are observed from t = 0 to t = T .

We again want to maximize the average energy of y =
αeiωt + βeiωt + γ ei(ω+�ω)t subject to the constraint |α|2 +
|β|2 + |γ |2 = 1. We can obtain the following two relations

|α| = |β|, |γ | � 4

�ωT
|α|

(see Appendix B). This shows that, for nonzero α and β, the
magnitude of γ will be close to zero if either the observation

7We use the complex gradient as defined in [45].
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Fig. 10. Result of FastICA applied to the dataset of Fig. 1. (Left) Sources estimated by FastICA. (Center) PLFs between the estimated sources.
(Right) Estimated unmixing matrix. It is clear that FastICA is not adequate to the problem discussed in this paper.

time T or the frequency detuning �ω (or both) is large. In
particular, it shows that, if we have a large enough observation
time, this maximization problem “detects” that there are two
phase-locked sources and a third nonlocked source.

Example 1 shows that this maximization procedure can
compensate relative phase offsets between oscillators, while
example 2 shows that it can select synchronized oscilla-
tors from a population that also includes nonsynchronized
oscillators. We now formulate a general algorithm based on
the intuitive ideas provided by these examples. This algo-
rithm has two steps: an eigendecomposition and an additional
rotation.

We assume that we have N measurements. We extract their
phases φi (t) using the Hilbert transform and construct the
normalized signals ai (t) = eiφi (t), which we use to form the
vector a(t). Then we search for a complex superposition of
the form y(t) = cHa(t) that maximizes the average energy
E = 〈|y|2〉. To prevent unboundedness, we constrain the
projection vector c to have unit norm. This maximization
problem is the general case of Examples 1 and 2.

We can rewrite the energy as E = 〈|y|2〉 = 〈
yy∗

〉 =
cH

〈
aaH

〉
c = cHQc, where Q ≡ 〈

aaH
〉
. Note that Q is exactly

the synchronization matrix defined in (2). The Lagrangian for
the maximization of E is thus L = cHQc − λ(cHc − 1), and
the solutions of the problem must obey ∇c L = 0. If v is a
solution of this problem, it must obey the eigenvalue condition
Qv = λv.

This reasoning presents additional motivation to the use of
the eigendecomposition originally proposed in [27]. We now
assume, without loss of generality, that the eigenvalues of Q
are ordered in descending order: λ1 � λ2 � · · · � λN . Let vk

denote the eigenvector associated with λk , and let v j k denote
the j th coordinate of vk . The largest eigenvalue of Q is the
maximum of L, and its corresponding eigenvector v1 is thus
the solution to the maximization problem above. Since this
is a global maximum, the Hessian of L, ∇∇L = Q − λI, is
negative (semi)definite for λ = λ1.

The value of λi is for noiseless data and infinite observation
time, the number of oscillators in the i th largest population
[this is easy to show from (2)]. Thus, tr(Q) = N , the total
number of oscillators. As in [27], we use the number of
eigenvalues of Q larger than 1 as the number of clusters.

Note that the main difference between the eigendecompo-
sition in pSCA and the one done in SCA is that in pSCA we
retain the value of the phase lag between any oscillator i and

cluster j , which is the angle of the i th component of v j . We
now describe how these phase values can be used to overcome
the limitations of SCA described in Section III-C.2.

Assume that the population has N oscillators in d clus-
ters. As mentioned before, we choose d as the number of
eigenvalues of Q larger than 1. Our goal is to find a new
set of complex-valued coefficients ui j , which contain the
participation of oscillator i in cluster j , such that the phase
compactness values of all clusters j , defined as

∣∣∑N
i=1 ui j

∣∣ =∣∣ ∑N
i=1 |ui j |eiφi

∣∣, are as high as possible. The phase com-
pactness measures the compactness of the phase angles φi

weighted by their participation in cluster j . Note that the
sum is over all oscillators, regardless of which cluster they
belong to (if oscillator i does not belong to cluster j , then
ui j = 0 and it will not influence the sums). We define the
vectors u j , j = 1, . . . , d , as column vectors containing the
ui j coefficients, similar to the definition of v j . Our objective
will be to maximize the sum of the phase compactnesses of
all the d clusters

J =
d∑

j=1

∣∣∣∣∣

N∑

i=1

ui j

∣∣∣∣∣ .

This criterion can be expressed as “assign these N oscillators
to d clusters in such a way that the phase compactness of the
clusters is as high as possible.” Regarding the right subfigure
of Fig. 7, the goal is to assign the eight oscillators into two
clusters such that the red arrows are as big as possible.

To obtain the ui j coefficients, we perform a linear transfor-
mation of the vi j coefficients obtained from the eigendecom-
position, as motivated by Examples 1 and 2. Thus, the new
coefficients are given by

∣∣ui j
∣∣ ≡ ∣∣∑

k vikwkj
∣∣, where wkj are

real coefficients to be optimized through the maximization of
the objective function J . If we concatenate the wkj in a matrix
W∈R

d×d , the vi j in V∈C
N×d , and the ui j in U∈C

N×d , this
linear transformation can be written as U = VW.

There are some restrictions on W. Since we want to measure
the compactness of the phase values in the clusters, the
coefficients in W should not compensate for the different phase
values (as in Example 1) and should therefore be real. Also,
we force W to be orthonormal so that the total number of
oscillators remains equal to N . Mathematically, if WTW = I,
then tr(UHQU) = tr(WTVHDVW) = tr(WTQW) = N ,
where D is a diagonal d × d matrix with only the d largest
eigenvectors of Q in descending order.
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Fig. 11. Results with noise for RPA (left), IPA and TDSEP (middle), and pSCA and SCA (right).

The gradient of the objective J with respect to wi j is [42]

Gi j = ∂ J

∂wi j
= 1∣∣ū j

∣∣
[
Re(v̄i )× Re(ū j )+ Im(v̄i )× Im(ū j )

]

(10)
where Re(.) and Im(.) are real and imaginary parts, and ū j ≡∑

i ui j and v̄i ≡∑
k vki are column sums of U and V.

Since W is constrained to be orthonormal, a simple gradient
method is not appropriate to maximize J . The manifold of
orthonormal W matrices is called the “Stiefel manifold” S
[46]. To maximize J subject to the constraint W ∈ S, one
possibility is to project the gradient in (10) onto the tangent
space of S at W by Gtang =Wskew(WTG)+ (I−WWT)G
[46], where G is a matrix whose (i, j) element is given by
(10), and skew(.) is the antisymmetric part of a matrix. Another
possibility is to take directly into account the geometry of
the Stiefel manifold when computing the gradient. This yields
Ggeom = G−WGTW [46]. We used Gtang in all the results
presented here, due to its simpler interpretation.

The final result of pSCA is a clustering of the oscillators
into clusters with tightly packed phase angles. We define the
unnormalized participation index of oscillator i in cluster c j

as
∣∣ui j

∣∣. Each oscillator is assigned to the cluster with which
it has the largest unnormalized participation index

i ∈ c j ⇔ j = arg max
k
{|uik |} . (11)

Because of the rotation mentioned above, the eigenvalues
of Q are not necessarily the correct cluster sizes after the
optimization of J . Therefore, in pSCA, the unnormalized
participation indices for each oscillator do not necessarily sum
to 1 as in SCA. Thus we force this normalization by scaling
the participation indices. For each oscillator i , we define the
normalized participation indices as

pi j = ui j∑
k |uik | . (12)

Note that, for each oscillator, this normalization is a scaling
of its participation in all clusters such that

∑
j

∣∣pi j
∣∣ = 1. This

scaling does not alter the assignment rule in (11), i.e., the
same rule applied to the normalized participation indices in
(12) yields the same clustering.

The complete pSCA procedure is summarized in Table I.
4) Application to Simulated Data: We now show the result

of some simulated experiments. We begin by considering
the small example with eight oscillators already mentioned
above. We applied SCA and pSCA to this toy dataset for
comparison. The only two eigenvalues larger than 1 are 6.35
and 1.64, indicating the presence of two clusters. Note that the

eigenvalues are equal for the eigendecomposition of the real
PLF matrix and the complex PLF matrix. The participation
indices are shown in Fig. 8 and show that in this example
pSCA is capable of distinguishing the two clusters, while SCA
is not. One interesting remark is that, although there are two
eigenvalues larger than 1, SCA assigns all eight oscillators
to one cluster. This example shows that pSCA yields better
results than SCA for this small dataset.

We also considered a larger example, with 16 oscillators
organized into four clusters. The oscillators are simulated in
the same way: we use Euler’s method (1) to simulate the
dynamics of the population, and all oscillators start with a
random phase value between 0 and 2π . The only eigenvalues
larger than 1 are 6.55, 4.78, 3.07, and 1.59. The pairwise PLFs
and participation indices are shown in Fig. 9.

These results show that pSCA can use the additional phase
information to improve the results of the original SCA algo-
rithm. Despite finding four eigenvalues larger than 1 (the
criterion mentioned in [27] for presence of a cluster), the
original SCA fails to find four distinct clusters, instead finding
two clusters with double the correct number of oscillators.

IV. DISCUSSION

As mentioned earlier, observed signals are often mixtures
of underlying sources. This mixing process has a serious
influence on phase-locking relations, and should be inverted
as much as possible when one analyzes the synchrony of such
signals. In the absence of prior knowledge of the sources, often
one uses BSS approaches. One of the most widely used BSS
techniques is ICA, which works by finding linear combinations
of the measurements that are as independent as possible.
ICA uses information from the probability density function
of the data, and therefore discards all temporal dynamics
information, rendering it useless for synchrony studies (see
Fig. 10).

Other BSS approaches such as TDSEP are based on the
temporal structure of the sources, and therefore take into
account their temporal dynamics. The first row of Fig. 4
already shows that TDSEP can separate subspaces from each
other but fails to separate sources within each subspace.

One important aspect to study is the robustness of the
proposed algorithms to small levels of noise, especially since
the influence of, e.g., Gaussian noise on the phase values
is quite complex.8 We present in Fig. 11 results that show

8This noise would be projected into a phase component and an amplitude
component, each of which has different impacts, see [47].
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Fig. 12. Integration path in (15) a = −T/2 and b = +T/2 represent the end
points of the integration. (Left) Case with �ωT < π/2. (Right) Case with
π < �ωT < 3π/2. Note that the arc between a and b is counted twice in
the integration for this second case.
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Fig. 13. Two solutions for E given by (21) plotted against �ωT . (Solid
line) Maximum energy, obtained by choosing the plus sign in (21). (Dashed
line) Minimum energy, obtained by choosing the minus sign in (21).

that all the algorithms are robust to small levels of noise. We
define the SNR of the i th mixture signal xi = (As)i + ni as
10 log10(E[(As)i )2]/E[n2

i ]). To produce the noisy mixture, we
first generate the noiseless mixture and then add noise to each
mixture signal to ensure that all mixture signals have the same
SNR. We generated 300 datasets for RPA and IPA similar to
the one shown in Fig. 1, and 300 datasets for pSCA similar to
the one in Fig. 9, but with amplitude bursts of random position
and width as in RPA and IPA.9

After matching the estimated sources with the original
sources, the SNR of the estimated source yi is defined as
10 log10(E[(αyi )

2]/E[(αyi ± s2
i ]), where the real scalar α

and the ± sign are chosen to maximize the SNR value. This
ensures that these SNR values are independent of permutation,
scaling, and sign, as is common in source separation contexts.

Much in line with other methods dealing with analysis
of phase-locking relations, one limitation of the methods
presented in this paper is the use of the Hilbert transform,
which only has a clear interpretation when applied to locally
narrowband signals. Note that since a wavelet decomposition
can be interpreted as a narrowband filter bank [37], using
wavelets does not solve this problem. All the signals generated
for our simulated examples are narrowband, therefore the use
of the Hilbert transform is justified.

One could consider using a deflationary version of RPA to
extract multiple sources with a single run of the algorithm.
This cannot be done simply by removing the orthogonal
projection of the first estimated source from the data and
rerunning the algorithm. Since phase-locked sources may
be correlated, removing the orthogonal projection of one

9The position and width of the amplitude bursts, as well as the mixing
matrices (for RPA and IPA), are chosen randomly for each of the 300 runs.

estimated source from the data will also remove parts of other
sources. Therefore, a deflationary approach is currently not
possible, and if multiple sources are desired RPA must be
run multiple times with different initial conditions.

IPA is quite robust to the choice of λ: values within a factor
of two from the optimal value yield similar results.

We observed that pSCA does not always find the correct
solution, especially in cases with multiple populations with
equal sizes, where the numerical computation of the eigenval-
ues is less accurate. Yet, we found that not only does pSCA
consistently yield better clustering results than SCA, it usually
has a larger distance between the two largest participation
factors (see, oscillators 1–4 in Fig. 9). This suggests that pSCA
has a larger “discriminant power” than SCA, which explains
pSCA’s higher tolerance to noise.

Another aspect to be analyzed further is the performance of
these algorithms in situations of partial synchrony. Preliminary
tests suggest that the algorithms behave differently in this
situation. RPA performs quite well when the reference is
only partially phase-locked to some of the sources, as long
as the stopping criteria are well chosen. IPA performs well
for phase-locking values above approximately 0.9 or below
approximately 0.1. pSCA seems to work well for intermediate
values of the PLF, as suggested by the results obtained on
the small dataset in Fig. 8. A related aspect to be investigated
in the future is how to tackle a time-dependent PLF, which
is relevant in some real situations. In this case, using time
windows allows the algorithms to look only at parts of the
data, but further work would be needed to implement a change
detection technique to track these time variations.

Apart from the results with simulated data, we have pre-
viously applied RPA to real data from cortico-muscle con-
trol using EMG as a reference for MEG recordings [29].
Those results agreed with established knowledge on relations
between cortical and muscle activity, suggesting that the use of
the methods we propose here in real applications is possible.

V. CONCLUSION

Synchrony phenomena are present in many scientific
domains, including astrophysics, biology, chemistry, and neu-
roscience. Even though many different systems exhibit syn-
chrony, a common framework, such as Kuramoto’s model, can
be used for all of them. Whichever the underlying physical
system may be, in any synchrony phenomenon it is important
to have direct access to the underlying oscillators. If that
is not possible or feasible, as in brain electrophysiological
recordings, it is crucial that one looks at the sources and
not at the indirect measurements, as these will have spurious
synchrony. Unfortunately, few researchers in neuroscience
perform synchrony (or coherence) analysis on the underlying
sources instead of on the measurements.

There is a need for source separation methods that tackle
this type of problems. We showed empirically that current
state-of-the-art techniques such as ICA and TD methods are
not adequate. Since these methods make assumptions that are
not valid when the underlying sources are phase-locked, syn-
chrony between sources extracted with these methods should
be regarded as an epiphenomenon.
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We have presented three methods deeply rooted in the
concept of phase synchrony, which can be used in different
circumstances. The methods are inspired by concepts from
BSS and attempt to circumvent the disruption of synchrony
values in the event of a linear mixing. RPA is used to extract
an underlying source phase-locked to a reference signal.
IPA performs BSS of phase-locked sources. pSCA clusters
a population of oscillators into synchronous subpopulations.
The three methods work for simulated data and are robust to
small levels of noise. We believe these algorithms provide the
community with methods applicable in situations which were
not addressable previously.

APPENDIX A

UNICITY OF SOLUTION IN IPA

A. Assumptions and Definitions

Consider a set of N sources, which are defined as complex
time series: sk(t) ≡ Ak(t)ei(ω(t)+φk), with k from 1 to N . Also,
consider N measured signals, obtained by linear instantaneous
mixture of the sources

y j (t) ≡ b j1s1(t)+ b j2s2(t)+ · · · + b j N sN (t). (13)

Our goal is to prove that to put y1, y2, . . . in the form10

y j (t) = C j (t)e
i(ω(t)+α j ) (14)

with Ci (t) nonnegative functions and αi scalar values, one
must always have yi = K s j for some i and j . In other
words, for each i = 1, 2, . . ., exactly one of the coefficients
bi1, bi2, . . . must be nonzero, with all others being zero. One
also demands, as is natural in source separation, that yi �= y j .
The matrix B, whose (i, j) entry is bi j , must therefore be a
permutation of a diagonal matrix with nonzero diagonal.

The proposition we are trying to prove is not generally true.
However, it is true under mild assumptions, which we list here.

1) For all i , si (t), yi (t) �= 0 for some t .
2) For all i �= j , yi (t) �= y j (t).
3) φ1, φ2, . . . are all distinct modulo π .
4) The amplitudes Ai (t) are linearly independent. This

means that if one has two linear combinations that
obey

∑
i ci Ai (t) =∑

i di Ai (t), then necessarily one has
ci = di for all i .

Assumption 1 immediately rules out the possibility that for
some i , all bi1, bi2, . . . are all zero.

B. Proof

We start by proving that y1 is equal to one of the sources
up to scaling and sign. If we define a matrix A where
the (i, t)-th entry is Ai (t), C ≡ [C1(1) . . .C1(T )], 	 ≡
[φ1 . . . φN ]T, 	 − α1 = [(φ1 − α1) . . . (φN − α1)]T, and
Z(	) = [b11eiφ1 . . . b1N eiφN ], then by equating (13) and (14),
and by eliminating the common term eiω(t), the equation for
y1 yields CTeiα1 = ATZ(	)⇔ CT = ATZ(	− α1)⇔ CT =
ATZ(α1−	), where the last equation was obtained by taking

10The y j ’s must be of this form to have a PLF of 1 with the sources: the
PLF between two signals is 1 if and only if their phase difference is constant.

the complex conjugate of both sides (note that C and A are
real). Because of Assumption 4, A is a full rank matrix, so we
can conclude that Z(	−α1) = Z(α1−	), which is equivalent
to either sin(φ j − α1) = 0 or b1 j = 0, for all j . Because of
Assumption 1, at least one of the b1 j must be nonzero. On
the other hand, because of Assumption 3, sin(φ j − α1) = 0 is
verified for at most one j . Combining these two statements,
one can conclude that exactly one of the b1 j coefficients is
non-zero.

The demonstration for y2, . . . , yN is similar: if we force
yi �= y j if i �= j (Assumption 2), this immediately forces that
if b1k �= 0, then bmk = 0 for all m �= 1, etc.

APPENDIX B

INEQUALITY IN EXAMPLE 2 OF PSCA

We can begin by choosing the observation period as
[−T/2, T/2], with no loss of generality. In this case, the
average energy of y(t) is given by the integral

E =
〈
|y(t)|2

〉
=

〈∣∣∣y(t) · e−iωt
∣∣∣
2
〉

= 1

T

T/2∫

−T/2

(
α + β + γ ei�ωt

) (
α∗ + β∗ + γ ∗e−i�ωt

)
dt

(15)

= |α + β|2 + |γ |2 + (�ωT )−12 sin
�ωT

2
(α∗ + β∗)γ

+ (�ωT )−12 sin
�ωT

2
(α + β)γ ∗. (16)

This integral is depicted geometrically in Fig. 12.
From Fig. 12, it is clear that the maximum of E will

occur when α and β are parallel and γ is either parallel or
antiparallel to α and β. With no loss of generality, we can
choose α, β, and γ to be real numbers. In that case, we can
rewrite the constraint |α|2+|β|2+|γ |2 = 1 as α2+β2+γ 2 = 1,
and the energy of y as

(α + β)2 + γ 2 + (�ωT )−14 sin
�ωT

2
(α + β)γ

= 1+ 2αβ + (�ωT )−14 sin
�ωT

2
(α + β)γ.

We can now write the Lagrangean of this problem as

L = 1+ 2αβ + 4 sin �ωT
2

�ωT
(α + β)γ − λ(α2 + β2 + γ 2 − 1)

and force the derivatives with respect to α, β, γ , and λ to be
zero ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂L
∂α = 2β + 4 sin �ωT

2
�ωT γ − 2λα = 0

∂L
∂β = 2α + 4 sin �ωT

2
�ωT γ − 2λβ = 0

∂L
∂γ =

4 sin �ωT
2

�ωT (α + β)− 2λγ = 0
∂L
∂λ = α2 + β2 + γ 2 − 1 = 0.

(17)

The two first equations in the set 17 yield λ = −1∨α = β.
Let us start with the choice λ = −1. Substitution in the first
or second equation in (17) shows that γ = 0 or �ωT =
0. The latter is impossible because we assumed positive
detuning and observation time. On the other hand, substituting
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TABLE I

APPENDIX C

ALGORITHMS TABLE

(TOP LEFT) yh (t) IS THE HILBERT TRANSFORM OF y(t), xh(t) IS THE HILBERT TRANSFORM OF x(t), 1− δ IS THE THRESHOLD FOR THE PLF, AND ε IS

THE THRESHOLD FOR THE GRADIENT OF THE OBJECTIVE FUNCTION W.R.T. w. (∗) REPRESENTS THE COMPLEX CONJUGATE. (RIGHT) zh(t), zh l
(t) AND

yhl
(t) ARE THE HILBERT TRANSFORMS OF z(t), zl (t) AND yl (t), �c IS THE PLF THRESHOLD FOR SUBSPACE DETECTION, AND ε IS THE THRESHOLD FOR

THE GRADIENT OF THE OBJECTIVE FUNCTION W.R.T. W. MANY DEPENDENCES ON THE SUBSPACE l WERE OMMITTED FOR CLARITY. (BOTTOM LEFT)

yh(t) IS THE HILBERT TRANSFORM OF y(t), ỹi (t) IS THE i TH ROW OF y(t) AND ε IS THE THRESHOLD FOR THE GRADIENT OF THE OBJECTIVE W.R.T. W

REFERENCED PHASE ANALYSIS

1: Input x(t), u(t), η, kmax
2: Whiten x(t) as in (4)
3: Initialize w ∼ N (0, 1); k = 1
4: �(t)← xh(t)x

T(t)− x(t)xh
T(t)

5: repeat
6: y(t)← wTx(t)
7: ỹ ← y(t)+ i yh (t)
8: �← 1

T
∑

t ỹ(t)ũ∗(t)/|ỹ(t)ũ(t)|
9: � ← angle(�)

10: �w← (6)
11: w← w + η�w
12: w← w/‖w‖
13: k ← k + 1
14: until (|�| > 1− δ)

or (‖�w‖ < ε)
or (k > kmax)

PHASE SYNCHRONIZATION CLUSTER ANALYSIS

I: EIGENDECOMPOSITION

1: Input y(t), η, kmax
2: y(t)← y(t)+ i yh(t)
3: φi (t)← angle[ỹi (t)], i = 1, . . . , N

4: Qi j ←
∑

t ei[φi (t)−φ j (t)], i, j = 1, . . . , N
5: D,V← trunc. eigendecomp. of Q
6: d ← # λ > 1

II: ADDITIONAL ROTATION

7: Initialize W ∼ N (0, 1); k = 1
8: repeat
8: U = VW

10: ū j ←
∑

i ui j , j = 1, . . . , d
11: v̄i ←

∑
k vki , i = 1, . . . , d

12: �Wi j ← (10), i, j = 1, . . . , N
13: W←W + η�W
14: k ← k + 1
15: until (‖�W‖ < ε) or (k > kmax)
16: Assign i to subpop. c j as in (11)
17: pi j ← (12)

INDEPENDENT PHASE ANALYSIS

I: INTER-SUBSPACE SEPARATION

1: Input x(t), �c
2: Whiten x(t) as in (4)
3: Perform TDSEP on x(t) as in [17]
4: Atdsep ← mixing matrix estimated from TDSEP

5: Wtdsep ← A−T
tdsep

6: z← WT
tdsep x(t)

7: z̃← z(t) + i zh(t)
8: β j (t)← angle(z̃ j (t)), j = 1, . . . , N

9: Qi j ←
∣∣∣ 1

N
∑

t ei[βi (t)−β j (t)]
∣∣∣ as in (2)

10: R← 1 if Q ≤ �c, 0 otherwise
11: Detect subspaces from block-diagonal structure,

as described in Sec. III-B.1
12: Construct Wtdsep,l for each subspace l,

as described in Sec. III-B.1
13: zl ← Wtdsep,l x(t)
II: INTRA-SUBSPACE SEPARATION

14: For each subspace l, do
15: Input zl (t), η, kmax
16: z̃l (t)← zl (t)+ i zhl

(t)
17: ϕ j (t)← angle((z̃l) j (t)), j = 1, . . . , N
18: Z j (t)←

∣∣((z̃l) j (t))
∣∣

19: Initialize W ∼ N (0, 1); k = 1
20: repeat
21: yl (t)←WTzl (t)
22: ỹl ← yl (t)+ i yhl

(t)
23: φ j (t)← angle((ỹl) j (t)), j = 1, . . . , N
24: Y j (t)←

∣∣((ỹl) j (t))
∣∣

25: �φ j k (t)← φ j (t)− φk (t)

26: � j k ← angle( 1
N

∑
t ei�φ jk (t))

27: � j k ←
∣∣∣ 1

N
∑

t ei�φ jk (t)
∣∣∣

28: �W← (8)
29: W←W + η�W
30: w j ← w j /‖w j ‖, j = 1, . . . , N
31: k ← k + 1
32: until (‖�W‖ < ε) or (k > kmax )

γ = 0 in the third equation gives α = −β. Substitution
in (16) gives E = 0, which is clearly a minimum as E is
nonnegative.

This leaves us with α = β. In this case, the (17) can be
simplified to

⎧
⎪⎪⎨

⎪⎪⎩

∂L
∂α = (1− λ)α +

2 sin �ωT
2

�ωT γ = 0
∂L
∂γ =

4 sin �ωT
2

�ωT α − λγ = 0
∂L
∂λ = 2α2 + γ 2 − 1 = 0.

(18)

Because of the third equation in (18), α = γ = 0 is not
a valid solution. Therefore, the two first equations must be
equivalent. This happens if and only if

1− λ
2A
= − A

λ
⇔ λ = 1±√1+ 8A2

2
(19)

where A = (�ωT/2)−1 sin(�ωT/2). Using (19) in the second
equation of (18) yields

γ = 4A

1±√1+ 8A2
α. (20)

Using this relation between α and γ on the last equation in
(18) yields

α2 = 2 + 8A2 ± 2
√

1+ 8A2

4+ 32A2 ± 4
√

1+ 8A2

and direct substitution into (16) gives us

E = 1+ 1+ 4A2 ±√1+ 8A2

1±√1+ 8A2
. (21)

Choosing the minus sign in (21) gives a value not greater
than 1, while the plus sign gives a value not smaller than 2
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(see Fig. 13). Therefore, the plus sign is clearly the maximum
of E that we were looking for.

Let us recover (20) with the plus sign. By taking the
absolute value on both sides we obtain

|γ | =
∣∣∣∣

4A

1+√1+ 8A2

∣∣∣∣ |α|. (22)

Since |A| < 1, the numerator in (22) is not greater than
8/�ωT in absolute value, and the absolute value of the
denominator is not smaller than 2. We can conclude that

|γ | � 4

�ωT
|α|

which is the inequality in Example 2.
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