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Deriving phase-response curves of ion
channel gating kinetics
Jan-Hendrik Schleimer∗, Susanne Schreiber

Reduced models of single-neuron dynamics are widely used to characterize neuronal properties, encoding,
and a cell’s contribution to network function. Low-dimensional phase oscillator models based on phase-
response curves, in particular, permit to capture the essence of a neuron’s input-output dynamics at the
level of spike times from high-dimensional conductance-based neuron models. In principle, these phase
models allow for a direct translation of perturbations in the state variables (such as changes in specific ion
channel conductances and kinetics) to shifts in the timing of spikes. Previous mathematical work, however,
has predominantly focused on voltage and current perturbations and less on perturbations occuring in any
of the involved kinetic equations of ionic channels. Here, we provide the means to mathematically relate
properties in these variables to the phase-dependent voltage dynamics. Specifically, we derive the vector
of phase-response curves near two different onset bifurcations: the physiologically prominent saddle-node
on invariant cycle bifurcation as well as the saddle-node loop bifurcation. We demonstrate that, locally
around the saddle-node, the tangent space of the isochrons is spanned by the strongly-stable manifold of
the saddle-node. This finding enables us to quantitatively relate perturbations in the gating kinetics of ion
channels to the resulting changes in spike timing. These results lay the methodological foundation for future
quantitative analyses of the impact of specific biophysical channel properties on spike timing, including but
not limited to channel noise.
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Introduction

A neuron’s membrane voltage is constantly subject to fluctuations induced by perturbations of its ionic conductances1–4.
Consequently, such perturbations (of both synaptic or cell-intrinsic origin) modulate the membrane voltage and interfere with
action potential generation, resulting in the cancellation, production, or a shift in the timing of spikes5,6. Such perturbations
are known to affect a neuron’s information processing capabilities7,8 as well as to impact normal and pathological dynamics
of neuronal ensembles9,10.

While perturbations to the gating kinetics of ion channels have been described and quantified on the level of voltage
fluctuations11,12, a systematic approach towards a quantitative prediction of the impact of perturbations in a given channel
type on spike timing is currently lacking. Given the huge molecular and functional variety of ion channels and postsynaptic
ion-conducting receptors (the number of potassium channel genes alone exceeds 60) as well as their important role in
pathology and health, we need to characterize the susceptibility of spike timing to perturbations in ion channel kinetics. To
construct a mathematical relation between ion channel kinetics in a broad biophysical class of single neuron models (i.e.,
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conductance-based models) and spike timing jitter for neurons driven in a regular firing mode (i.e., in the presence of an
invariant cycle representing the spike), phase-response curves for the gating variables of ion channels are an adequate means.
In this article, analytical expressions for the gating phase-response curves are derived. This opens up the possibility for an
efficient, quantitative, and channel-specific impact analysis of biophysical properties on neuronal firing.

Our specific approach is based on the phase-response curves and isochrones of the neuronal oscillator. Phase-response curves
characterize the temporal shift induced by a perturbation on the timing of the next spike as a function of the phase at which
the perturbation was presented. Isochrones characterise sets of initial conditions in the state space that result in the same
phase. To relate perturbations in the ion channels’ gating variables to spike timing (i.e., the phase of the oscillation), we here
exploit the fact that phase-response curves are the normal to the isochrones’ tangent space, see Corollary 2 . The shapes of
the phase-response curves are derived from a centre-manifold reduction of the dynamical system, cf. Observation 4 . The
relative scaling between the system’s variables is obtained by considering that – for a specific point on the limit cycle – the
tangent space of the isochrones is spanned by the strongly stable directions of eigensystem at the saddle-node, see Conjecture
6 . We further demonstrate that the peak of the phase-response curve remains close to the ghost of the saddle-node. Taken
together, global information on the phase-response of all gating variables can thus be obtained from the zeroth eigenvector of
the Jacobian at the saddle-node, which for conductance-based neurons is given analytically in Observation 5 . Our analysis
hence provides analytical access to all the ingredients required for a quantitative mapping of perturbations in any system
variable to the resulting phase of the voltage oscillation, i.e. spike timing (see Corollary 8 ).

In this article, we first define the model, including its phase-reduction, and outline the general assumptions. Next, the general
spike-onset bifurcations considered here are introduced. Thereafter, a brief introduction to isochrones and phase-response
curves (PRCs) is given, followed by the core results: the calculation of PRCs for specific onset-bifurcations.

General assumptions for conductance-based neuron model and their phase-reductions

The voltage dynamics at a neuron’s membrane is commonly described by a current-balance equation, which for large ion
channel densities is accompanied by n− 1 first-order kinetic rate equations (reaction-rate theory) for the gating activity of
the voltage-gated ion channels13.

Def. 1 (Conductance-based neuron model)
In a conductance-based neuron model, the evolution of the membrane voltage, v ∈ IR, and the kinetic variables
ak ∈ [0, 1] ⊂ IR, describing the fraction of open ion channel gates (or synaptic gates), have the following form

(1)

dv
dt = (Iin + Iion(v, {ak}n−1

k=1 ))/Cm,

dak
dt = (a(∞)

k (v)− ak)/τk(v),
,

where Iin denotes the applied stimulus and Cm the membrane capacitance. The functions a(∞)
k (v) and τk(v) are

the twice-differentiable steady-state activation curve, and time constant, of the kth gate respectively. The ionic
currents generated by the ion channels in the membrane are

Iion =
m∑
i=1

gi(ahi , ..., a(hi+1)−1)(Ei − v).

Ei represents the ith ion channel’s Nernst potential. The function, gi : IR`i 7→ [0, gmax
i ] ⊂ IR, represents the ion

channel’s conductance that depends on `i gating variables. As each channel has `i gates, the gates’ indices are
h1 = 1 and hi =

∑i

j=1 `j ∀i > 0. The total number of ion channels in the membrane is m.

For brevity, define the state vector ~x = [v, a1, ..., an−1]> ∈ IRn to be composed of the voltage dimension and n− 1 kinetic
variables. The unperturbed, autonomous system from Eq. (1) is then denoted as

(2) ~̇x = ~F (~x).

In addition, let ~η(~x, t) be an infinitesimal perturbation to the r.h.s. of Eq. (2), such that

(3) ~̇x = ~F (~x) + ~η(~x, t).

The following desiderata are placed, which will enable us to consider a widespread class of excitability in conductance-based
neuron models, corresponding to particular onset-bifurcations and, most importantly, requiring the existence of a saddle-node
with homoclinic orbits attached to it.
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Assumption #ass:invariantcycle (i) Tonic spiking: Let the neuron’s resting state vanish in an saddle-node
bifurcation at some parameter Iin = Isn. Then, for Iin > Isn, Eq. (2) is assumed to have a Tp(Iin)-periodic
hyperbolic invariant cycle (ic) attractor, denoted ~xic(t), with ~xic(t) = ~xic(t+ Tp(Iin)). (ii) Low firing rates: This
allows us to inspect the limit Tp →∞. Neurons that can spike at arbitrarily low firing rate are sometimes called
type I neurons or are said to have class I excitability14. More precisely, it is required that the period of the
neuron is long compared to all other time-scales of the system. Low firing rates are, e.g., observed for cortical
pyramidal neurons. (iii) All-or-none law: The amplitude of an action potential is independent of the strength
of the perturbation that caused it. (iv) No bistability: Prudently, the neuron is assumed to show no bistability,
which rids us of phaseless sets in the vicinity of the invariant cycle dynamics.

Assumption 1
As in all conductance-based neuron models, the steady-state activation curves are assumed to be strictly
monotonous (sigmoidal) functions ∀v : d

dva
(∞)
k (v) 6= 0.

Injected-current perturbations will affect the voltage dimension of ~x. Many perturbations from biological processes, however,
affect the kinetic equations. Such biological sources may include synaptic activity15 or the ion channel kinetics themselves16–18
and are viewed as a perturbation to the deterministic part of the dynamics, ~xic(t).

The mathematical description of neuronal dynamics above the rheobase (threshold), where tonic firing of action potentials
(spikes) commences, can rely on the existence of invariant cycles (or limit cycles) with an asymptotic phase variable and a
period Tp19. To study the statistics of the event series of spike times {tspk }, it is convenient to define the phase variable, φ ∈ R,
such that φ(tspk ) = k, ∀k ∈ Z, see Fig. 1 . In general, the dynamics in the limit cycle’s basin of attraction can be completely
described by a phase-amplitude model20. If the invariant cycle is stiff, i.e., its Floquet exponents are sufficiently negative
compared to the perturbation strength to guarantee convergence to the invariant cycle within one period, a phase-only
equation describes the dynamics of spike times well21,22:

(4) φ̇ = ~∇φ · d~x
dt = f0 + ~∇φ · ~η(t)+ h.o.t.

Here, the vector ~η ∈ IRn subsumes all sources of perturbations from both the voltage and the kinetic equations of all the ion
channel gates that contribute to the voltage dynamics. If the unperturbed system has an invariant cycle solution, the phase
gradient ~∇φ is normalised such that it equals the constant firing rate f0 = ~∇φ · ~xic. If the phase gradient is calculated from a
neuron model, the phase equation, Eq. (4), can act as an input-output equivalent spike encoder23, see Fig. 1 for an example.

Perturbing currents that directly influence the voltage dimension, e.g. from a stimulating electrode, have been studied
previously24,25. Yet, many perturbations impinge on the kinetic equations describing the gating of Ohmic-conductances in the
membrane. Other neurons may perturb synaptic conductances and intrinsic channel noise may result from finite-size effects in
the number of ion channels. Therefore, this article derives the complete vector of phase-response curves for a neuron with
specific spike-onset bifurcations, i.e., mechanisms to change from resting to spiking behaviour. In particular, the saddle-node
on invariant cycle (SNIC) and saddle-node loop (SNL) bifurcations are considered.

In order to identify a phase model, both experimentally and from high-dimensional neuron models, one may utilise the concept
of the (linear) phase-response curve (PRC). Theoretical derivations of PRCs for perturbations along the dynamics in the
centre-manifold of several onset bifurcations in neuronal systems have been discussed26–28. Here, this approach is extended
to perturbations of the gating kinetics (see Conjecture 7 ) and – for the first time – the contributions of perturbations in
all dimensions are derived. Furthermore, we demonstrate that for different spike-onset bifurcations such as the SNIC or
small- and big-SNL bifurcations, the tangent space to the isochrones near the ghost of the saddle-node (SN) is given by the
strongly-stable eigenvectors of the Jacobian at the saddle-node (see Conjecture 6 ).

Fig. 1
The phase equation turns the spiking neuron into a one-dimensional level-crossing process with equivalent spike
times. The phase is plotted modulo 1.
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Spike-onset bifurcations

With an increase of Iin there are a number of possible onset bifurcations (or bifurcation sequences) that can lead from resting
states to a tonic spiking regimes in neurons29. Among them are sub- and supercritical Hopf bifurcations as well as different
types of homoclinic orbits emerging from a saddle-node. Desideratum (iii) rules out supercritical Hopf bifurcations due to the
fact that their invariant cycles (or spikes) follow a square-root amplitude scaling at creation and thus violate the all-or-none
principle. A subcritical Hopf bifurcation followed by a fold of invariant cycles is ruled out by desiderata (ii) and (iv), since
they start with a finite firing rate and a region of bistability. Desideratum (iv), furthermore, rules out that spiking emerges
from a homoclinic-orbit to a saddle, which also shows bistability. Consequently, this article focuses on invariant cycles that
emerge from homoclinic-orbits to a saddle-node. Several configurations are possible depending on which approach the orbit
takes upon converging back to the saddle-node, see Fig. 2 . One such bifurcation, the codimension-1 saddle-node on invariant
cycle (SNIC) ranks prominently as the onset of spiking in many neuronal models14,26,30. Introducing a second parameter that
controls the time scale separation between voltage and kinetic equations in Eq. (1), it was conjectured (and shown for planer
systems) that this SNIC bifurcation is always enclosed by two codimension-2 saddle-node loop bifurcations31. They result in
a small- and big-homoclinic loop. Further consequences of this transition are discussed in the following.

Def. 2 (A sequence of spike-onset bifurcations)
The following three different spike-onset bifurcations comply with Assumptions # (i-iv). Formally, it is assumed
that the neuron model has a structurally unstable equilibrium (saddle-node equilibrium) at ~xsn with Lyapunov
exponents <λ0 = 0 and <λi < 0 for i > 0. Furthermore, the stable and unstable manifolds of the saddle-node
equilibrium are globally connected, such that they form transverse homoclinic orbits. From those, the invariant
cycles that constitute tonic spiking emerge when the saddle-node vanishes in a codimension-1 bifurcation. There
are three important possibilities for the homoclinic connections, illustrated in Fig. 2 :
Big saddle node loop (big-SNL): In this case, the loop leaves the saddle-node via the semi-stable manifold

and enters via the strongly stable manifold in the direction that causes the loop to encircle all three former
fixpoints of the neuron model, cf. Fig. 2a.

Saddle-node on invariant cycle (SNIC): In this case the homoclinic orbit leaves via the semi-stable manifold
and returns via the semi-stable manifold, cf. Fig. 2b.

Small saddle node loop (small-SNL): In this case, the loop leaves the saddle-node via the semi-stable
manifold and enters via the strongly stable manifold but encircles only one fixpoint of the neuron model, cf.
Fig. 2 .

General properties of the codimension-2 bifurcation that flips between SNIC and big-SNL and SNIC and small-
SNL have been discussed32.
For neuron models, it was shown previously that increasing the relative time scale between the current-balance
equation and the gating kinetics, the following sequence of bifurcations is traversed: big-SNL → SNIC →
small-SNL31. For example, increasing the membrane capacitance, Cm, can induce this sequence, such that the
interval of capacitance values that give rise to a SNIC bifurcation is encapsulated by the two SNL points,
Cbig-SNL

m < CSNIC
m < Csmall-SNL

m .

In order to induce such a flip bifurcation, an infinitesimal parameter perturbation that affects the time-scale difference
between gating kinetics and membrane time constant is sufficient. The flips switch the approach to the saddle-node from the
semi-stable manifold to the strongly-stable manifold, leaving the departure unaltered33. This breaks the symmetry of the
dynamics in the centre-manifold as well as the PRC and has stark consequences for neuronal dynamics and coding31.

The big-SNL bifurcations switch the SNIC (Fig. 2b) to the big homoclinic loop (Fig. 2a), while the small-SNL bifurcation
flips the SNIC to the small homoclinic loop (Fig. 2c).

r0centre
manifold

stable
manifold

r0

b) SNICa) big-SNL c) small-SNL

r0

Fig. 2
Illustrations of the centre-manifold and homoclinic orbits at the SNIC bifurcation and small- and big-SNL points
in a planar Na+-K+ neuron model.

4 Copyright © 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1–14
Prepared using mmaauth.cls



J.-H. Schleimer, S. Schreiber
Mathematical
Methods in the
Applied Sciences

Isochrones and phase-response curves

In order to study the properties of isochrones and phase dynamics near saddle-node loop bifurcations in the next section, we
now review some basic definitions and properties regarding the phase dynamics. Let us first define the phase-response curve
(PRC) of a neuronal oscillator.

Def. 3 (Phase response curve)
The phase gradient w.r.t. the state variables, ~∇ψ, from Eq. (4) is also called phase response curve (PRC).
The PRC of a self-sustained limit-cycle oscillator with a neutral direction given by the zero-Floquet exponent,
is a periodic vector-valued function, ~∇ψ(φ) : IR→ IRn. It yields the linear phase-response in the sense that
infinitesimally short perturbations ∆~x projected onto it at a given phase φ ∈ R are mapped to constant shifts in
phase

∆ψ = ~∇ψ(φ) ·∆~x(φ) = const.

Remark 1
If controlled perturbations are feasible, the PRC is an experimentally accessible quantity25 in addition to being a
well defined mathematical concept. Note that this is exactly the definition required to experimentally measure
PRCs: apply short pulses and compare perturbed and unperturbed periods. In fact, the constancy of the phase
shift is a prerequisite for it to be measurable.

The phase-response curves for perturbations along the semi-stable manifold of SNIC and SNL bifurcations are known, yet to
map out perturbations in all the gating dimensions, they need to be extended to the full state space.

For an initial condition ~y ∈ IRn, the model in Eq. (2) generates a flow ~x(t; ~y) : IR+ × IRn → IRn. A stable invariant cycle was
demanded in Assumption #(i) and w.o.l.o.g. one may assume ~xic(0) to be at the voltage maximum of the spike. Denote the
invariant cycle as Γ = {~x(t; ~xic(0)) : 0 6 t < Tp}, which has a basin of attraction, B, such that ∀~y ∈ B : limk→∞ ~x(kTp; ~y) ∈ Γ.
The associated Floquet exponents, νk, of Γ are negative except for the one neutral dimension, so that they can be ordered as

(5) 0 = ν0 > ν1 > ... > νn−1.

Each element of the invariant cycle’s basin of attraction can be associated with an asymptotic phase.

Def. 4 (Assymptotic phase)
Denote the flow of the dynamical system in Eq. (2) that conforms with Assumption # and with initial condition
~y as ~x(t; ~y). The asymptotic phase, ψ, of a point in the basin of attraction, ~y ∈ B, is
(6) ψ(~y) = argminψ limt→∞ ‖~x(t; ~y)− ~xic(t+ ψTp)‖.

Based on the asymptotic phase, the concept of isochrons can be introduced34,35.

Def. 5 (Isochrons)
The isochron manifolds, I(φ), are the level sets of the asymptotic phase variable
I(φ) = {~y ∈ B : ψ(~y) = φ}.

Fig. 3a-c shows the isochrons at equidistant phases for the three bifurcation types considered in this article. The limit cycles
(dashed) are close to the homoclinic orbits of the saddle. One observes a high isochron density near the saddle.

Next, denote the Jacobian of Eq. (2)’s flow-field as, J(~x) = ~∇⊗ ~F (~x). For an arbitrary point in state space, the Jacobian has
the following eigensystem

(7) ~lkJ = λk~lk and J~rk = λk~rk, with ~lk · ~rj = δkj .

Here, the system is typically examined at the saddle-node where the eigenvalues can be ordered as

0 = λ0 > λ1 > ... > λn−1.

Furthermore, if ~x ∈ Γ, the Jacobian can be addressed as a function of the phase. Hence one may shorten J(φ) = J(~xic(Tpφ)).
This gives rise to the Tp-periodic linear matrix equation studied in Floquet theory to analyse the stability of invariant cycles.

Def. 6 (Floquet modes)
The Floquet modes,Wk(φ) corresponding to a Floquet exponent νk, are the periodic solution to the first variational
system on the invariant cycle
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(8) d
dφ
~Wk(φ) = (J(φ)− νkI) ~Wk(φ), s.t. ~Wk(0) = ~Wk(1).

The adjoint Floquet modes are the periodic solutions to
(9) d

dφ
~Zk(φ) = ~Zk(φ) · (νkI − J(φ)), s.t. ~Zk(0) = ~Zk(1),

with ∀φ : ~Zj(φ) · ~Wk(φ) = δjk.

The solutions to Eq. (8) and (9) are 1-periodic non-trivial functions. They have at least one maximum and minimum on
φ ∈ [0, 1]. It turns out that the phase-response curve adhering to Def. 3 corresponds to the zeroth adjoint Floquet mode.

Observation 1 (Adjoint equation)
The phase-response curve, as defined in Def. 3 , is equivalent to the zeroth adjoint Floquet mode (k = 0 in Eq.
(9)), i.e., for ν0 = 0 it follows ~Z0(φ) = ~∇ψ(φ). This means
(10) d

dφ
~Z0(φ) = −~Z0(φ) · J(φ).

Proof 1
Def. 3 demands that there be a constant phase shift ∆ψ after some perturbation. With the definition of the
phase in Eq (6), Def. 4 , the phase shift to lowest order is ∆ψ = ( ∂ψ

∂~xic
·∆~x). Denote ~Z(t) = ∂ψ

∂~xic
and ~y = ∆~x.

Small changes in the dynamics evolve as ~̇y = J(~xic(t))~y. Then, from d∆ψ
dt = 0, it follows

0 = ( d
dt
~Z(t) · ~y(t)) + (~Z(t) · d

dt~y(t)) = ( d
dt
~Z(t) · ~y(t)) + (~Z(t) · J(t)~y(t)) = ( d

dt
~Z(t) · ~y(t)) + (~Z(t)J(t) · ~y(t)).

Since y(t) is arbitrarily non-zero, the Fredholm alternative requires d
dt
~Z(t) + ~Z(t)J(t) = 0. Substituting t = Tpφ,

one recovers Eq. (10).

Eq. (10) has been previously derived28. Here we identify it with the zeroth Floquet mode, which is part of the orthonormal
system of Eqs. (8) and (9). Recall the definition of the gradient as the normal to the level set. Then, as a consequence,
Observation 1 implies that the tangent space to the isochrons is spanned by the rest of the orthonormal system in Eq. (8).
This relation has been previously used by 36.

Corollary 2 (Tangent space of the isochrons)
The tangent space of the isochrons at the point where they cross the invariant cycle, T~xicI, is spanned by the
non-zero Floquet modes
T~xicI(φ) =

{∑
k
akWk(φ) : k > 0, ak ∈ IR

}
.

From Def. 6 and Observation 1 and Corollary 2 it follows that the PRC is the normal to the tangent space of
the isochrons
(11) ~Z0(φ) ∈ T~xicI(φ)⊥.

The phase response curve is a bounded 1-periodic vector-valued function which according to the mean value theorem has at
least one maximum and minimum. Next follows a rather simple relation between isochrons and PRCs. Consequences for the
change in isochrons and PRC shape at the bifurcations (mentioned in Def. 2 ) are examined later. In general, the following
relation between the PRC vector and the tangent space to the isochrons holds:

Observation 3 (Tangent space and PRC extrema)
Assume that ~Z0 has a left and or right derivative at φex. If and only if the phase-response curve, ~Z0(φ), has an
extremum in each dimension at φex, such that d

dφ
~Z0(φ)|φ=φex = ~0, then the tangent space of the isochrons at

this point is spanned by the stable eigenvectors (all besides ~r0) of the Jacobian, J(φex), i.e.,
T~xicI(φex) =

{∑n−1
k=1 ak~rk : J(φex)~rk = λk~rk, λk < 0

}
.

Proof 3 If the PRC at the extremum is nontrivial, ~Z0(φex) 6= 0, then due to the left-right orthonormality, all
other (adjoint) Floquet modes also have vanishing derivatives. ~W ′j(φex) = ~Z′k(φex) = 0 in Eqs. (8) and (9) yields
(J(φex)− νj) ~Wj(φex) = 0 and ~Zk(φex) · (J(φex)− νk) = 0. Consequently, νj , ~Zj(φex), ~Wj(φex) form the left-right
eigensystem of the Jacobian and the Floquet exponents equal the Lyapunov exponents at this point.

In which regime does a neuron model have a phase value at which all the PRC components’ derivatives vanish in all dimensions
simultaneously, and what phase would that be? As is shown in the next section, this happens, e.g., if the dynamics is close to
the centre-manifold of the onset-bifurcations in Def. 2 .
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Phase-response curves at SNIC and SNL bifurcations

One-dimensional ODEs with reset have been used as heuristic neuron models37. A clear relationship between conductance-based
neuron models and the quadratic integrate-and-fire model was forged by projecting the dynamics onto the centre-manifold of
the SNIC bifurcation26,30.

Observation 4 (PRCs in the centre-manifold of SNIC and SNL)
With Assumption # (ii), that the period of the invariant cycle is large compared to all time scales of the system,
the PRCs for perturbations along the semi-stable manifold of SNIC and the small- and big-SNL bifurcations are

(12) Zsnic
cm (φ) = T snic

p b

2π2 (1− cos(2πφ)) and Zsnl
cm(φ) = 2T snl

p b

π2 (1 + cos(πφ)),
respectively. The constant is given by
b = ~l sn

0 H(φsn)~r sn
0 ~r sn

0 , where H is the Hessian tensor of the flowfield, H = ~∇⊗ ~∇⊗ ~F .
The period scaling is T snl

p = π

2
√
ab

and T snic
p = π√

ab
, respectively.

For Tp →∞, the maxima are located at the phase which corresponds to the point where the dynamics passes
the saddle-node, at φsn = argmaxφ Z(φ). This is at

(13) lim
Tp→∞

φsn =
{ 1

2 : SNIC,
0 : SNL.

At the respective φsn, the derivative of the PRC vanishes, that is
(14) lim

φ↘0
d

dφZ
snl
cm(φ) = 0 and d

dφZ
snic
cm (φ)|φ= 1

2
= 0.

Proof 4
For Iin → Isn, and hence Tp →∞, the dynamics is confined to the tangent of the semi-stable manifold, ~r0, for
arbitrarily long portions of the period. The first part of the derivation follows a previous calculations26. Consider
the dynamics near the saddle-node ~xsn. Define ~w(t) = ~x(t)− ~xsn. The saddle-node exists at a particular parameter
value Isn, such that d

dt~xsn = ~F (~xsn; Isn) = 0, where the parameter dependence was made explicit. The structure
of Eq. (1) allows one to split the vector field into ~F (~x; Iin) = ~F (~x; Isn) + ~G(~x; Iin − Isn), where
~G = [(Iin − Isn)/Cm, 0, ..., 0]>.
Expanding the vector field to second order around ~xsn, the dynamics can be written as
d
dt ~w = ~G(~xsn; Iin − Isn) + J(~xsn)~w + H(~xsn)~w~w.
Expressing the dynamics along the centre-manifold as ~w(t) = y(t)~r sn

0 , one may project onto the left eigenvector of
the Jacobian at the saddle-node, ~l sn

0 J(~xsn) = ~0, and obtain an equation for the coefficient along the centre-manifold
(15) ẏ = a+ by2, with a = ~l sn

00 (Iin − Isn)/Cm and b as in the theorem.
Now y ∈ K ⊂ IR indicates the position of the dynamics on the slow semi-stable manifold. At the SNIC,
K = (−∞,∞). In the SNL case, K = [0,∞). The slowest dynamics, and therefore the highest isochron density,
is closest to the former saddle-node, at y(tsn) = 0. The solution for arbitrary initial condition y(0) is

(16) y(t) =
√

a
b

tan
(√

ab t+ θ
)
, where θ = arctan

(
y(0)

√
b/a
)
.

The solution diverges, just as a spike would, limt→∞ y(t) =∞. However, for a given initial condition, y(0), the
time until y(Tp) =∞ is finite. Its reciprocal is the neuron’s firing rate, f0 = 1/Tp. The period is given by
(17) Tp = π/2−θ√

ab
, i.a., T snl

p = π

2
√
ab

and T snic
p = π√

ab
.

Depending on the initial conditions

(18) tsn =
{

0 : y(0) = 0,
Tp/2 : y(0) = −∞.

The PRC is defined as the phase gradient w.r.t. the state variables19,36. PRCs of simple 1D reset-models, such as
the quadratic equation of Eq. (15), can be calculated as the reciprocal of the vector field on the solution. The
PRC is
Zcm(φ) = ∂φ

∂y
= φ̇ ∂t

∂y
= f0

ẏ
= f0

a+by2(Tpφ) .

Here, the fact was used that in the unperturbed case the phase progresses as φ̇ = f0. Inserting the solution of Eq.
(16) yields
Zcm(φ) = f0

a+a tan2((π/2−θ)φ+θ) = f0
a

cos2((π/2− θ)φ+ θ) = bTp
2(π/2−θ)2 (1 + cos((π − 2θ)φ+ 2θ)).

Note that a depends on the bifurcation parameter, yet b does not. Hence, it may be preferable to have a scaling
with the bifurcation parameter via the firing rate only. For the two cases θ = −π2 and θ = 0 corresponding to
SNIC and SNL bifurcation, respectively, one recovers the identities in Eq. (12). From Eq. (18) we obtain φsn in
Eq. (13) at the two bifurcations. The derivatives of Zsnic

cm (φ) and Zsnl
cm(φ) vanish at φ = 1

2 and φ = 0, respectively.
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Remark 2
The vanishing derivative does not occur at a homoclinic-orbit to a saddle (beyond the SNL bifurcation). Although
the canonical PRC for a homoclinic to a saddle has been reported to have a peak28, its derivative at the maximum
was argued to be nonzero due to a discontinuity.

The general PRC shapes are exemplified in Fig. 4 for the Traub-Miles neuron model38 for which the boundary value problem
in Eq. (10) was solved numerically. One may confirm the symmetric PRC at the SNIC onset-bifurcation (Fig. 4a) and
the asymmetric PRC at the small-SNL point (Fig. 4b). Some implications of this symmetry breaking have been discussed
previously31. With the general shape and properties of the PRCs in the centre-manifold of the SNIC and SNL bifurcations
established by Observation 4 , we now turn to the case where perturbations are given along the different gating dimensions.
In other words, one needs to establish the contributions of the different kinetic gates and the voltage dimension to the
centre-manifold. Due to the particular structure of conductance-based neuron models in Def. 1 , the required eigensystem can
be solved analytically:

Observation 5 (Eigensystem of a conductance-based neuron model at the sadde-node)
Consider a conductance-based neuron model (Def. 1 ) at a SNIC or SNL bifurcation (Assumption 2 ), i.e., with a
simple zero eigenvalue, λ0 = 0, at the saddle-node. Then the semi-stable (centre-)manifold is tangential to the
right eigenvector corresponding to λ0, which is given by

(19) ~r sn
0 = 1

κ

 1
τk

∂Fk
∂v
...

 = 1
κ

 1
d
dva

(∞)
k (v)|v=vsn

...

,

where v = vsn and ak = a
(∞)
k (vsn) was used. The normalisation constant κ is given at the end of Proof 5 .

The associated left eigenvector is

(20) ~l sn
0 =

 1
τk

∂F0
∂ak

...

,

where F0 denotes the r.h.s. of the current-balance equation and Fk for k = 1, ..., n− 1 the r.h.s. of the kinetic
equations. Note that the right eigenvector ~r0 gives the direction of the semi-stable manifold.

Proof 5
The special structure of the Jacobian in a conductance-based neuron model, a rank-1 updated diagonal matrix,

J =


∂F0
∂v

∂F0
∂a1

· · · ∂F0
∂an−1

∂F1
∂v

∂F1
∂a1

0
...

. . .
∂Fn−1
∂v

0 ∂Fn−1
∂an−1

,

allows for an explicit calculation of the left and right eigenvectors corresponding to the eigenvalue λ0 = 0.
Choosing the zero eigenvector as ~r0 =

(1
~µ

)
, one obtains from J~r sn

0 = λ0~r
sn
0 = 0 a set of n equations:

(21) ∂F0
∂v

+
∑n−1

j=1 µj
∂F0
∂aj

= 0, and
(22) ∂Fk

∂v
+ µk

∂Fk
∂ak

= 0 for k = 1, ..., n− 1.

From Eqs. (22), it follows that µj = −
(
∂Fj

∂aj

)−1
∂Fj

∂v
. This solution also solves Eq. (21), because the required

zero eigenvalue implies that det J = 0. Note that according to Leibniz’s formula the determinant of J is

(23) det J =
∣∣∣∣ ∂F0
∂v
−
∑n−1

j=1

(
∂Fj

∂aj

)−1
∂Fj

∂v
∂F0
∂aj

∣∣∣∣∏n−1
k=1

∂Fk
∂ak

= 0.

Since ∂Fk
∂ak

= − 1
τk(vsn) < 0, the first factor of the determinant must be zero. Hence, µj also solves Eq. (21).

An analogue derivation for the left eigenvector, ~l0 =
(1
~ξ

)
, results in the following set of equations,

(24) ∂F0
∂v

+
∑n−1

j=1 ξj
∂Fj

∂v
= 0, and

(25) ∂F0
∂ak

+ ξk
∂Fk
∂ak

= 0 for k = 1, ..., n− 1,

which yields ξj = −
(
∂Fj

∂aj

)−1
∂F0
∂aj

. The normalisation constant to ensure ~l sn
0 · ~r sn

0 = 1 is

κ = 1 +
∑n−1

j=1 τ
2
j
∂F0
∂aj

∂Fj

∂v

∣∣
v=vsn,ak=a(∞)

k
(vsn)

. Note that y is in units of volt here. Other conventions are possible.
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The derivation builds on results from by 39, where the system of generalized eigenvectors was derived for a conductance-based
neuron model at a Bogdanov-Takens cusp point. The analytical expression for the left and right eigenvectors to the zero
eigenvalue stated here are in principle independent of whether there is a homoclinic orbit attached to the saddle-node or not.

Due to the particular form of Eq. (19), one can state the following observation about the contributions of different gating
dimensions to the centre-manifold:

Remark 3 (Centre-manifold contributions from all gates)
Physiologically plausible conductance-based neuron models typically show strictly monotonous (sigmoidal)
activation functions a(∞)

k (v), i.e. ∀v : d
dva

(∞)
k (v) 6= 0. The maximum slope is usually at the voltage at which half

of the channels are open (their activation threshold). In that case, the semi-stable (centre-)manifold in Eq. (19)
has contributions from the directions of all gating variables and thus is not parallel to the voltage direction.
For example, the coefficients of ~r sn

0 , corresponding to gates of some ion channels – like the delayed-rectifying
K+ channel with higher threshold – may be small in magnitude at the rheobase, while the direction of the
low-threshold Na+ channels may be more significant.

As a consequence of Remark 3 , the tangent vector to the centre-manifold has contributions from all dimensions, and all gating
dynamics follow the same quadratic dynamics near the saddle-node with the same consequence for perturbations and PRCs:

Remark 4 (PRC shape of gating kinetics)
For an invariant cycle originating from a homoclinic orbit to a saddle-node, where the departing dynamics from
the SN is governed by the quadratic dynamics of the centre-manifold, the PRC shape is the same in all state
variables. Inter alia, the extrema of the PRC are located at the same phase in all dimensions,
d

dφ
~Z(φsn) = ~0.

Indeed, it is clear that this is the maximum of the PRC, since the isochron density is highest when the dynamics
is slow, as is the case near the centre-manifold of the saddle-node.

Hence, Remark 4 ensures that the conditions for Observation 3 are met near the saddle-node, in particular near the onset of
firing via the SNIC ans SNL bifurcations.

Remark 5
Note that invariant cycles that emerge via a supercritical Hopf bifurcation or the Bautin bifurcation (subcritical
Hopf followed by a fold of invariant cycles) by the mean value theorem must have vanishing derivatives of
the PRC in each dimension, but not in all dimension at once. This is already the case for the PRCs in their
two-dimensional centre-manifold28. Hence Observation 3 is not applicable.

Conjecture 6 (Isochron structure at the saddle-node)
For neuron models near SNIC and small/big-SNL onset bifurcations, the dynamics near the saddle-node shows
the highest isochron density. For homoclinic orbits attached to a saddle-node, the tangent plain to the isochrons
at the saddle is spanned by the stable manifolds of the saddle, i.e.
(26) J(φsn) ~Wk(φsn) = λk ~Wk(φsn).
Hence, ~Wk(φsn) is an eigenvector to the Jacobian. The tangent space to the isochrons, Eq. (11), at φsn is
(27) T~xic(φsn)I(φsn) = {~rk : J(φsn)~rk = λk~rk, λk < 0}.
The PRC lies in the orthogonal complement of the tangent space ~Z(φsn) ∈ T~xicI(φ)⊥, and thus points into the
same direction as ~l0.

Proof 6
In the limit Tp →∞ the isochron density becomes arbitrarily high near the saddle-node. Hence, in line with
Observation 4 , the phase susceptibility in this region will be maximal, i.e., φsn = φex. Hence, ~Z′0(φsn) = 0, and
Eqs. (26) and (27) follow immediately from Observation 3 .

The isochron structure at the saddle-node was mentioned by 28 without proof.

Examples for the isochrons of the three onset bifurcations can be inspected in Fig. 3 . Note that the isochrons are almost
tangential to the invariant cycle close to the strongly stable manifold of the saddle in Fig. 3a and Fig. 3b. Isochrons are the
foliations of tangent bundles of phaseless sets35. Beyond the small-SNL bifurcation saddle and node detach. Therefore, the
invariant cycle then emerges from the homoclinic orbit to the saddle. In this case, the system gets bistable and the strongly
stable manifold acts as a separatrix on the other side of which there is a stable node. All isochrons are foliations of the
tangent bundle of this separatrix. Beyond the big-SNL, the system also becomes bistable, but in this case the stable node
resides inside the limit cycle and the separatrix bends around it.

Math. Meth. Appl. Sci. 0000, 00 1–14 Copyright © 0000 John Wiley & Sons, Ltd. 9
Prepared using mmaauth.cls



Mathematical
Methods in the
Applied Sciences J.-H. Schleimer, S. Schreiber

a) big-SNL c) small-SNLb) SNIC

10 mV

1
0

 %

Fig 3
Isochrons of big-SNL point (a), SNIC bifurcation (b) and small-SNL point (c) in a 2D Na+-K+ neuron model29.
Shown is the K+ channel open probability vs. the membrane voltage. Dashed lines depict the invariant orbit
close to the homoclinic orbit.

Conjecture 6 states that the PRC vector at the saddle-node points into the direction of ~l sn
0 . We also know that the saddle-node

has the (nonzero) maximum of the PRC (Observation 4 ) and that the PRC shape is the same in all dimensions (Remark 4 ).
Therefore, the correct relative scaling of the PRC for all phases is given by ~l sn

0 , for which the analytical expression is given by
Eq. (20) in Observation 5 .

Conjecture 7 (Relative weighting of the phase-response vector)
The infinitesimal phase-response curve of an invariant cycle originating from a homoclinic orbit at a saddle-node
is given by
~Zhom

sn (φ) = ~l sn
0 Zcm(φ),

where Zcm is stated in Observation 4 and ~l sn in Observation 5 .

Proof 7
This follows directly from a projection of ~Zhom

sn on the centre-manifold, ~r sn
0 · ~Zhom

sn = Zcm, and the normalisation
~l sn
0 · ~r sn

0 = 1.

Making use of the expression in Observation 4 , one can state the complete PRC vector.

Corollary 8 (Full phase response of SNIC and SNL neuron models)
The vector of phase-response curves, ~Z0(φ), with the phase susceptibilities of all kinetic gating equations of a
conductance-based neuron model described in Eq. (2), near the semi-stable manifold of a SNIC and an SNL
bifurcation is given by

~Zsnic
0 (φ) = ~l sn

0
T snic

p b

2π2 (1− cos(2πφ)) and ~Zsnl
0 (φ) = ~l sn

0
2T snl

p b

π2 (1 + cos(πφ)), respectively.

Here, ~l sn
0 is the left eigenvector to the Jacobian at the saddle. It is normal to the tangent space of the isochrons

and is given by

~l sn
0 =

 1
τk

∂Fk
∂ak

...

 =

 1
τk

∂gi(k)
∂ak

(Ei(k) − vsn)/Cm

...

.

Here, i(k) denotes the channel i to which the kth gate belongs too.

One may give some physiological interpretation to the expression for the left eigenvector that comprises the weighting factors
of the gating PRCs.

Remark 6
Positive perturbations in a gate, i.e., those increasing the opening probability of a gate, will

10 Copyright © 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1–14
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a) advance the next spike, if the ion channel is depolarising (Ec > vsn) like a typical Na+-channel, or
b) delay the next spike, if the ion channel is hyperpolarising (Ec < vsn) like the typical K+-channel.

Perturbations from gating kinetics with
c) strong driving force, (vsn − Ei),
d) strong gain in conductance, ∂gi

∂ak
, or

e) long kinetic time scale, τk(vsn),
have a larger impact on the spike time.
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Fig. 4
Shown are numerical (dashed) and analytical (solid) gating PRCs for the Traub-Miles neuron model38. The
parameter Cm was adapted to obtain SNIC and SNL spike-onset bifurcations.

Discussion

In this study, we provide an analytical tool permitting to relate perturbations induced by ion-conducting channels in a
neuron’s membrane to the timing of the fundamental neuronal signal — the action potential. More specifically, the analytical
calculation of the phase response vector at low frequencies enables us to map high dimensional fluctuations (originating from
ion channels or synaptic receptor proteins) into a phase equation from which spike statistics can be derived. Furthermore,
the isochrons crossing around the centre-manifold, i.e., the region where the dynamics spends most of its time, can be
approximated. Remarkably, the local isochron structure is preserved not only for SNIC bifurcations, but even if the homoclinic
cycle undergoes SNL (flip) bifurcations. This observation is likely to be of importance for systems close to an SNL transition,
such as neurons at a particular temperature or serotonin level31. We found, in particular, that the relative scaling of the PRC
vector components does not change at the flip bifurcation, yet the symmetry of their shape is broken.

Due to the focus on small perturbations and phase-response curves, the statements about the isochron structure at the
saddle-node (Conjecture 6 ) concern the local tangent-space of the isochrons. It is not unlikely, but remains to be shown,
that the whole isochron manifold near the saddle-node is equivalent to the strongly stable manifold. In this case, also the
local isochron curvature would become analytically accessible and could benefit phase-amplitude models (in which it is an
important ingredient). In fact, one difference between the small- and the big-SNL point is that the isochron curvature in
the latter case is much stronger. This bares consequences for the identification of complete phase-amplitude models20,40,41.
Indeed, it has already been shown that the first higher order term in Eq. (4) involves the local isochron curvature41. Beyond
the homoclinic orbits considered here it is also exciting to consider oscillatory behaviour originating from heteroclinic loops42.

As stated in Remark 3 , the semi-stable manifold and its adjoint are determined by the fraction of open channels and the
derivative of the ion channel’s current w.r.t. the gate at the rheobase (threshold). Analytical expressions for the scaling factors
are obtainable for a general conductance-based neuron models and are intuitively interpretable, cf. Remark. 6 . However,
can they be inferred from electrophysiological data? So far, the controlled perturbations required to estimate gating PRCs
have not yet been tackled experimentally. In the near future, however, new techniques such as optogenetics may facilitate
the stimulation of gates. The voltage PRC, on the other hand, is experimentally accessible24,25. The analysis presented here

Math. Meth. Appl. Sci. 0000, 00 1–14 Copyright © 0000 John Wiley & Sons, Ltd. 11
Prepared using mmaauth.cls



Mathematical
Methods in the
Applied Sciences J.-H. Schleimer, S. Schreiber

concedes an alternative approach to attain the gating PRCs: Near SNIC and SNL bifurcations, their shape is equivalent to
the measurable voltage PRC. The weighting factors can be determined by a combination of pharmacology and steady-state
experiments akin to the seminal experiments designed by Hodgkin and Huxley13. Hence, we suggest that the gating PRCs
can be measured without giving controlled pulses to the gates.

In many neurons models and their two-dimensional reductions, inspection of the nullclines in the phase plane appears to
suggest that the centre-manifold is parallel to the voltage. Remark 3 highlights that such contributions are never zero, but
strongly depend on the slope of the activation curves at the threshold. Interestingly, cooperative ion channel gating is one
biophysical mechanism that increases this slope43,44.

The symmetry breaking in PRC that is induced by the orbit flips at the two kinds of SNL bifurcations has first been described
in a previous article31 and the strong implications for the entrainment region and high frequency filtering of neurons (if
the stimuli arrive via the voltage dimension) have been discussed ibidem. In some neuron models (depending on their leak
conductance) the big-SNL bifurcation resides close to the neuronal oscillator’s relaxation limit45. The PRCs of relaxation
oscillators look different and the reader may consult the literature46,47, which shows the emergence of dead-zones. The
dead-zone is visible in the PRC of the big-SNL shown by a previous article31 which depicts the case of a finite period. We
note that if the limit Tp →∞ at the big-SNL point is taken without going to the relaxation limit, the same PRC shape as for
the small-SNL point can be recovered. In this case, also the big-SNL bifurcation can be expected to be a point of change in
synchronization as well as of elevated high-frequency transfer.

Finally, as a result of the work presented in this study, the consideration of gating phase-response curves of conductance-based
neuron models opens up the possibility of systematic, analytical impact and sensitivity analyses of all measures of spike train
statistics that can be derived from equivalent phase equations.
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