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Contact: Email
Script: under construction
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It is still a great challenge to come up with quantitative assertions about complex
biological systems. Especially, if one aims towards a functional understanding at
the cell, tissue or organismic level, it typically leads to quite involved modells.
Analytical progress can be made with simplifying assumptions and the restriction
to limiting cases.

This course will discuss a potpourri of mathematical methods ranging from
analytical techniques to numerical methods and inform the participant on how
to apply them to answer biological question and have enormous fun in doing so.

The mathematical techniques encompass stochastic systems, numerical bifurca-
tion analysis, information theory, perturbation theory and Fourier analysis. The
biological examples are chosen mostly from neurobiology, sensory ecology, but
also bacterial communication and evolution.

1.1 (Dis)claimer

This scriptum shall evolve. It will have flaws (didactic ones and outright errors)
but you, the reader, student, search bot, provide the selective preasure to improve
it. Please write to the lecturer if you find fawlt of any kind with it.

2 The Floquet theory of the aktion potential

2.1 Periodic event

Of many natural systems we observe only some drastic events.

The clock regular pulses of pulsars [@]

Action potentials There is a voltage threshold. The dynamics is described by
conductance based equations.

Wake up time Malatonin level below threshold (suprachiasmatic nucleus)
cell division Gap phase 1 → synthsis → gap phase 2 → mitosis

2.2 Tonic spikes are limit cycles

Many intersting differential equations describing biological dynamics1 can be
cast into the following form

(1) ~̇x = ~F (~x, ~θ) + ~η(~x, t)

where ~x is a vector of state variables, e.g., voltage and kinetic variables. ~F is
the time independent (homogeneous) flow field. ~η is a (often assumed small),

1Dynamics just means there are derivatives in our equations, not static relations
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possibly time dependent (inhomogeneous) perturbation to the system. ~θ are
system’s parameter. The change of solutions in response to variations in system’s
parameter will be studied later.

Example: Hodgkin & Huxley equations From Kirchhof’s law of current
conservation at the membrane follows a dynamics for the membrane voltage
cv̇+

∑K
k I

ion
k (v, ~mk) = Iin. The first term is the capacitive (pseudo current),

followed by a sum of corrents from voltage dependent ion channels and the
applied input current Iin. The ion channel dynamics is governed by kinetic
equations, i.e., chemical reactions between open and closed states. The re-
actions often follows first order kinetic equations τk(v)ṁk = M

(∞)
k (v)− ~mk.

τk(v) is the matrix of kinetic time constants and M (∞)
k (v) are the steady

state activation curves. τ and M (∞)(v) are typically diagonal if the chan-
nels are independent. These equations will be derived more formally in
Sec. XX. The state vector is then ~x = [v,m11, ...,mK1, ...]†. In the absence
of perturbations Eq. (1) becomes a homogeneous equation

(2) ~̇x = ~F (~x, ~θ)

and we assume the existance of a P -periodic limit cycle solution, ~xLC(t) =
~xLC(t+ P ), also known as periodic orbit.

A neurobiological dogma states that action potentials follow the all-or-nothing
principle2. This can be construed to mean that the exact shape of the action
potential does not matter3 and that information is stored in the exact spike times4.
It also means that the action potential should be stable under perturbations,
but that inputs ought to be able to shift the occurrence of spikes in time. If
you want, from the dogma and the intend to code into spike times follow two
desiderata:

I) The action potential must be stable in amplitude,
II) yet neutrally stable in phase.

To wit, II. just means that stimulus induced phase shifts should neither decay
nor blow up.

2.3 Limit cycle stability

Stability of is probed by studying small perturbation to an invariant set solution.
Our invariant set is the limit cycle (periodic orbit) ~xLC. Assuming there was a
small perturbation to the system the solution can be decomposed as

2Fortunately the jelly fish Aglanta digitalae does not care much for dogmas and encodes its
swimming patterns in different action potential shapes

3Actually it does, if you bring energetic considerations into baring.
4There is also plenty of coding in graded potentials going on for example in some of

Drosophila melanogaster ’s neuron or your retina. C. elegans seems to do completely without
spikes.
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(3) ~x(t) = ~xLC(t) + ~y(t)

with ∀t : ‖y(t)‖ < ε some “small” perturbation to the orbit. What small, i.e., ε
is we do not want to say now, maybe later, lets see . . .

Assuming the perturbation was transient (only in initial conditions) and the
system is homogeneous again we plug the Ansatz of Eq. (3) into Eq. (2) and get
d
dt~xLC(t) + ~̇y(t) = ~F (~xLC) +∇~F (~xLC)︸ ︷︷ ︸

J(~xLC(t))

·~y(t)

The Jacobi matrix evaluated on the limit cycle can be written as a function of
time J(t) = ∇~F (~xLC(t)). Note that since the limit cycle solution is P -periodic,
so is J(t) = J(t+ P ).

Identifying the limit cycle solution above we are left with the first variational
equation of Eq. (2)

(4) ~̇y(t) = J(t)~y(t).

Hence, one needs to study of linear system with periodic coefficients. One
solution of Eq. (4) can be guessed, let us try the time derivative of the orbit,
d~xLC

dt

(5) d
dt (

d~xLC
dt ) = d

dt
~F (~xLC) = ∇~F (~xLC) d

dt~xLC = J(t)d~xLC
dt .

So it is a solution alright, and it happens to be a P -periodic solution. This
solution is called the Goldstone mode. But for arbitray intitial conditions not all
solutions should be periodic.

Def: Floquet Ansatz According to Floquet theory the solution to Eq. (4) can
be written in the form of a P -periodic similarity matrix5 and an matrix
exponential

(6) y(t) = R(t)etΛ.

For the proof please consult (Chicone 2006), here we are just goint to work with
this as an Ansatz. The constant matrix Λ is called the Floquet matrix.

Recall the matrix exponential

Def: Matrix Exp Let A ∈ ICn×n then expA =
∑∞
k=0

1
k!A

k A useful corollary
of this definition is that the eigen vectors of an exponentiated matrx are the
same as those of the original and eigenvalues become exponentiated. If λi,
~wi are the eigenvalue, eigenvector pairs of the matrix A, i.e., A~wi = λi ~wi
then by using this identity k-times

(7) eA ~wi =
(∑∞

k=0
1
k!A

k
)
~wi =

∑∞
k=0

1
k!λ

k
i ~wi = eλi ~wi

Inserting the Floquet Ansatz into Eq. (4) yields
5For now this means that its an invertable matrix; ∀t : ∃R−1(t)
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ṘetΛ +R(t)ΛetΛ = J(t)R(t)etΛ.

Which by multiplying with e−tΛ results in a dynamics equation for similarity
matrix R.

(8) Ṙ = J(t)R(t)−R(t)Λ.

Remember that R was invertable so one can also derive an equation for the
inverse

(9) d
dtR

−1 = R−1Ṙ R−1 = ΛR−1(t)−R−1(t)J(t).

2.3.1 Eigensystem of the Floquet matrix

The Floquet matrix, Λ, is constant, though not necesarily symmetric. Hence it
has an orthonormal left and right eigensystem

(10) Λ~wi = µi ~wi and ~ziΛ = µi~zi with ~zi · ~wj = δij

One can define a “rotated” eigensystem

Def: (“Rotated” eigensystem): ~Wi(t) = R(t)~wi and ~Zi(t) = ~ziR
−1(t). For

which ipso facto obeys

(11) ∀t : ~Zi(t) · ~Wj(t) = δij .
~Wi(t) and ~Zi(t) are also called the Floquet modes.

If we project the eigenvectors on the Eqs. (8) and (9) and use this definitions
we get

(12) d
dt
~Wk = (J(t)− µkI) ~Wk(t)

and

(13) d
dt
~Zk = (µkI − J†(t))~Zk(t).

If one projects the general solution y(t) from Eq. (6) on the the adjoint Floquet
modes
~Zk(t) · ~y(t) = ~zkR

−1(t)R(t)etΛ = ~zke
tΛ = ~zke

tµk

If νk < 0 the perturbation decays exponentially in this rotated coordinate frame.

Poincare Section bla

Note that if ν0 = 0, then according to Eq. (5)

(14) ~W0(t) = d
dt~xLC(t)

is the Goldstone mode, and from Eq. (11)

(15) ~Z0(φ) · d
dt~xLC(φ) = 1
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2.4 Neutral dimension and phase shifts

The evolution of the phase of Eq. (1) is given by
dφ
dt = ∇φ(~x) · d~x

dt .

To first order this is
dφ
dt = ∇φ(~xLC) · d~xLC

dt = ∇φ · ~F (~xLC) +∇φ · ~η(~xLC, t).

There are several ways to define a phase (Hilbert transform, linear interpolation,
. . . ). A desiderata could be to have a linear phase increase in the unperturbed
case (~η = 0), say φ(t) = f0t. [. . . proto-phase]. From this desiderata it follows
that one must have ∀t : ∇φ · ~F (~xLC) = f0. Given Eq. (16), this is easily achieved
with the following identification

(16) ∇φ = ~Z0(φ)f0 = ~Z(φ)

The input-output (I/O) equivalent phase oscillator to Eq. (1) can then be written
as

(17) φ̇ = f0 + ~Z(φ) · ~η(t)

A spike-train can be written as

(18) y(t) =
∑
k δ(t− tsp) =

∑
k δ(φ(t)− k)

3 Fourier theory

To proceed with the analysis we need some results from Fourier theory.

3.1 The Fourier base

One may think of the Fourier transform as a projection onto a new basis
eω(t) = eiωt. Define the projection of a function as

F (ω) = 〈ew · f〉 =
∫∞
−∞ dt e∗ω(t)f(t)

The inverse Fourier transform is a projection onto e∗t (ω)

f(t) = 〈e∗t · F 〉 =
∫∞
−∞ dω et(ω)F (ω)

3.2 Existence of the Fourier integral

Usually all transcendental pondering about the existance of mathematical objects
is the subject of pure math and should not bother us too much (we trust the
work as been done properly). But in the Fourier transform case it motivates a
subject we need to address mainly because of δ-functions, which are heavily used
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in theoretical neurobiology, because they are reminestcent of action potentials
or indicate the time of such a spike event. What does it mean for the Fourier
transform to exist? It means that the integrals invoved in the definition of the
Fourier transform converge to finite values. OK. So let us look at the magnitude
of the transform of a function f . It can be upperbound by the Cauchy-Schwarz
inequality

|〈ew · f〉| =
∣∣∣∫∞−∞ dt e−iωtf(t)

∣∣∣ 6 ∫∞−∞ |e−iωt|︸ ︷︷ ︸
=1

|f(t)| dt =
∫∞
−∞ |f(t)| dt.

This means that if one assumes the function f(t) is absolute integrable∫∞
−∞ |f(t)| dt <∞,

then the Fourier integral exists – hurray. Of course, the same works for the
integral involved in inverse Fourier transform. Note that this is an implication in
one dirrection. All functions satisfying absolute integrability are lumped together
in L1(IR).

The bad news is that applying a Fourier transform to one of the members of
L1(IR) can through you out of it. And then? Well, luckily there is the set of
Schwartz functions, wich is closed under the Fourier transform.

3.2.1 Orthonormality

The issue that absolute integrability is insufficient already manifests when trying
to Fourier transform it own basis, since

∫∞
−∞ dt|eiωt| =∞. Lets give it a name

anyway

〈eω · eν〉 =
∫∞
−∞ dt ei(ν−ω)t = δ(ν − ω)

It follows that the delta function is symmetric

δ(ω) =
∫∞
−∞ dt eiωt =

∫∞
−∞ dt e−iωt = δ(−ω)

Note also that

(19) 〈eω · 1〉 = δ(ω)

3.2.2 Convolution

The convolution of two function is defined as

h(t) = (f ∗ g)(t) =
∫∞
−∞ drf(t− r)g(r)

H(ω) =
∫
dt eiωt ∫ dr f(t− r)g(r) =

∫
dr g(r)

∫
dt e−iω(t+r)f(r)

=
∫
dr g(r)e−iωr ∫ dt e−iωrf(t) = G(ω)F (ω)
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3.2.3 Derivative

What is δ′(t)?

(δ′∗f(t)) =
∞∫
−∞

δ′(r)f(t−r)dr = [δ(r)f(t−r)]∞r=−∞−
∞∫
−∞

δ(r)f ′(t−r)dr = −f ′(t)

Hence

(20) (δ′ ∗ f(t)) = −f ′(t)

4 The continuum limit of a membrane patch

Motivation and aim

In this lecture ion channels are introduced as stochastic devices floating in
the membrane of a nerve cell. It should motivate why the analysis techniques
and models introduced in this lecture need to deal with fluctuations and noise.
(Nerve) cells produce stochastic processes on several levels:

1. The ion channels in their membrane stochastically jump beteen conforma-
tions, governed by Master equations.

2. On a more macroscipic level the their membrane voltage fluctuations show
properties of coloured noise, well described by diffusion processes and
stochastic differential equations.

3. The trains of action potentials they emmit from point processes.

In the stationary state these processes can be subjected to spectral analysis.

Note that in 1952, the first equations describing membrane voltage dynamics
where the deterministic rate equations by Hodgin & Huxley (Hodgkin and Huxley
1952). Only in 1994 Fox and Lu derived these equations from the continuum
limit of an ensemble of stochastic ion channels (Fox and Lu 1994). Essentially
by doing a diffusion approximation.

Since then the nuences of appllying diffusion approximations to neurons have
been investigated (Linaro, Storace, and Giugliano 2011,Orio and Soudry (2012))
and reviewed (Goldwyn et al. 2011,Goldwyn and Shea-Brown (2011),Pezo,
Soudry, and Orio (2014)).

4.1 The ion channel as a Markov model

Proteins change conformation on various triggering signals:

• a change in pH
• a change in the surrounding electric field
• mechanical preassure
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Such dynamics can be described by a finite state Markov model which is mathe-
matically described as a Master equation.

Starting with a simple ion channel that has an open conformation, O, in which
ions can pass (say K+ ions) and a cloased states, C, which blocks ion flow

O
α


β
C

We can define a vector of the probability of being open and closed, ~p = [pO, pC ]†,
respectively.

An ionic current produced in the open state would be

I ion = γK+NO(EK+ − v)

γK+ and EK+ are the unitary conductance and the Nernst potential respectively.
The average such current would be

〈I ion〉 = γK+NpO(EK+ − v)

where N is the total number of channels in the membrane patch under consider-
ation. But what about a particular stochastic realisation of the current, what
about the fluctuations around the mean?

If we have N channels than the number of k of them being open is binomially
distributed

PO(k) =
(
N
k

)
pkOp

N−k
C

In actuality the channels are part of the membrane dynamical system, where α
and β depend at least on v and hence are not constant during a spike. We need
an update rule how to get from the probability of being open at time t to the
probability of begin open at time t+ dt. This is given by(
pO(t+ dt)
pC(t+ dt)

)
=
(

1− αdt β dt
α dt 1− β dt

)(
pO(t)
pC(t)

)
or in vector form

~p(t+ dt) =
(
I +Qdt

)
~p(t)

The infinitesimal limit is
d
dt~p = Q~p

With pC = 1− pO we can express one row of this equation as

ṗO = αpO − β(1− pO)

or

τ ṗO = p
(∞)
O − pO with τ = 1

α+β and p(∞)
O = α

α+β

which has solution

pO(t) = p
(∞)
O (1− e−t/τ )
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Fourier transformation leads to

τ iωp̃(ω) = p
(∞)
O − p̃(ω)

or

p̃(ω) = p(∞)

1+iτω

|p̃(ω)|2 = p̃(ω)p̃∗(ω) = p(∞)

1+(τω)2

a Lorenzian spectrum. Inverse Fouerier transform yields the covariance function

c(τ) = 〈pO(t)pO(t+ τ)〉

4.1.1 The n-state channel

Let us try to calculate the statistics of the current originating from an n-state
channel (just like in the two state case). Why would one do this? The idea, later
on is to be able to find a continuous stochastic process that we can simulate and
analyise easily.

Let K(t) ∈ [1, ..., n] be the realisation of the n-state Markov channel. For
example a K+-channel with four subunits

1
4α


β

2
3α


2β

3
2α


3β

4
α


4β

5

Assuming the ion channel has n conformations, of which one is conducting, let
us further define

G = δ1K(t) =
{

1 : K(t) = 1
0 : K(t) > 1.

The single channel current at a voltage clamp v(t) = v is then

(21) I(t) = γG(t)(E − v).

How does it evolve? Define pi(t) = P (K(t) = i) and ~p(t) = [p1, ..., pn]†, then

(22) d
dt~p = Q~p

With formal solution

~p(t) = eQt~p(0) = (eQ)︸︷︷︸
M

t
~p(0) = M t~p(0)

Use the singular value decompostion, M = U ΣV †, the matrix power can be
written as M t = U ΣtV †. Or (recall Eq. (7))

(23) ~p(t) =
∑n
k=1 ~uk~v

†
ke
νkt~p(0).

If Eq. (22) has a stationary distribution in the t → ∞ limit, then this must
correspond to the eigenvalue ν1 = 0 (let us assume they are ordered). So
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d
dt~p(∞) = 0 =⇒ for ~p(∞) = ~v1,∃ν1 = 0 : Q~v1 = ν0~v1 = 0. Therefore, the
solution can be written as

(24) ~p(t) = ~p(∞) +
∑n
k=2 ~uk~v

†
ke
νkt~p(0).

The average channel current of Eq. (21) is

〈I(t)〉 = γ(E − v)
∑n
k=1 pk(t)δ1k = γ(E − v)(p1(∞) +

∑n
k=2 u1kv1kp1(0)eνkt),

which if the chain is stable (νk < 0 : ∀k > 1) has steady state

〈I〉 = limt→∞〈I(t)〉 = p1(∞).

The steady state covariance C(∆) = limt→∞ in this case is

Ct(∆) = 〈I(t)I(t+ ∆)〉 − 〈I〉2 = γ2(E − v)2∑n
j,k=1 δ1jδ1k pj(t)pk(t+ ∆)− 〈I〉2

Hence

Ct(∆) = p1(t)p1(t+ ∆)− 〈I〉2 =
∑n
i,j=2[~ui ~v†i~vj︸︷︷︸

=δij

~u†i ]11e
νit+νj(t+∆)

If νk < 0 : ∀k > 1 then

(25) C(∆) =
∑n
i=2 u1iu1ie

νi∆

is a sum of exponentials. The spectral density is a superposition of Lorenzians.

4.1.2 Simulation a Jump process

Do not track individual channels but the channel numbers. Starting in a
particular state ~N = [N1, ..., Nn] at time t the life time of staying in that state
until t+ τ is

f(τ) = λe−λτ

The escape rate of the state is (any reaction occuring)

λ =
∑n
k=1Nkak

where ak are the rate of leaving state k. For example a3 in the K+-channel is

a3 = 2β + 2α

But which reaction did occur? Let j be the reaction (not the state!). For
example, there are 8 reactions in the K+ channel. The probabilities of occurance
associated with any one of them is

p(j) = Njζj∑Nreac
k=1

Nkζk
= Njζj/λ

In a computer algorithm one can draw the waiting time for the next reaction
simply by generating a uniform random number r1 ∼ U(0, 1) and then

τ ← ln(r−1
1 )/λ

12



The reaction is determined with a second random number r2 ∼ U(0, 1)

P (j) =
∑j
k=1 p(k)

j ← argmaxjP (j) < r2

while
r1 = rand
r2 = rand
tau = ln(1/r1) / a

4.2 Statistically equivalent diffusion process (Orenstein-
Uhlenbeck Process)

The jump process discussed in the previous sections is a continuous time Markov-
process on a discrete domain, K(t) ∈ IN with t ∈ IR. A diffusion process is a
continuous time Markov-process on a continuous domain, η(t) ∈ IR with t ∈ IR.

Can are in search for a a diffusion process such that

I = γ (p1(∞) +
∑n
k=2 ηk(t)) (E − v)

has the same first and second order statistics (in voltage clamp) as Eq. (21)?
Let us try

(26) τk(v)η̇k = −ηk + σ(v) ξ(t) where 〈ξ(0)ξ(∆)〉 = δ(∆)

To solve it, use the Fourier Transform

iωτη̃(ω) = −η̃(ω) + σ χ(ω)

The place holder symbold χ was introduced for the Fourier transform of the
stochastic process ξ(t). Rearanging yields

η̃ = σχ(ω)
1+iωτ

The spectrum is

η̃(ω)η̃∗(ω) = σ2χ(ω)χ∗(ω)
1+(τω)2

By definition χ(ω)χ∗(ω) is the Fourier Transform of the covariance function δ(∆)
and from Eq. (19) this is one. Hence,

η̃(ω)η̃∗(ω) = σ2

1+(τω)2

Applying the inverse Fourier transform results in the correlation function

C(t) = σ2

τ e
−|t|/τ .

A super position of independent such OU process∑n
k=i ηi(t)
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leads to a correlation function with the same structure as in Eq. (25). We
identify τi = 1/νi and σi = u1i.

The idea of matching the second order statistics can be formulated in a far
more abstract way in terms of the Kramers-Moyal-van-Kampen expansion of
the Master requation

ṗ =
∫
w(x′ → x)p(x′, t)− w(x→ x′)p(x, t)dx′

∂p(x, t) =
∑∞
n=1

∂n

∂xnKn(x, t)p(x, t)

from

5 Information theory for the living

This theory was never ment to be used to describe living systems in which
meaning, i.e., the content of a message actually matter. Information theory
deals with optimal compression, lossless transmission of signals irrespective of
weather it is relevant or a TV program.

Nontheless a look at a quantitative science of communication may be insightfull.

Consult []

Since there is a relation between the PRCs introduced in XXX and the filtering
properties of a neuron, one can seek to do the same for phase dynamics and
ask what PRC would maximise information transmission. But first, one needs
to develop how the PRC predicts a lower bound on the mutual information
rate. We begin with a short review of the basic tenets of information theory.
Within information theory, a neural pathway is treated as a noisy communication
channel in which inputs are transformed to neuronal responses and sent on:

5.1 The communication process

The science of communication is concerned with at least two subtopics: (i) the
efficient representation of data (compression); and (ii) the save transmission of
data through unreliable channels.

A source (the message) typically runns through the following processing sequence:

→ Compress → Encode
↓

Channel
↓

← Decompress ← Decode

14



One of the formal assertions of information theory is that these two problems
can be addressed separately (without loss of generality or efficiency): Meaning
first one compresses by removing redundancies. Then one again adds failsafe
redundancy to combat the unreliability.

However convenient for engineering, this does not mean that biological systems
have to make use of this fact (source coding and channel coding could be very
intertwined).

Also note that many of the mathematical results in information theory are
bounds, inequalities not achievable in real systems. To get an idea of the mindset
of information theory, check-out Shannon’s source coding theorem.

5.2 Source coding, data compression and efficient repre-
sentation

Remember Morse’s code. Why does the character E only have a single symbol
(·), while the character Q (−− ·−) has so many?

The idea could be that: Highly probable symbols should have the shortest rep-
resentation, unlikely ones may occupy more space. What we want to com-
press is called the source and data compression depends on the source distri-
bution. This sounds like a good idea for a biological system: Do not spend
resources on rare events. Well not quite. Cicadas hear the sounds of their
mating parners only once at the very end of a possibly 19 year long life.
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International Morse Code
1. The length of a dot is one unit.
2. A dash is three units.
3. The space between parts of the same letter is one unit.
4. The space between letters is three units.
5. The space between words is seven units.

U
V
W
X
Y
Z

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O

Q
P

R
S
T

1
2
3
4
5
6
7
8
9
0

Example (Genetic code): Cells code 20 amino acids with words composed
of a four letter6 alphabet A = {A,G,C,T}. Only words of length 3 are
sufficient 42 = 16 < 20 < 64 = 43. If nature was to require only 16
amino acides, two character words would be sufficient. Only four to drop:
Discrading the 4 least probable AS to occur in Proteins: Tryptophan 1.1%,
Methionin 1.7%, Histidin 2.1% and Cystein 2.8%. No code words would
make for an error of 7.7%.

In general, we can define a risk δ, i.e., the probability of not having a code word
for a letter. Then, to to be efficient, one should choose the smallest δ-sufficient
subset Sδ ⊂ A such that p(x ∈ Sδ) > 1− δ.

Def. (Essential bit content): For an alphabet, Sδ, the essential bit con-
tent,i.e., the number of binary questions asked to identifiy an element
of the set is Hδ = log2 |Sδ|

In the case of the genetic colde the essential bit content for δ = 0.077 is H0.077 = 4
or if we use the base b = 4 for the log it is 2, which is the length of the code
words required for 16 AS.

6Four nucleobases A: Adenosine, G: Guanine, C: Cytosine, T: Tymine.
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Take an even simpler example: We have the alphabet A = {0, 1} with probability
distributions A: {p0, p1} = { 1

2 ,
1
2} and B: {p0, p1} = { 3

4 ,
1
4}. In figure~?? you

can see a plot of 1
NHδ over the allowed error δ for words of different length N .

For increasing N the curves depend on δ to a lesser degree. Even more it
converges to a line around the entropy

(27) H = −
∑
k pk log2(pk)

which is HA = 1 and HB ≈ 0.81.

This is closely related concept of the typical set TN . Members of the typical set
(x1, .., xN ) = ~x ∈ TN have

− 1
N

log p(~x) ≈ H(x).

Hence their probability is p(~x) ≈ 2−N H(x), for all of them, which implies the
cardinality of the typical set is 2N H(x). There holds a kind of law of large
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numbers (Asymptotic Equipartition Property, AEP) for the typical set stating
that: For N i.i.d. random variables ~x = (x1, .., xN ) with N large ~x is almost
certainly am member of TN (p(~x ∈ TN ) = 1− ε).

Shannon argued that one should therefore base the compression on the typical
set and showed that we can achieve a compression down to NH bits.

Asymptotic Equipartition Property (AEP): For i.i.d. random variables

− 1
n

log p(X1, .., Xn) = − 1
n

∑
i

log p(Xi)→ −〈log p(X)〉 = H(X)

Note that the i.i.d. assumption is not to restrictive as we represent correlated
processes in terms of the i.i.d. coefficients in their Karhunen-Loève transform
(or the empirical counter parts).

The typical set T εn = {(x1, .., xn) : | − 1/n log p(x1, .., xn)−H(X)| < ε} allows
Shannon’s source coding algorithm: The encoder checks if the input sequence
lies within the typical set; if yes, it outputs the index of the input sequence
within the typical set; if not, the encoder outputs an arbitrary in n(H + ε) digit
number.

By formalising this argument Shannon proved that compression rates up to the
source entropy is possible. The converse, that compression below is impossible
is a bit more involving.

5.3 Channel coding

Here we consider a „memoryless” channel:
message
W

encode→ X 3 x→
noisy channel
p(y|x) → y ∈ Y decode→

est. Message
Ŵ

The rate R with which information can be transmitted over a channel without
loss is measured Bits

transmission for a discrete time channel or Bits
second for a continuous

time channel. Operationally, we wish all bits that are transmitted to be recovered
with negligible probability of error.

A measure of information could be:

The average reduction in the number of binary-questions needed to
identify x ∈ X before and after observing y ∈ Y .

This would just be the difference in entropies:

M(X;Y ) = H(X)−H(X|Y ) = −
∑
x∈X

p(x) log2 p(x) +
∑
x∈X
y∈Y

p(x, y) log2 p(x|y).

This goes by the name of mutual information or transinformation. Remember
marginalisation

p(x) =
∑
y∈Y p(x, y).
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So the mutual information is

M = −
∑

x∈X
y∈Y

p(x, y) log2 p(x) +
∑

x∈X
y∈Y

p(x, y) log2

(
p(x|y)p(y)

p(y)

)
or

M(X;Y ) =
∑

x∈X
y∈Y

p(x, y) log p(x,y)
p(x)p(y)

From the complete symmetry of this quantity we can also write it as

M(X;Y ) = H(Y )−H(Y |X).

The following Figure illustrates how the mutual information is related to respec-
tive (conditional) entropies of the input and output ensemble.

We have heard that I(X;Y ) quantifies the statistical dependence of X and Y ,
but how is that related to error-free communication?

I(X;Y ) depends on the input ensemble. To focus on the properties of the
channel we can simply take an „optimal” input ensemble and define the channel
capacity

C = maxp(x) I(X;Y ).

It will be left to the sender to actually find the optimal input statistics. Note
that I(X;Y ) is a concave function (∩) of p(x) over a convex set of probabilities
{p(xi)} (this is relevant for procedures like the Arimoto-Blahut algorithm for
estimating C) and hence a local maximum is a global maximum.

p = []
while

p(

Shannon established that this capacity indeed measures the maximum amount
of error-free information that can be transmitted. A trivial upper bound on the
channel capacity is

C 6 min{log |X|, log |Y |}.

This is due to the maximum entropy property of the uniform distribution in the
discrete case:

Example (Maximum entropy, discrete case): For the derivate of the en-
tropy from Eq. (27) one gets: ∂

∂pi
H = − log2 pi − 1, which leads to
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pi ∝ e−1 ∀i. After normalisation one has pi = 1/N , so the uniform
distribution maximises the entropy in the discrete case.

5.4 Information transmission (continuous case)

Information theory has long been in the discussion as an ecological theory upon
which to judge the performance of sensory processing (Atick 1992). This led
Joseph Atick, Horace Barlow and others to postulate to use this theory to study
how nervous systems adapt to the environment. The goal is to make quantitative
predictions about what the connectivity in the nervous system and the structure
of receptive fields should look like, for instance. In this sense, information
theory was hoped to become the basis for an ecological theory of adaptation to
environmental statistics (Atick 1992,Barlow (1961)).

Some of the signals in nature (and those applied in the laboratory) are continuous
in time and alphabet. Does it make sense to extend the definition of the entropy
as

(28) H(x) = −
∫

dx p(x) ln p(x)?

Maybe. Let us see how far one gets with this definition. It is called differential
entropy by the way. Through quantisation this can be related back to the entropy
of discrete alphabets.

If the p(x) is smooth then one associates the probability of being in i∆ 6 x 6
(i+ 1)∆ with

pi = p(xi)∆ =
∫ (i+1)∆
i∆ dx p(x)

The entropy of the quantised version is

H∆ = −
∞∑

i=−∞
pi ln pi = −

∞∑
i=−∞

∆p(xi) ln(p(xi)∆)

= −
∞∑

i=−∞
∆p(xi) ln p(xi)− ln ∆

This is problematic as the second term goes to infinity for small quantisations.
Formally, if p(x) is Rieman integrable, then

lim∆→0 = H∆ + ln ∆ = −
∫

dx p(x) ln p(x)

Since the infinitesimal limit is taken we can also take n to be the number of
quantal intervals so that in the limit

lim ∆→0
n→∞

ln ∆ ≈ n.

So that an n-bit quantisation of a continous random variable x has entropy

H(x) + n.
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With the mutual information being the difference of entropies the quantisation
term vanishes.

A first example can be taken from rate coding7. In terms of our spike trains
from Eq. (18), the instantaneous firing rate can be defined as

Example (Optimal rate coding in the retina (Laughlin 1981)): In
short, Simon measured the distribution of light intensities that would
impinge on the fly’s compund eye in a natural environment: It was more
or less normally distributed. He postulated that an efficient allocation
of resources (firing rate) would be, to spread more likely inputs over a
broader range of firing rates. Why? It makes them easier to differentiate
by upstream neurons. Via experiments he found that the fly’s compound
eye approximates the cumulative probability distribution of ctrast lelvels
in natural scenes.

Let us pause and ask: What is the maximum entropy distribution for a continuous
alphabet?

Example (Maxent, continuous with variance constraint): Take a ran-
dom variable x ∈ IR. It can not be the uniform distribution as in the
discrete case. In fact we need additional constraints. For example one may

7Here, the alphabet is a firing rate f0 ∈ IR. It might be more reasonable to think about
spike counts in a given time window, which is still a countable set.
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ask for the maximum entropy distribution, p(x), given a fixed mean, µ,
and variance σ. Using Lagrange’s multipliers to formulate the constraint
optimisation problem

C = H+λ0
∫

dx p(x)+λ1
(∫

dx p(x)x− µ
)
+λ2

(∫
dx p(x)(x− µ)2 − σ2)

One searches for p(x) that fulfils δC/δp(x) = 0 and ∂C/∂λi = 0,
where δ/δp(x) is the variantional derivative. One finds

p(x) = exp(λ0 − 1 + λ1x+ λ2(x− µ)2).

With the normalisation from ∂C/∂λi = 0 we get the normal distri-
bution (eλ0−1 = 1/

√
2πσ2, λ1 = 0 and λ2 = 1/σ2).

What did we learn? Well

(29) H(x) 6 HGauss(x).

If we consider the whole spike train y(t) =
∑
k δ(t − tspk ) (see Eq. (18)) as

the ouput, not just its mean input intensity and mean firing rate, we have a
continuous time dependent stochastic processes to deal with. Note that the
definition of the spike train, if integrated, is related to the empirical distribution
function.

If we average infinitely many trials we get the instantaneous firing rate r(t) =
〈y(t)〉y|x. We will give a mathematical definition of r(t) later. Our communication
channel looks like that

input signal neural response
x(t) ∈ IR → pathway → y(t) ∈ IR

The entropy rate of an ergodic process can be defined as the the entropy of the
process at a given time conditioned on its past realisations in the limit of large
time

(30) H[x] = limt→∞H[xt|xτ : τ < t].

The mutual information rate measures the amount of information a neural
pathway transmits about an input signal x(t) is the mutual information rate,

(31) M [x, y] = H[y]− H[y|x]︸ ︷︷ ︸
encoding

= H[x]− H[x|y]︸ ︷︷ ︸
decoding

,

between the stochastic process, x(t), and the stochastic response process, y(t).
The entropy rate H measures the number of discriminable input or output states,
either by themselves, or conditioned on other variables.

The mutual information rates, which is the difference between unconditional and
conditional entropy rates, characterises the number of input states that can be
distinguished upon observing the output. The response entropy rates H[y], for
instance, quantifies the number of typical responses per unit time, while H[x|y]
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is a measure of the decoding noise in the model. If this noise is zero, then the
mutual information rate is simply H[x], provided that this is finite.

The conditional entropy rates H[y|x] and H[x|y], characterising the noise in
the encoding and decoding model respectively, are each greater than zero. In
information theory, these quantities are also called equivocation. Hence, both
the stimulus and response entropy rates, H[x] and H[y], are upper bounds for
the transmitted information.

Example (Info rate continuous discrete-time Gaussian process):
The OU-process from Eq. (26) is an example of a Gaussian process. Take
a discretised version, ~x = [x(t1), x(t2), ...], of it such that

p(~x) = |2πK|−1/2 exp
(
− 1

2 (~x− ~µ)†K−1(~x− ~µ)
)

Hn = 1
2 ln 2π|K|+ n

2

This is similar to the quantisation problem. It might be reasonable
to drop the n term (sometimes this is done, sometimes not). For the
one dimensional case we have

H = 1
2 (1 + ln 2πσ2)

or, if we drop the n = 1

(32) σ2 = 1
2π e

2HGauss(x)

Any practical consequences?

Def. (Estimation error): For a random variable x the estimation error of an
estmator x̂ is

〈(x− x̂)2〉

The best estimator is the mean, so the statisticians say. Therefore a lower bound
to the estimation error is given by

(33) 〈(x− x̂)2〉 > 〈(x− 〈x〉)2〉 = σ2 = 1
2π e

2HGauss(x) > 1
2π e

2H(x).

The lasst inequality followed from Eq. (29).

Example (Info rate continuous continuous-time Gaussian process):
Up to an additive constant the entropy of a multivariate Gaussian was89

H = 1
2 ln |K| = 1

2 tr lnK = 1
2 tr ln Λ = 1

2
∑
k lnλk.

First let us observe the process for ever ~x = [x(−∞), ..., x(∞)], a bi-
infinte series with countable elements. The elements of the covariance
matrix Kij = c(i ∗ dt− j ∗ dt). The orthogonal eigen-function for the
continous covariance operator on t ∈ IR are the Fourier bases. It can
be shown that in the continuum limit

8Remember the determinant is |K| =
∏n

i=1 λi. So ln |K| =
∑n

i=1 lnλi. In terms of the
matrix-logarithm and the trace the determinant can be expressed as |K| = exp tr lnK.

9Because the trace is invariant under similarity transforms trK =
∑n

i=1 λi.
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H =
∫
df lnλ(f)

The result is due to Kolmogorov see also (???,Golshani and Pasha
(2010)).

5.5 Linear stimulus reconstruction and a lower bound on
the information rate (decoding view)

Without a complete probablilistic description of the model the mutual information
can not be calculated. And even with a model the involved integrals may not be
tracktable. At least two strategies to estimate it exist, though: Either, create a
statistical ensemble of inputs and outputs by stimulation, followed by (histogram
based) estimation techniques for the mutual information; or, find bounds on the
information that can be evaluated more easily. In general, the estimation of
mutual information from empirical data is difficult, as the sample size should be
much larger than the size of the alphabet. Indeed, each element of the alphabet
should be sampled multiple times so that the underlying statistical distribution
can, in principle, be accurately estimated. But this prerequisite is often violated,
so some techniques of estimating the information from data directly rely on
extrapolation (???). The problem becomes particularly hairy when the alphabet
is continuous or a temporal processes had to be discretised, resulting in large
alphabets.

Another approach, which will allow us to perform a theoretical analysis of phase
dynamics, relies on a comparison of the neuronal “channel” to the continuous
Gaussian channel (???,Cpt.~13) is analytically solvable (Cover and Thomas
2012). The approach can be used to estimate the information transmission of
neuronal models (???). Also experimental system have ben analysed in this way,
e.g.:

1. the spider’s stretch receptor (???);
2. the electric sense of weakly electric fish (???) and paddle fish (???);
3. the posterior canal afferents in the turtle (???).

It was prooven that in that this method leads to a guaranteed lower bound of
the actual information transmitted (???).

If one has experimental control of the stimulus ensemble it can choosen to be a
Gaussian process with a flat spectrum up to a cutoff as to not introduce biases
for certain frequency bands. The mutual information between stimulus x(t) and
response y(t) can be bound from below as

(34) M [x, y] = H[x]−H[x|y] > H[x]−Hgauss[x|y],

Here, Hgauss[x|y] is the equivocation of a process with the same mean and co-
variance structure as the original decoding noise, but with Gaussian statistics.
The conditional entropy of the stimulus given the response is also called recon-
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struction noise entropy. It reflects the uncertainty remaining about the stimulus
when particular responses have been observed.

It turns out that the inequality in Eq. (33) also holds if the estimator is
conditioned. Say from the output of the neuron we estimate its input

x̂(t) = x̂t[y].

So if the process has a stationary variance

〈(x(t)−x̂(t))2〉x|y > inf
x̂
〈(x(t)−x̂(t))2〉x|y = 〈(x(t)−〈x(t)〉x|y)2〉x|y = e2Hgauss[x|y].

The second line uses the fact that in this case the optimal estimator is given by
the conditional mean. We have the following bound on the equivocation

(35) H[x|y] 6 Hgauss[x|y] 6 1
2 ln〈(x(t)− x̂(t))2〉 6 ln〈n2(t)〉,

The deviation between stimulus and its estimate, n(t) = x(t)− x̂(t), is treated
as the noise process.

In order to obtain a tight bound the estimator x̂(t) should be as close to optimal
as possible. For the case of additional information given by the response of
the neural system y(t) to the process x(t), the estimator should make use of it,
x̂t[y]. For simplicity one can assume it is carried out by a filtering operation,
x̂(t) = (f ∗y)(t) specified later (Gabbiani and Koch 1998). Like the whole system
the noise process is stationary, and its power spectral density, Pnn(ω), is

Hgauss[x|y] 6 1
2 ln〈n2(t)〉 = 1

2
∫∞
−∞

dω
2π lnPnn(ω).

Together

(36) M [x, y] > 1
2
∫∞
−∞

dω
2π ln

(
Pxx(ω)
Pnn(ω)

)
So as to render the inequality in Eq. (35) as tight a bound as possible one should
use the optimal reconstruction filter from y to x̂. In other words, it is necessary
to extract as much information about x from the spike train y as possible.

The next step should be to find an expression for the noise spectrum, Pnn(ω),
based on the idea of ideal reconstruction of the stimulus. As opposed to the
forward filter, the reconstruction filter depends on the stimulus statistics (even
without effects such as adaptation). We seek the filter h that minimises the
variance of the mean square error

(37) 〈n2(t)〉 = 〈(x(t)− x̂(t))2〉, with x̂(t) =
∫

dτ h(τ)y(t− τ).

Taking the variational derivative [?] of the error w.r.t.
the filter (coefficients) h(τ) and equating this to zero one obtains the orthogonality
condition for the optimal Wiener filter (???)

(38) 〈n(t)y(t− τ)〉 = 0, ∀τ .

Inserting the definition of the error, n(t) = x(t)− x̂(t), into Eq. (38) yields

〈x(t)y(t− τ)〉 −
∫

dτ1 h(l)〈r(t− τ1)r(t− τ)〉 = Rxy(τ)− (h ∗Ryy)(τ) = 0
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In order to obtain h we need to deconvolve the equation, which amounts to a
division in the Fourier domain

(39) Pxy(ω) = H(ω)Pyy(ω) =⇒ Hopt(ω) = Pxy(ω)
Pyy(ω) .

To compute the mutual information rate, we now calculate the full auto-
correlation of the noise when the filter is given by Eq. (39). For an arbitrary
filter h(t), we have

Rnn(τ) = 〈n(t)n(t+ τ)〉 = 〈n(t)x(t+ τ)〉 −
∫

dτ1 h(τ1)〈n(t)y(t+ τ − τ1)〉.

When the orthogonality condition of Eq. (38) holds, the right-most term vanishes.
Proceeding by expanding the first term algebraically leads to an expression for
the noise correlations

Rnn(τ) = 〈n(t)x(t+ τ)〉 = Rxx(τ)−
∫

dτ1 h(τ1)Rxy(τ − τ1).

This expression can be Fourier transformed in order to obtain the required noise
spectrum

Pnn(ω) = Pxx(ω)−H(ω)Pxy(ω) = Pxx(ω)− |Pxy(ω)|2
Pyy(ω) ,

where the definition of the optimal filter, Eq. (39), was utilised. This result can
then be inserted into Eq. (36) to obtain the following well known bound on the
information rate (???,lindner2005j:mi,holden1976b,stein1972j:coherenceInfo)

(40) M[x, y] > − 1
2
∫ ωc
−ωc

dω
2π ln

(
1− |Pxy(ω)|2

Pxx(ω)Pyy(ω)

)
.

This information bound involves only spectra and cross-spectra of the communi-
cation channel’s input and output processes which are experimentally measurable
in macroscopic recordings [?, ?, ?, ?]. The channel, in this case the neuron, can
remain a black box. But since we can bridge the divide between microscopic,
biophysical models and their filtering properties, we will, in the following section,
derive the mutual information rates.

Def. (spectral coherence): The expression in Eq. (40) is termed the squared
signal response coherence

(41) c2(ω) = |Pxy(ω)|2
Pxx(ω)Pyy(ω) .

It quantifies the linearity of the relation between x and y in a way
that it equals 1 if there is no noise and a linear filter transforms input
to output. Both nonlinearities and noise reduce the coherence. The
coherence can be estimated from data using the FFT algorithm and
spectrum estimation. It is implemented in the free software packages
scipy and matplotlib.

What renders the coherence a useful quanity? While the cross-spectrum informs
us when stimulus and output have correlated power in a spectral band, the
normlisation with the output auto-spectrum can be crucial. Say we find a
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particular high power in Pxy(ω), this may not be ralted to the stimulus but
could just be the intrinsic frequency of the neuron itself.

The coherence is a quantity without mention of the explicite decoding filter, in
fact it is symmetric in input and output just as the mutual information. This is
beneficial because one can now take the encoding view in the next chapter.

6 Linear response filter

The stimulus spectral density is given by the environment or controlled by the
experimental setup, while cross- and output spectra need to be measured or
calculated from the model in question. In this lecture cross-spectral and spike
train spectral densities are derived from phase oscillator, see Eq. (17), that are
in turn derived from biophysical models. This means we do not treat the channel
as a blackbox but assume a particular model.

The first quantity we need to calculate Eq. (41) is the cross-spactrum. On the
one hand it is the Fourier of the cross-corrlation, on the other it can be written
as averages of the Fourier transforms (FT and average are linear operation).

(42) Pyx(ω) = 〈〈ỹ(ω)x̃∗(ω)〉y|x〉x = 〈〈ỹ(ω)〉y|xx̃∗(ω)〉x.

What has happened here? The cross-spectrum can be obtained by averaging
the Fourier transformed quantities over trials and the stimulus ensemble. The
average can be split into the conditinal average over trials 〈·〉y|x, given a fixed,
frozen stimulus and the average over the stimulus ensemble, (〈·〉x). The former
is essential an average over the encoding noise (Chacron, Lindner, and Longtin
2004,Lindner, Chacron, and Longtin (2005)).
Observe that 〈ỹ(ω)〉y|x is Fourier transform of the trial averaged firing rate
conditional on a frozen stimulus

r(t) = 〈y(t)〉y|x.

Thus, it is sufficient to derive a filter that maps input x(t) to a firing rate, not
an individual spike train.

Def. (forward, encoding filter): Let g(t) be the filter kernel that maps stim-
ulus into instantaneous firing rate

(43) r(t) = (g ∗ x)(t) =
∫ t
−∞ drg(r)x(t− r)

The filter is causal, since it is implemented by a differential equation
and the Laplace transform yields

(44) R(s) = G(s)X(s),

where G(s) denotes the transfer function of the encoding filter.

With this definition the cross-spectrum is written as
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(45) Pyx(ω) = 〈〈ỹ(ω)〉y|xx̃∗(ω)〉x = G(iω)Pxx(ω).

This shows us that although we are computing the cross-spectrum of stimulus
and spike train the response filter G(iω) for the instantaneous firing rate suffices.
This simple relation reminds us of the fact that the cross-spectrum is not really
a second order quantity, but can be exactly determined by linear response theory.
The spike train spectrum Pyy(ω), on the other hand, is truly a second order
quantity, viz, the Fourier transform of the auto covariance, and can not be
related to the linear response filter without further approximations.

6.1 Instantaneous firing rate in the continuum limit

The instantaneous firing rate can be estimated via binning and trial averaging

4∆r(k∆): 0 3 1 0 0 0 0 3 1 0 0 0 1 2 1 0
Trials: 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0

Two equivalent descriptions10 of Markov dynamics exist

(i) the path view,

(46) ẋ = u(x, t) = f(x) + g(x)ξ(t);

(ii) the ensemble view

ṗ(x, t) =?.

For (i) one can simulate many paths of a stochastic differential equation, with
different intitial conditions and noise realisations. Histograms can provide the
ensemble statistics. But it is also possible to find an evolution equation for the
whole ensemble.

The relation between the two can be formally established by the

Def. (empirical measure): Given a stochastic path realisation, x(t), from
Eq. (46) the empirical measures is

(47) %(y, t) = δ(x(t)− y).

With all the lovely properties of a δ-function.

The probability density

(48) p(y, t) = 〈%(y, t)〉,
10Similar to the particle and wave duality in quantum mechanics.
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where the average is over all paths, x(t), and therefore over all realisations of
the noise process ξ(t).

The chain rule yields
∂
∂t%(y, t) = ẋ(t) ∂

∂x%(y, t) = − ∂
∂y%(y, t)u(x(t), t)

Solving such a PDE involves time integration or other integral transformations
(Fourier and Laplace’s). Since∫

dy δ(x(t)− y)f(y) = f(x(t)) =
∫

dy δ(x(t)− y)f(x(t))

Therefore

(49) ∂
∂t%(y, t) = − ∂

∂y%(y, t)u(y, t) = − ∂
∂yf(y)%(y, t)− ∂

∂y g(y)ξ(t)%(y, t)

Averaging on both sides results in
∂
∂tp(y, t) = − ∂

∂yf(y)p(y, t)− ∂
∂y g(y)〈ξ(t)%(y, t)〉.

The correlation between a stochastic process ξ(t) and a nonlinear functional of
it is given by the Novikov-Furutsu-Donsker formula

(50) 〈ξ(t)%(y, t)〉 = − 1
2 〈

δ%
δξ(t) 〉 = − 1

2
∂
∂y g(y)p(y, t)

All to gether we have the

Def. (Fokker-Planck equation): The FPE correpsonding to Eq. (46) is

(51) ∂
∂tp(y, t) = 1

2
∂
∂y g(y) ∂∂y g(y)p(y, t)− ∂

∂yf(y)p(y, t).

This is a diffusion equation. It can be written in the form

(52) ∂
∂tp(y, t) = − ∂

∂yJ(y, t).

J(y, t) = f(y)p(y, t)− 1
2g(y) ∂∂y g(y)p(y, t)

One needs boundary conditions and initial conditions to solve this PDE.

6.2 Phase flux = firing rate

For convenience rewrite the I/O-equivalent phase oscillator from Eq. (17) as

(53) φ̇ = f0 + z(φ)x(t) + σ ξ(t).

Here, as opposed to Eq. (17) ~Z(φ) · ~η(φ, t) was split into the part that results
from the presented stimulus, now denoted x(t), and the part that originated
from, e.g. intrinsic noise. From Eq. (26) the perturbation vector has

~η =

 x(t)
σ1(v(φ))ξ1(t)

...

.

29



As long as the intrinic noise is fast enough compared to the stimulus an averaging
can be applied11 to obtain an effective diffusion

σ2 =
∫ 1

0 dφ
∑
i σ

2
i (vLC(φ)),

which enters Eq. (53). The benefit is that the corresponding The Fokker-Planck
equation

(54) ∂
∂tp(φ, t) = σ2

2
∂2

∂φ2 p(φ, t)− ∂
∂φ (f0 + Z(φ)x(t))p(φ, t) = − ∂

∂φJ(φ, t)

is tractable in a perturbation expansion. But first, remember what is the goal:
Identification of the forward filter g(t) in r(t) =

∫ t
−∞ dr g(r)x(t− r).

0 1 ϕ

p(
ϕ,

t=
1)

spike

flux

Figure 1: Phase density

r(t) = J(1, t) = (f0 + Z(φ)x(t))p(φ, t)− σ2

2
∂
∂φp(φ, t)

∣∣∣
φ=1

The equation is solved with the following perturabtion ansatz

(55) p(φ, t) = p0(φ) +
∑
i pi(φ, t),

with the normalisation requirement

(56)
∫

dφ p0(φ) = 1 and ∀i ∈ IN, t ∈ IR :
∫

dφ pi(φ, t) = 0.

The pi(φ, t) are assumed small correctin terms, given that the stimulus x(t) is
also small.

at the same time one gets

J(φ, t) = J0(φ) +
∑
i Ji(φ, t)

11This can be done formally using Chapman-Enskog or adiabatic elimination procedures.
The derivation may be included in to future.
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In perturbation theory one solves iteratively the equations of the same order

O(0): For the lowest order the stimulus x(t) = 0 the FPE is

ṗ0 = σ2

2
∂2

∂φ2 p0 − f0
∂
∂φp0.

This equation is homogeneous so we find a time independent steady
state solution

p0(φ) = 1.

One may test this by back insertion. Here both the boundary condi-
tions and Eq. (56) are inforced. The solution can be inserted into
the definition of the flux to obtain the zeroth order flux

J0 = f0p0 = f0

The next order involves the time-dependent stimulus

O(x): Note that mulitplying two terms of order O(x) yields a term of order
O(x2) and is discarded. One is left with

ṗ1 = σ2

2
∂2

∂φ2 p1 − f0
∂
∂φp1 − p0x(t) ∂

∂φZ(φ)

To turn the PDE into an algebraic equation one can apply both
the Fourier series expansion and the Laplace transform. For this
the Laplace transform of the stimulus is denoted as X(s) and the
periodic function Z(φ) =

∑∞
k=−∞ cke

i2πkφ

sP1(k, s) = − (2πkσ)2

2 P1(k, s)− f0i2πkP1(k, s)−X(s)i2πkck
Solving for P1(φ, s)

P1(φ, s) =
∑∞
k=−∞ P1(k, s)ei2πkφ =

∑∞
k=−∞

i2πkckX(s)ei2πkφ
s+(2πkσ)2/2+i2πkf0

For brevity define the pole νk = −(2πkσ)2/2− i2πkf0

The first order flux is

J1(k, s) = f0P1(k, s) + ckX(s)− i2πkσ2

2 P1(k, s)

= f0P1(k, s) + s−νk
i2πk P1(k, s)− i2πkσ2

2 P1(k, s)

and

i2πkJ1(k, s) = i2πkf0P1(k, s) + (2πkσ)2

2 P1(k, s) + (s− νk)P1(k, s) = sP1(k, s)

J1(1, s) =
∑∞
k=−∞

sck
s−νkX(s)

Happily and consistently one finds

G(s) =
∑∞
k=−∞

sck
s−νk

The power spectrum correponds to the imaginary axis, G(iω). The low frequency
limit is
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limω→0G(iω) = c0 = 〈Z(φ)〉.

With ck = ak + ibk, the high frequency limit is

limω→∞G(iω) =
∑∞
k=−∞ ak = Z(0).

7 Numerical continuation of fixpoints and orbits

In the past lectures functional consequences (e.g. filter properties) had been
derived from the phase response curve of neurons. The PRCs particular shape
(e.g. its mean or value at phi = 0) had consequences on what the neuron can
do computationally. Next we need do gain some insight into “how a PRC looks
like in particular dynamical regimes”. These regimes are reached by changing
some system parameter, e.g. the membranes leak conductance or capacitance,
the composition of ion channels or their kinetic properties.

Often numerical solutions to nonlinear ordinary differential equations are found
by (forward) time-integration. An interesting alternative is to track a found
solution through parameter space, for which the solution must be persistent. If
it is not, then a bifurcation occurs and one observes a qualitative change of the
solution.

For book on bifurcation theory consult (Izhikevich 2007) and numerical bifurca-
tion analysis (Kielhöfer 2011).

7.1 Continuation of fixed points

Asume for

~̇x = ~f(~x, p)

there is a steady state solution

(57) ~f(~x, p) = 0

The fixpoint solution ~x(p) depends on the parameter p. The existence of the
solution as a function of the parameter is governed by the implicite function
theorem.

Implicite function theorem Consider a system of equations
~f(~x, p) = 0, with f ∈ IRn, ~x ∈ IRn, p ∈ IR and ∇x,p ~f ∈ IRm×n+1.

Let f and ∇x,p ~f be smooth near x. Then if the Jacobian ∇x,p ~f is
nonsingular, ∃ a unique, smooth solution family ~x(p) such that
~f(~x(p), p) = 0.
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This establishes the existence of lines in a bifurcation diagram.
The method of continuation is a predictor-corrector method. In practice, assume
the fixpoint is known for one particular parameter value p0, then for a small
change in parameter the solution is is predicted

Predictor step: Taylor’s linearisation

(58) ~x(p+ δp) ≈ ~x(p) + δp∂~x∂p .

To predict the new solution, the old solution is required and the derivative of
the solution w.r.t. the parameter that is changed. How to compute the latter?
Take the total derivative of Eq. (57) w.r.t. the parameter

(∇xf)∂~x∂p + ∂ ~f
∂p = 0.

with formal solution
∂~x
∂p = −(∇x ~f)−1 ∂ ~f

∂p .

If ∇x ~f is full rank one can use some efficient linear algebra library to find the
vector ∂~x∂p and back insert it into Eq. (58). For too large δp the predicted solution
will be wrong. Yet, it is a good initial guess form which to find the correct
version.

Corrector step: Newton iterations to find the root of ~f(~x, p)

(59) ~xn+1 = ~xn − (∇x ~f)−1 ~f(~xn, p)

Actually that Newton’s iterations are also obtained by linearisation

0 = ~f(~xn+1, p) = ~f(xn) + (∇x ~f)(~xn+1 − xn),

which if solved for ~xn+1 yields Eq. (59).

Convergence analysis of Newton iterations yields that with each newton iterations
the number of correct decimal places doubles. Hence often a low number of
iterations (3-7) suffice to achieve sufficient numerical accuracy.

Example: Say f(x, p) =
√
x2 + p2 − 1, then the solution branches are x(p) =

±
√

1− p2. The linear stability analysis ∂xf = x√
x2+p2

that

x > 0→ ∂xf > 0→ unstable
x < 0→ ∂xf < 0→ stable

Also ∂pf = p√
x2+p2

and thus ∂px = p
x = p

±
√

1−p2
. What happens at

p = ±1 or x = 0?

Or more general: What happens if we find that the condition number of ∇~f
explodes?

In the example above the branch switches its stability and it bends back in a fold
or turning point. In general folds can occure with and without stability change.
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Figure 2: Numerical continuation

7.2 Local bifurcations: What happens if ∇~f is singular?

Bifurcatin analysis is one big “case discrimination”

7.2.1 Folds and one-dimensional nullspaces

Recall some difinitions

Def. (nullspace, kernel): The kernel or nullspace of a matrix J is

N(J) = {~x ∈ IRn|J~x = 0}

Def. (range, image): The range of a matrix J is

R(J) = {~y|∃x ∈ IRn : J~x = ~y}

Def: Let Q be the projection onto the range
Def: Eigensystem at the fold. Let Jacobian matrix J = ∇~f(~x(0), p(0))

J~rk = λk~rk and ~lkJ = λk~lk.

So that the nullspace is spanned by ~l0.

This section considers dimN(J) = 1. Hence, the implicite function theorem is
not applicable. From the example above it is apparent that ~x′(p) =∞ at the

34



bifurcation. The problem can be circumvented by defining a new “arclength
parameter”, p(s). The bifurcation branch is then a parametric curve, (~x(s), p(s)).
Without loss of generality the bifurcation is to be at s = 0.

If the Jacobian matrix J = ∇~f is rank-deficient the Lyapunov-Schmidt reduction
can be applied. Intutiefely the problem is reduced from a high-dimensional,
possibly infinite-dimensional, one to one that has as many dimension as the
deffect of ∇~f .

The nullspace is spanned by the eigenvector, r0 of J , corresponding to the
eigenvalue 0.

Assume that f is twice differentiable w.r.t. ~x, then differentiate ~f(~x(s), p(s)) = 0
w.r.t. s and evaluate at s = 0
d
ds
~f(~x(s), p(s)) = ∇x ~fx′(s) + ∂p ~fp

′(s) = J~x′(s) + ∂p ~fp
′(s)

Let H = ∇∇x ~f be the Hessian tensor.
d2

ds
~f = H~x′(s)~x′(s) + J~x′′(s) + ∂2

p
~fp′(s) + ∂p ~fp

′′(s) = 0

At s = 0 one has p′(0) = 0 and ~x′(0) = ~r0. Projecting onto the left-eigenvector
~l0 to the eigenvalue 0. at s = 0 one finds
~l0H~r0~r0 +~l0∂p ~fp

′′(0) = 0

or with ∂p ~f 6∈ R(J)

p′′(0) = −~l0H~r0~r0~l0∂p ~f
.

This is a test function of wether the bifurcation is

(i) subcritical (p′′(0) < 0)
(ii) superctirical (p′′(0) > 0)
(iii) transcritical

X

p

transcriticalsupercriticalsubcritical

Figure 3: Folds

Def: Let P be the projection onto the null space

There are several cases to be distinguised.

The fold: If the rank deficiency is one-dimensional, dimN(J) = 1.
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The Andronov-Hopf: If the rank deficiency is two-dimensional.

7.3 Stability exchange

At a simple fold one eigenvalue is zero. Study the eigen system of J =
∇~f(~x(s), p(s)) near s = 0

J(~r0 + ~w(s)) = λ(s)(~r0 + ~w(s)).

With a bit of analysis

λ′(0) = −~l0 · ∂p ~f(~x(0), p(0))p′′(0)

7.3.1 Extended system

Continue the extened system (linear and nonlinear)
~f(~x(p), p) = 0

∇~f(~x, p)~w = 0

(∇~f(~x, p))T~z = 0

7.4 Continuation of boundary value problems and peri-
odic orbits

The same procedure than above can be applied to the continuation of periodic
orbits and boundary value problems. Define the implicit function to encompass
the time derivative

~g(~x, p) = d
dt~x− T ~f(~x, p) = 0, with t ∈ [0, 1].

Then proceed as above. Note that the time derivative d/dt is a linear operator
which has a matrix representation just like the Jacobian. in that sense

∇x d
dt~x = d

dtI

8 PRC near the centre manifold

8.1 Dynamics in the centre manifold of a saddle-node

At arbitrary parameters the periodic soluiton adjoint to the first variational
equation on the limit cycle yields the PRC. I can be calculated numerically with
the continuation method. Near a bifurcation, however, if major parts of the
dynamics happen in the centre manifold the PRC can be calculated analytically.
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As an example take the saddle-node on limit cycle bifurcation (SNLC). The spike
in this case is a homoclinic orbit to a saddle-node, that enters and leaves via the
semi-stable (centre) manifold that is associated with the eigenvalue λ0 = 0 of
the Jacobian at the saddle.

r0centre

manifold

stable
manifold

Figure 4: Saddle-node on a limit cycle (SNLC). The dynamics on the stable
manifold is fast ẋ = λ1x, while the dynamics along the centre subspace is slow
ẋ = bx2.

(60) ~̇x = ~f(~x) + p~g(~x)(
cv̇
τṅ

)
=
(
I−I(n,v)
n∞(v)−n

)
Let there be a saddle-node bifurcation at some value p0.

Expanding the right-hand side around saddle-node fixpoint, ~x0, yields (Ermen-
trout 1996)
~f(~x) = J(~x− ~x0) +H(~x− ~x0)(~x− ~x0) + ...

Establish the eigen system at the saddle-node J = ∇~f(~x0)
~lkJ = λk~lk and J~rk = λk~rk with lj · rk = δjk.

By assumption of a saddle-node the Jacobian has a simple zero with an associated
eigenvector.

Def (centre subspace): The subspace spanned by ~r0 is called the centre sub-
space or slow subspace.

Write the dynamics arround the saddle-node as ~x(t) = ~x0 + y~r0. then Eq. (60) is

~̇ 0x+ ẏ~r0 = yJ~r0 + p~g(~x0) + y2H~r0~r0.

Projecting this equation onto the left eigenvector ~l0 yields the isolated dynamics
along the centre manifold:

(61) ẏ = a+ by2 with a = p~l0 · ~g(~x0) and b = ~l0H~r0~r0.

Note: In the literature often y is suggestively written as v assuming the quadratic
dynamics is a long the voltage dimension. However, it can be shown that
the centre manifold of a conductance-based neuron is never parallel to the
voltage dimension.
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Figure 5: Solution of Eq (61)

The centre manifold is only tangential to the spiking limit cycle dynamics near
the saddle. Although the proportion of time spend near the saddle is large at
some point the trajectories depart so it is only locally valid.

The formal solution of Eq. (61) with initial condition y(0) = −∞ is

(62) y(t) =
√

a
b tan(

√
ab t− π/2).

Away from the saddle-node the slow manifold accelerates again and the variable
y explodes at π/2. This blowing up is like a spike. So for the SNLC centre
manifold one can think of the the spike at y = ∞ and reset to y = −∞. The
time it takes from y = −∞ to y =∞ is finite and given by

Tp = π√
ab
.

Note that for y(0) = 0 it is

(63) y(t) =
√

a
b tan(

√
ab t)

and

Tp = π
2
√
ab
.

The bifurcation parameter enter in a. If q~g(~x) = [c−1I, 0, 0, ...]T, then the firing
rate has the typical square-root scaling

f0 = 1
Tp

= π−1
√
b~l00c−1(I − I0).

Let us check this numerically in the pratical.

8.2 PRC near the centre manifold

PRCs of simple 1D reset-models like quadratic equation of Eq (61) can be
calculated. The PRC is defined as the phase gradient (Winfree 2001,Kuramoto
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(1984)) with respect to the state variables. In the unperturbed case we have
φ̇ = f0, where f0 is the frequency. The PRC is

Z(φ) = ∂φ
∂y = φ̇ ∂t∂x = f0

ẏ = f0
a+by2(f0φ) .

Inserting the solution of Eq. ((???)) yields

Z(φ) = f0
a+a tan2(πf0φ−π/2) = a−1f0 cos2(πf0φ− π/2)

= a−1f0 sin2(πf0φ) = f0
2a (1− cos(2πf0φ)).

Note that a depends on the bifurcation parameter, yet b does not. Hence it may
be preferable to write

ZSNLC(φ) = b
2π2f0

(1− cos(2πf0φ)).

A similar calculation for at the saddle-node loop bifurcation yields

ZSNL(φ) = b
2π2f0

(1− cos(πf0(1 + φ))).

9 Phase suscetability to channel noise near
saddle-node loop bifurcations

The deterministic part of the conductance-based model neuron is(
v̇
ȧi

)
The Jacobian is J = ∇~F has eigen system ~lkJ = λk~lk and J~rk = λk~rk, with
~lk · ~rj = δkj .

Proposition 1 Neuron models at a saddle-node on invariant cycle bifurcation,
i.e., a simple zero eigenvalue, the centre (slow) manifold is given by

~r0 =
( 1

d
dv a∞,k(v)

)
.

For the usual strictly increasing activation curves, a′∞,k(v) > 0, the
centre manifold is not parallel to the voltage or any other state
direction.

Proof 1 The special structure of the Jacobian in a conductance-based neuron
model, a rank-1 updated diagonal matrix, allows for an explicit calculation
of the eigenvector, e0, corresponding to the eigenvalue λ0 = 0. This
gives the direction of the centre manifold. At the stationary point this is
~r0 =

( 1
a′∞,k(v)

)
. As long as the activation functions are stricktly monotonous

function of the voltage, a′∞,k(v) > 0, the centre manifold has a non-zero
component in this gating direction.

The PRC for perturbation along the centre manifold of the SNIC bifurcation is
long known. In order to understand perturbations originating from the gating
dynamics of different ion channels we need the PRC for arbitrary perturbations.
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Proposition 2 The vector of phase-response curves at a SNIC bifurcation is
given by
~Z(φ) = f−

1
2 (1− cos 2πφ)~l0.

The PRC in all dimensions have the same shape, but their relative
scaling differs.

Proof 2 See (Ermentrout and Kopell 1986,Ermentrout (1996),Brown, Moehlis,
and Holmes (2004),Ermentrout, Glass, and Oldeman (2012)) for derivation
of the phase response curve along the centre manifold of the SNIC. Due to
Thm. 1. all dimensions will have the typical quadratic slowing near the
saddle-node and can be therefore arbitrarily slower than any other state
direction. An perturbation ~ek along the kth state direction, has according
to Thm. 1. always components along the centre manifold (~l0 · ~ek)~r0. All
other directions are exponentially contractive and fast compared to the
slow dynamics on the centre manifold. A perturbation ~p can therefore be
decomposed into∑
j(~lj · ~p)~rj .

Along the stable manifolds, λj < 0, all (~lj · ~p) ∼ eλt. Compared to
the slow dynamics along the centre manifold the exponential reset
back to the limit cycle is instantaneous and, hence, does not affect
the phase. It is known that along the centre manifold the quadratic
dynamics yields a phase model with a phase-response curve that has
the functional form 1− cos 2πφ.

Theorem 3 For both the SNIC and the SNL bifurcations, the peak of the PRC
resides at the saddle-node, i.e.,
dZ
dφ (φ)|φ=φSN = 0.

Proof 3 In the limit f → 0 the isochron density can be made arbitrarily
high near the saddle-node. The phase susceptibility in this region will be
maximal.

The following holds not only for homoclinic orbits approaching the saddle-node
via the semistable centre manifold (the SNIC case), but any homoclinic orbit
that approaches via any of the stable manifolds.

The Floquet modes are periodic solution to the first variational system on the
limit cycle

(64) ~W ′k(φ) = (J(φ)− λkI) ~Wk(φ) and ~Z ′k(φ) = ~Zk(φ)(λkI − J(φ))

Theorem 4 For homoclinic orbits attached to a saddle-node the tangent plain
to the isochrons at the saddle is spanned by the stable manifolds of the
saddle, i.e.

(65) J(φSN)Wk(φSN) = λkWk(φSN).
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Hence, ~Wk(φSN) is an eigenvector to the Jacobian. The tangent
space to the isochrons is thus T = {~rk : JSN~rk = λk~rk ∧ λk < 0}.
The PRC is then ~Z(φSN) ∈ T⊥.

Proof 4 For this one shows that the linearised isochron at φ = φSN is a solution
to the right eigenvalue problem of the Jacobian at the saddle. Since
according Thm. 3. the maximum of ~Z resides at φ = φSN Eq. (65) follows
immediately from Eq. (64) with k = 0.

10 Event time series and phase descriptions

10.1 Synchronisation and phase locking

If biological oscillators interact their emitted event time series may synchronise.
Start with a conductance based models

(66) ~xi = ~f(~xi) + ~G(xi, xj)

and couple them with synapses

G(xi, xj) = gsyn(vj)(vi − Esyn).

In Eq (17) the I/O equivalent phase oscillator was derived. Take two phase
oscillators i and j that are I/O equivalent to Eq (66)

φ̇i = fi + Z(φi)G(φi, φj)

φ̇j = fj + Z(φj)G(φj , φi)

Def (phase locking) Two oscillators i and j are phase locked (a form of syn-
chronisation) if their phase difference ψij(t) = φi(t)− φj(t) is constant in
time. This implies there should be a fixpoint ψ̇ = 0.

Figure 6: Two small (n = 5) all-to-all coupled networks, showing a fixed phase
relation (SNL) and no locking (SNIC).
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Def (phase locking index) Phase locking can be quantified by evaluating the
following temporal average

Lij = 〈ei(φi(t)−φj(t))〉.

The evolution of the phase difference is

(67) ψ̇ = ∆f + Z(φj + ψij)G(φj + ψij , φj)− Z(φj)G(φj , φj + ψij).

Def (frequency detuning) The difference in intrinsic frequencies of the oscil-
lators ∆f is called frequency detuning.

If the frequency detuning, ∆f is small, then ψ is a much slower variable than φi
and φj . Therefore, The variable φj in Eq. (67) traverses many periods before
ψ changes. In other words: ψ “sees” only the average of φj . One may apply
averaging theory to define

H(ψ) =
∫ 1

0 dφZ(φ+ ψ)G(φ+ ψ, φ),

then

ψ̇ = ∆f +H(ψ)−H(−ψ) = ∆f +Hodd(ψ).

Note that

Hodd
SNLC(ψ) = 0

and

Hodd
SNL(ψ) = (1− cosπ(1 + ψ))− (1− cos(π(1 + ψ) + π)) = 2 cosπψ,

only the latter has a fixpoint at ψ = 1/2
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Figure 7: Stable and unstable fixpoints in the SNL coupling function

=⇒

(i) SNLC shows no synchronisation for ∆f > 0
(ii) SNL shows “antiphase” synchronisation. In a network this may lead to

phenomena similar to frustration.
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10.2 Spike reliability and stimulus entrainment

Not all neuronal populations are coupled. Some sensory neurons like auditory
receptors do not have lateral inhibition and just project to the next processing
stage. Still many of these neuron receive the same sensory input. Therefore, one
can study two neurons that share a common input, or, equivalently one neuron
that is stimulated in repetitive trials with the same protocol.

Take two neurons i and j. Each neuron has its own intrinsic noise-level σi, but
all share and a common stimulus x(t) and mean firing rate f ,

(68) φ̇i = f + Z(φi)x(t) + σi ξi(t).

Remember the neuronal codes. A spike time code was a mapping from a time
continuous stimulus x(t) to a spike train y(t), i.e., the ouput is a high dimensional
vector of spike times. In the following the stimulus that is common to all neurons
i, is assumed to be a small amplitude zero-mean Gaussian process, 〈x(t)〉 = 0,
with wide-sense stationary covariance C(t− r) = 〈x(t)x(r)〉. The intrinsic noise
has different realisation for each neuron.

Q: How reliable is this mapping? How close in spike-train space are two stimuli?
How well is an idealised up-stream neuron able to distinguish stimuli, based
on the information it receives from the down-stream neurons?

These are decoding questions. They are quantified by looking at spike-train
metrics (Rossum 2001). In a non-stationary environment on other question
maybe useful to ask:

Q: Given neurons do lock to a stimulus12, but that they are in a random state
before the stimulus is presented: How long does it take to reliably lock?

This question it important for up-stream neuron, too, since it determines the
minimal window of integration that is required.

Neurons13 are perfectly inphase-locking, if their phase difference is zero, ψ =
φi − φj = 0, and stays that way, ψ̇ = 0. For simplicity look at the σ = 0 case.
WLOG take φj as the reference. So, in the present case the phase difference
evolves as

(69) ψ̇ = (Z(φj + ψ)− Z(φj))x(t) = g(ψ, t)

In a homogenous (time independent), system information about how fast the
locked state is reached and how stable it is is given by the Lyaponov exponent, λ
of the phase difference.

Def. (Lyapunov exponent): For a deterministic and autonomous14 system
12Not perfectly though, because there is the intrinsic noise, ξi(t).
13This may now refer to one and the same neuron presented with the same frozen stimulus

time and again or a population of non-interacting very similar neurons, which get the same
input.

14independent of t
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and a small enough initial phase difference, the Lyapunov exponent is
the reciprocal of the exponential attraction or divergence rate ψ(t) ∝ eλt,
which is the solution of the linearised dynamics arround the phase fixpoint
ψ0:

ψ̇ = g′(ψ0)︸ ︷︷ ︸
λ

ψ or λ = d
dψ lnψ|ψ=ψ0 = g′(ψ0).

Since there a time-continuous stimulus present one can only define an (time)
averaged Lyapunov exponent

Def. (average Lyapunov exponent): For a time-dependent system, the av-
eraged Lyapunov exponent is

(70) λ̄ = 〈 d
dψ lnψ〉

Assume that the neurons are already similar in their phase dynamics, then the
right hand side phase difference, Eq. (69) can be expanded arround φj to obtain

(71) ψ̇ = ψZ ′(φj)x(t).

In the absence of intrinsic noise, σ̄ = 0, the averaged Lyapunov exponent from
Eq (70) is

λ̄ = 〈Z ′(φj)x(t)〉.

Note that this is a case for the Novikov-Furutsu-Donsker formula, because
Z ′(φ(t)) is a nonlinear function of a stochastic process, φ(t) that depends on the
stochastic process x(t). Therefore,

λ̄ = 〈Z ′(φj)x(t)〉 =
∫ t
−∞ dr C(t− r)

〈
δZ′(φj(t))
δx(r)

〉
.

With the chain-rule and the definition in Eq (68) this yields

λ̄ =
∫ t
−∞ dr C(t− r)〈Z ′′(φj(t))Z(φj(r))〉.

There are different approaches to calculate the remaining average. In an ergodic
system the ensemble average can be replaced by temporal averaging, 〈〉 =
limT→∞

1
T

∫ T
0 dt, so one gets

λ̄ = limT→∞
1
T

∫ T
0 dt

∫ t
−∞ dr C(t− r)Z ′′(φj(t))Z(φj(r)).

Further expansion in x(t), i.e. to lowest order φj(t) = f0t, one finds

λ̄ = limT→∞
∫ T

0 dt
∫ t
−∞ dr C(t− r)Z ′′(f0t)Z(f0r).

Example (white-noise stimulus) In the special case of a white noise simulus,
C(t− r) = ε2δ(t− r), one has

λ̄ = limT→∞ ε2
∫ T

0 dt Z ′′(f0t)Z(f0t).

Since now we are dealing with periodic functions under the integral
this is
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λ̄ = f0ε
2 ∫ f−1

0
0 dt Z ′′(f0t)Z(f0t).

In phase variables this is

λ̄ = ε2
∫ 1

0 dφZ ′′(φ)Z(φ) = −ε2
∫ 1

0 dφ (Z ′(φ))2.

In phase locking is guaranteed but the locked state is reached faster if the PRC
has large derivatives, i.e. higher Fourier components!

Several alternative derivations exist (Teramae and Tanaka 2004,D. S. Goldobin
and Pikovsky (2005),Denis S. Goldobin and Pikovsky (2005))

Note (intrinsic noise) In the presence of intrinsic noise (σ > 0) there is no
perfect locking. Nontheless, the phase difference φ may converge to a
unimodal distribution, peaked around zero. Given a uniform phase density
to start with: How long does it take to coverge to the stationary density of
phase differences?

10.3 Inter-spike statistics

10.3.1 First passage time (no input and constant noise)

In the case σ > 0 and x = 0 we have

φ̇ = f0 + σ ξ(t).

The adjoint Fokker-Planck equation

ṗ(φ, t) = σ2

2 ∂
2
φp(φ, t) + f∂φp(φ, t) s.t. BC p(1, t) = 1

Laplace transform the equation

sP (φ, s) = σ2

2 ∂
2
φP (φ, s) + f∂φP (φ, s)

A solution is

P (φ, s) = exp{ f0
σ2 (1−

√
1 + 2sσ2/f2

0 )(1− φ)}

The inverse Laplace transform of P (0, s) is the inverse Gaussian distribution

p(t) = exp{− (tf0−1)2

2σ2t
}

σ
√

2πt .

Many neuron that do not have slow channels (adaptation, pumps, . . . ) can be
fitted with this ISI distribution.

10.3.2 Phase dependent noise

Ion channel noise is not constant throughout the inter spike interval. In a simple
two state channel the voltage dependent noise variance is

σ2(v) = 1
N n∞(v)(1− n∞(v)),
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where N is the number of ion channels and n∞ is the steady state activation.
Hence one may which to analyse

φ̇ = f0 + σ(φ)ξ.

This can not be solved in general but the moments of the ISI distribution are
simpler.

The following conserns equations for the statistics of waiting times as in Ref.
(Gardiner 2004). Let y(t) be the process in question, denoting a voltage or a
phase variable. The process starts at a particular y0, i.e. the initial distribution
is

(72) p(y, t0) = δ(y − y0),

and one is interested in the distribution of times for the process to reach y = y1.

If the process is governed by a stochastic differential equation, then it was shown
that the associated density p(y, t) is propagated by a specific evolution operator

(73) ṗ(y, t) = F(y)p(y, t).

This equation was called the Fokker-Planck equation (FPE, see Eq (51)). Denote
the solution of a homogeneous FPE with starting distribution concentrated at
one value y0 by p(y, t; y0, t0) such that p(y, t0; y0, t0) = δ(y − y0) and write its
formal solution as

(74) p(y, t; y0, t0) = e(t−t0)F(y)δ(y − y0).

The goal is to find a relation between the ISI distribution of the neuron model
and the FP operator. For that assume the process lives in an interval (y1, y2),
where y2 could denote the spike threshold and y1 the resting potential to which
an IF-like neuron resets, or the two boundaries encapsulating the periodic domain
of the phase oscillator interval, e.g. y1 = 0 and y2 = 1. At time t0, the system
is supposed to start inside the interval, y1 6 y0 6 y2. The probability at time
t > t0 of still being inside the interval (y1, y2), and thus no spike occurring, is
(Gardiner 2004)

G(y0, t) = Pr(y16y(t)6y2) =
y2∫
y1

dỹ p(ỹ, t; y0, t0),

with additional condition G(y0, t0)=1 because we started with y0 ∈ [y1, y2]. The
time derivative of G(y0, t), i.e. the change in the probability of remaining within
(y1, y2), at any given t measures the exit rate or probability. It is also called

Def (first-passage time density) Thinking of G(y0, t) as the number density
of neurons in [y1, y2], the change of this density is the flux out of the
interval:

(75) q(t, y0) = ∂G(y0,t)
∂t .
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The goal is to find an evolution equaiton for q(t, y0). With the help of the formal
solution in Eq. (74), it can be shown that the inner product15 of h(y, t) = G(y,−t)
and p(y, t; y0, t0) is constant

〈h, p〉 =
∫

dy h(y, t)p(y, t; y0, t0) =
∫∫

dydỹ p(ỹ,−t; y, t0)p(y, t; y0, t0)

=
∫∫

dydỹ e−tF(ỹ)δ(ỹ − y)etF(y)δ(y − y0) =
∫

dy δ(y − y0) = 1.

Note that the operator etF commutes with the identity operator δ(y− ỹ). Taking
the time derivative of this constant and using ṗ = Fp one obtains

∂t〈h, p〉 = 〈ḣ, p〉+ 〈h, ṗ〉 = 〈ḣ, p〉+ 〈F†h, p〉 = 0.

Because p may change according to its initial conditions, the last expression
implies that ḣ = −F†h, or that G(y, t) is a solution to the adjoint Fokker-Planck
equation (Gardiner 2004)

Ġ(y, t) = F†G(y, t), s.t. G(y, T0) = 1I[y1,y2](y).

The adjoint operator F† is also called the infinitesimal generator of the stochastic
process. In addition to the boundary condition above, trivially stating that if
we start in the boundary the initial probability of inside is one, one may include
reflecting boundary conditions at the lower end ∂yG(y, t)|y=y1 = 0 and absorbing
boundary conditions at the upper end G(y2, t) = 0.

Because partial derivatives and integrals are both linear operators, the equation
for q directly reads the same

(76) q̇(y, t) = F†G(y, t),

just he bourndary condtion should read q(y2, t) = 1.

Since one of the main objectives in this document is to establish links between
the microscopic noise sources such as channel noise and the macroscopic spike
jitter one may immediate pose the question: How much information about the
underlying diffusion process can we extract from first passage time densities like
the ISI distribution? Might there be a unique diffusion process generating it? A
sobering answer to the second question was given in (???): No—the solution is
not unique, there are several possible diffusion processes that may lead to one
and the same passage time density.

Yet, not all is lost. If one takes into account constrains from membrane biophysics,
then diffusion process derived is not completely arbitrary. In fact, if the model
is derived from first principles, then the free parameters in the model can be
related to the ISI statistics.

15The inner product is the inner product on a function space 〈f, g〉 =
∫

dx f(x)g(x).
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10.3.3 Moments of the ISI distribution

Instead of attempting to obtain the complete ISI distribution by solving the
adjoint Fokker-Planck equation, Eq (76) one may content oneself with the first
two moments or the coefficient of variation, which one uses to quantify spike
jitter in experiments. Let us set t0 = 0 and Denote the nth moment of the ISI
distribution as (Gardiner 2004)

Tn(y) =
∫∞

0 dτ τnq(τ, y) = −
∫∞

0 dτ τn−1G(y, τ),

where the fact was used that for the finite interval [y1, y2] exit is guaranteed,
i.e., G(y0,∞) = 0. one may multiply both side of Eq. (76) with tn and integrate
to obtain a recursive ordinary differential equation for the moments

(77) nTn−1 + F†Tn = 0, s.t. T ′n(y1) = Tn(y2) = 0 and T0 = 1.

Here we have imposed reflecting boundary conditions on the lower limit y1 and
absorbing boundary conditions on the upper limit y2. These conditions are in
agreement with an IF model, which once reaching the spike threshold is reset an
unable to move inversely through the spike. As we discussed in the beginning of
?? they can also be applied as an approximation to the phase oscillator if the
noise is weak. This equation is also a direct consequence of the Feynman-Kac
formula.

In Cpt.~?? the Eq.~(??) will be used to calculate ISI moments of conductance
based neurons using a phase reduction. Suppose we have an FP operator F(φ)
for the equivalent phase variable that is accurate to order εk in the noise. Then
all moment, Tk, up to order the kth can be obtained accurately. For example if
one is interested in ISI variance, the method will require finding a suitable SDEs
for the phase variable φ(t) that gives the FP operator to second order.

10.4 Moments of the inter-spike interval distribution

The nth moment, Tn(φ)|φ=1, of the first passage time density is the solution to
(Gardiner 2004)

nTn−1 + F (φ)Tn = 0, s.t. BC: Tn(1) = 0 and T0 = 1,

where the Fokker-Planck backwards operator for the Stratonovich SDE in Eq
((???)) is

F (φ) = ~σ(φ) · d
dφ~σ(φ) d

dφ + f0
d

dφ .

Assuming that ∀φ : ε(φ) = f−1
0 ~σ(φ)� 1, solutions Tn(φ) = Tn1 + Tn2 + ... can

be sought in a perturbative manner.
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10.5 Renewal equation

In a renewal process, all inter-spike intervals are independent, as though each is
separately drawn form the ISI distribution. But slow kinetic processes in the
neuronal dynamics or long-term correlations in the external stimulus could make
the spike train have negative or positive correlations. A point process with such
properties would be called a non-renewal.

The ISI distribution alone does not tell us about the correlation between con-
secutive interspike intervals. Are they independent, negatively or positively
correlated? Several types of adaptation currents have time scales spanning
orders of magnitude above the spiking period and indeed there contribution to
ISI correlations have been analysed [?, ?]. But, for the sake of simplicity, we
will ignore the effects on longer times scales and consider a spike train as arising
form a renewal process.

In the following we treat the neuron as a threshold device such as an integrate-
and-fire neuron or a phase model neuron. We compile here a few known results
on renewal processes that we will need in later chapters (e.g., ??).

The transition probability p(θ, t; y0, t0) describes probability a spike occurring
at time t = t0, when the neuron was in state y0, is followed by a spike at time t,
when the neuron crosses threshold θ. For a stationary renewal process, at any
given time after a spike the transition probability p(θ, t) in the renewal case can
be decomposed into

p(y, t; y0, 0) =
∫ ∞

0
dτ p(y, t; θ, τ)qθ(τ) =

∫ ∞
0

dτ qθ(τ)p(y, t− τ ; θ, 0). (1)

Here qθ(τ) is shorthand for the interspike interval distribution from y0 at t0 = 0
to threshold θ, corresponding to the transition probability p(θ, τ ;x0, 0). The
second equality is due to stationarity, which implies a convolution. The spike
autocorrelation C(τ) is the probability that given a spike at t there is an other
spike at t+ τ . This is equivalent to the transition probability C(τ) = p(θ, τ ; θ, 0)
of being back at the spike threshold after τ times has elapsed. By recursively
splitting the transition probability in Eq.~(1) into all consecutive possible spiking
events one ends with

C(τ) = p(θ, τ ; θ, 0) =
∞∑
k=0

qθ(τ) ∗ · · · ∗ qθ(τ)︸ ︷︷ ︸
k times

. (2)

The typical approach to isolate the ISI density from Eq.~(1) is by means of
Laplace’s transform f̃(s) =

∫∞
0 dt e−stf(t), with s ∈ IC, then
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q̃θ(s) = p(x, s;x0, 0)
p(x, s; θ, 0) (3)

In some cases the result may be transformed back into time domain, if the
Mellin-Bromwich integral

qθ(t) = 1
2πi

∫ c+i∞

c−i∞
ds estq̃θ(s), (4)

exists, that is. The constant c is to be chosen to the right of the real parts of all
the integrand’s singularities. In cases where this integral can not be evaluated
explicitly one is stuck with an expression in the Laplace domain, which is not
all that bad, as at least individual moments of the time domain distribution as
well as the spike power spectrum may be evaluated. Moments are given by

〈τn〉 = (−1)n dnqθ(s)
dsn

∣∣∣∣
s=0

. (5)

The power spectrum of a stationary renewal spike train is the Fourier transform
of the spike train autocorrelation Eq.~(2). First, we can identify C(τ) again in
the infinite series and write

C(τ) = qθ(τ) +
∫ ∞

0
dt qθ(t)C(τ − t). (6)

Then, the Lapace transform can be applied to this linear Volterra integral
equation to solve for the spiketrain spectrum [?, ?]

P (ω) = r

{
1 + q̃θ(s)

1− q̃θ(s)

∣∣∣∣
s→iω

+ q̃θ(s)
1− q̃θ(s)

∣∣∣∣
s→−iω

}
(7)

10.5.0.1 The first moment (n = 1)

The equation for the first moment is

(78) 1 + ~σ(φ) · d
dφ~σ(φ)dT1

dφ + f0
dT1
dφ = 0

O(ε0) The zeroth order equation reads 1 + f0
dT10
dψ = 0 and the absorbing BC

yields

T10 = f−1
0 (1− φ).

O(ε2) Collecting all second order terms from Eq. (78) and inserting T10, results
in ~σ(φ) · d

dφ~σ(φ)dT10
dφ + f0

dT12
dφ = f0

dT12
dφ − f

−1
0 ~σ(φ) · ~σ′(φ) = 0. With the

BC this is solved by
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T12(φ) = −f−2
0
∫ 1
ψ

dθ ~σ(θ) · ~σ′(θ) = 1
2f2

0
[σ2(φ)− σ2(1)].

10.5.0.2 The second moment (n = 2)

The second moment has to solve

(79) 2T1 + ~σ(φ) d
dφ~σ(φ)dT2

dφ + f0
dT2
dφ = 0

O(ε0) To zeroth order the equation is 2T10 + f0
dT20
dφ = 0, with solution

T20 = f−2
0 (1− φ)2.

O(ε2) Second order equation is 2T12 + ~σ(φ) · d
dφ~σ(φ)dT20

dφ + f0
dT22
dφ = 0, or

3σ2(φ)− σ2(1)− 2~σ(φ) · ~σ′(φ)(1− φ) + f3
0

dT22
dφ = 0. This is solved by

T22 = 2f−3
0
∫ 1
φ

dθ σ2(φ) + (σ2(φ)− σ2(0))(1− φ).

The ISI variance is given by T22(0) +T20(0)− (T10(0) +T12(0))2, which evaluates
to Eq ((???)).

10.6 Spike auto-spectrum

To calculate the spectral coherence, Eq. (41), the spike auto-spectrum Pyy(ω) is
still needed for normalisation. In general this is complicated, but if the linearity
assumption could be extended to the spike trains itself it helps. Assume

y(t) = y0(t) +
∫

dr g(r)x(t− r).

Then trial averaging, 〈·〉y|x yields a result consistent with our previous linear
response setting

r(t) = r0 +
∫

dr g(r)x(t− r).

Take Y0(ω) +G(ω)X(ω) and assume that intrinsic noise and stimulus are uncor-
related

Pyy(ω) = 〈(Y0(ω) +G(ω)X(ω))(Y ∗0 (ω) +G∗(ω)X∗(ω))〉

= Py0y0(ω) + |G(ω)|2Pxx(ω)

10.7 Mutual entrainment

Assume two neuron i and j, whose spike-trains are y(φi(t)) =
∑
k δ(φi(t)− k).

The spike dynamics is represented by there I/O-equivalent phase oscillators

(80) φi = fi + Z(φi)y(φj) and φj = fj + Z(φj)y(φi)
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10.7.1 Spike metric

10.7.2 Time to Spike

11 Appendix

11.1 Novikov-Furutsu-Donsker formula

A relation between Gaussian noise sources and functions of the state variables in
stochastic systems is given by the Novikov-Furutsu-Donsker (NFD) formula. It
examines the correlation of a stochastic process ξ(t) at a fixed instance in time,
t, and a function f of x(t), which is an other stochastic process that depends
on ξ(t) (???,(???),(???)). One of the advantages of the NFD formula is that
it is applicable to systems with multiplicative noise, as they arise in several
applications involving phase response curves. The result is the following

(81) 〈f [ξ]ξ(t)〉 = 1
2
∫∞
−∞〈ξtξt1〉

〈
δf [η+ξ]
δηt1

∣∣∣
η=0

〉
dt1.

The script uses the formula several times so a formal and very compact derivation
follows (???). In many physical examples only the values in the past t1 6 t,
influence the functional f and the integration range can be adjusted accordingly.

Note that this is related to fluctuation-dissipation relations in statistical physics.
The state variable x is a random process that in turn depends on past values of
the random process ξ(t). One may, therefore, treat the function f as a functional
of the path ξt1 : ∀t1 6 t. Assuming that the process ξ(t) has a zero mean
function, the first step is to write this functional as a Taylor series16 around
the deterministic function η(t) = 0 (omitting the integral domain take it to be
understood from −∞ to t)

f [η+ξ] = f [η]|η=0+
∑∞
k=1

1
k!
∫
· · ·
∫

dt1 · · · dtk ξ(t1) · · · ξ(tk)
(

δkf [η]
δη(t1)···δη(tk)

) ∣∣∣
η=0

=(
exp

∫
dt′ ξ(t′) δ

δη(t′)

)
f [η]

∣∣
η=0.

The last expression just a formal, compressed way of writing it using the definition
of the exponential displacement operator. As f [η] is deterministic it can be
yanked from any averaging over the noise ensemble, e.g.

〈f [η + ξ]〉 =
〈(

exp
∫

dt′ ξ(t′) δ
δη(t′)

)〉
f [η]

∣∣
η=0.

Hence, we can formally write

(82) 〈ξ(t)f [ξ]〉 =
〈
ξ(t) exp

∫
dt′ ξ(t′) δ

δη(t′)

〉
f [η]

∣∣
η=0

16We are expanding not a function nor a vector-valued function but a functional.
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=
〈
ξ(t) exp

∫
dt′ ξ(t′) δ

δη(t′)

〉〈
exp
∫

dt′ ξ(t′) δ
δη(t′)

〉 〈f [η + ξ]〉
∣∣
η=0.

Next, the infinite dimensional Fourier transform of a stochastic process called
the characteristic functional is introduced

Φ[λ] =
〈
exp

(
i
∫

dt′ λ(t′)ξ(t′)
)〉
.

For the, by assumption, Gaussian process ξt it is known to be the exponential of
a quadratic form

Φ[λ] = exp
(
− 1

2
∫

dt1dt2 λ(t1)C(t1, t2)λ(t2)
)
,

which must be real, Φ[λ] ∈ IR, because the density is symmetric around η(t) = 0.

With the help of the following identity
〈ξ(t) exp i

∫
dt′ξ(t′)λ(t′)〉

〈exp i
∫

dt′ξ(t′)λ(t′)〉
= δ

iδλ ln
〈
exp i

∫
dt′ξ(t′)λ(t′)

〉
= δ

iδλ ln Φ[λ],

and a formal substitution δ/δη(t)→ iλ(t) we may simplify Eq.~(??) to

〈ξtf [ξ]〉 = δ

iδλ ln Φ[λ]〈f [η + ξ]〉
∣∣
η=0 = i

2

∫
dt1C(t, t1)λ(t1)〈f [η + ξ]〉

∣∣
η=0.

Back substituting iλ(t)→ δ/δηt we obtain Eq. (81).
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